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Introduction
Image registration is a common task for many biomedical analysis applications. The present work
focuses on the benchmarking of registration methods on differently stained histological slides. This
is a challenging task due to the differences in the appearance model, the repetitive texture of the
details and the large image size, between other issues. Our benchmarking data is composed of 616
image pairs at two different scales — average image diagonal 2.4k and 5k pixels. We compare eleven
fully automatic registration methods covering the widely used similarity measures. For each method,
the best parameter configuration is found and subsequently applied to all the image pairs. The
performance of the algorithms is evaluated from several perspectives — the registrations (in)accuracy
on manually annotated landmarks, the method robustness and its computation time.

Illustration of registered image pairs

proSPC — CD31, TRE = 4.02 ± 9.56% H&E — proSPC, TRE = 4.54 ± 8.63% Ki67 — CD31, TRE = 2.81 ± 7.66% CD31 — H&E, TRE = 2.94 ± 5.83% H&E — Cytokeratin, TRE = 4.54 ± 5.41%

H&E — Cytokeratin, TRE = 6.81 ± 13.87% ER — Cytokeratin, TRE = 2.94 ± 3.79% H&E — ER, TRE = 7.32 ± 9.79% ER — H&E, TRE = 8.25 ± 9.46% Ki67 — H&E, TRE = 7.05 ± 8.24%

Overlap of moving and warped image after registration with marked landmarks: moving—initial (blue), reference—target (red) and warped (green). The red line represents the registration error.

Materials
Whole slide microscopy images

• 32 sets of consecutive sections — breast tumor, lung tumor, rat kidney

• stained by a different dye — Cytokeratin, CC10, proSPC, H&E, Ki67, CD31, CNEU, ER, PR,
Podocin, Negative

Evaluation measures

• Target Registration Error (TRE) is mean Euclidean distances in pixels between the posi-
tions of the landmarks in the reference and the transformed images normalized by the size of
the image diagonal.

• Robustness is the ratio of cases where registration improved the initial relative TRE.

• Execution time is measured on a computer using a single CPU/thread.

Numerical results
Mean TRE before registration 4.25%± 5.98%, median=2.79%. Mean TRE between experts 0.4%.

Linear Elastic
robust. TRE [%] time [s] robust. TRE [%] time [s]Methods
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[%] mean median mean median [%] mean median mean median

S 96.92 0.83 0.28 52.85 16.93 - - - - -
OpenCV

M 96.92 0.91 0.27 247.3 101.1 - - - - -
S 93.67 0.72 0.34 6.13 5.72 93.83 2.98 1.52 24.92 27.07
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TrakEM2 [1]
M 97.56 0.66 0.30 11.5 11.41 91.40 3.36 2.38 49.54 50.52
S 96.27 1.43 0.30 664.9 674.0 97.56 2.23 0.42 1127 1140

Elastix [2]
M 94.64 2.89 1.95 787.9 782.0 96.27 3.21 1.71 1247 1246
S 96.92 1.07 0.25 26.67 24.80 96.75 1.00 0.22 72.95 69.53

ANTs [3]
M 96.27 1.05 0.24 128.5 126.6 96.59 1.08 0.22 434.4 417.2
S 79.22 2.04 1.25 6.48 2.70 70.13 1.61 0.81 5.92 3.65

NiftyReg [4]
M 72.40 2.86 1.92 28.72 29.0 58.12 2.21 1.67 17.55 16.57
S - - - - - 79.06 1.52 0.58 125.7 91.71
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bUnwarpJ [5]
M - - - - - 80.84 2.68 1.54 686.9 445.8

OpenCV S 96.27 0.67 0.29 290.6 172.7 94.64 0.75 0.48 325.1 198.6
+ Elastix [6] M 96.75 0.76 0.29 575.7 394.1 94.38 0.85 0.45 15397 5350

S 95.62 1.12 0.52 67.49 62.54 92.26 0.86 0.32 299.4 137.4
DROP [7]

M 96.27 1.12 0.51 303.9 270.6 54.81 1.17 0.62 17179 13095
S - - - - - 56.53 3.04 2.37 31.81 27.46
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RVSS [5]
M - - - - - 63.34 2.66 2.04 153.1 100.4
S 88.31 0.90 0.66 105.1 103.5 83.28 0.94 0.55 210.7 207.7

ASSAR [8]
M 86.69 1.04 0.71 309.9 275.0 81.66 1.16 0.76 605.9 558.0
S 92.37 1.56 0.44 16.09 14.97 93.34 1.34 0.41 16.21 14.99L
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SegReg [9]
M 89.94 1.40 0.45 67.03 57.65 90.26 1.41 0.42 75.88 66.85

Experimental results on both small [2k × 2k] (S) and medium [4k × 4k] ( M ) datasets and for linear
and elastic (free-form) transformations. Some implementations do not support both transformations
(denoted by ‘-’). We mark best scores (first and second) for each metric and scale.

Relation between TRE and execution time
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Dependency of time to TRE for all methods and evaluated with respect to used transformation.

Distributions of TRE
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Distribution of TRE for all methods with respect to used transformation.
Configuration of registration methods

type Method Criterion Optimization

Features
OpenCV SURF & MSER RANSAC

TrakEM2 [1] SIFT RANSAC

Similarity

Elastix [2] MMI L-BFGS
ANTs [3] MMI / CC LPF

NiftyReg [4] NMI conjug. gradient
bUnwarpJ [5] SSD LM + BFGS

Hybrid
OpenCV + Elastix [2] SURF & MSER + MMI RANSAC+ L-BFGS

RVSS [5] SIFT + SSD LM
DROP [7] Gabor + SAR linear prog. MRF

Labels
ASSAR [8] MIL BP
SegReg [9] MIL BOBYQUA

Similarity: Intensity-based registration methods; Features: Feature-based registration methods;
Hybrid: Feature and intensity-based registration methods; Labels: Segmentation based methods.

Conclusion
• Selected registration methods cover the most common similarity criteria.

• Execution time of some methods is reasonably good (suitable for practical usage).

• Performances as measured show that the task is still not fully solved.

• In many cases the liner transformation performs better then the elastic.

• Image dataset — http://cmp.felk.cvut.cz/~borovji3/?page=dataset
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