Image segmentation & BPDL in microscopy

Jiri Borovec @ CMP, FEE, CTU in Prague

2018 <u>http://cmp.felk.cvut.cz/~borovji3/</u> https://www.researchgate.net/publication/323120618

Resources

- Publications:
 - Borovec J. (2017). Automatic analysis of gene expressions in Drosophila microscopy images. <u>ftp://cmp.felk.cvut.cz/pub/cmp/articles/borovec/Thesis-TR-2017-07.pdf</u>
 - Borovec J., Svihlik J., Kybic J., Habart D. (2017). Supervised and unsupervised segmentation using superpixels, model estimation, and Graph Cut. SPIE Journal of Electronic Imaging 26(6), 061610, http://doi.org/10.1117/1.JEI.26.6.061610
 - Borovec J., Kybic J., Nava R. (2017) Detection and Localization of Drosophila Egg Chambers in Microscopy Images. In: Wang Q., Shi Y., Suk HI., Suzuki K. (eds) Machine Learning in Medical Imaging. MLMI 2017. LNCS, vol 10541. Springer, Cham. <u>http://doi.org/10.1007/978-3-319-67389-9_3</u>
 - Borovec J., Kybic J., Sugimoto, A. (2017). Region growing using superpixels with learned shape prior. SPIE Journal of Electronic Imaging 26(6), 061611, <u>http://doi.org/10.1117/1.JEI.26.6.061611</u>
 - Borovec J., Kybic J. (2016) Binary Pattern Dictionary Learning for Gene Expression Representation in Drosophila Imaginal Discs. In: Computer Vision – ACCV 2016 Workshops. Lecture Notes in Computer Science, vol 10117, Springer, <u>http://doi.org/10.1007/978-3-319-54427-4_40</u>

Overview

- 1. Problem statement
- 2. Used datasets
- 3. Instance segmentation
 - a. Structure (tissue) segmentation on superpixels
 - b. Center detection and ellipse fitting
 - c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Motivation

Why Drosophila?

- High gene similarity with mumals (~ 93%)
- Short life cycles -> gene evaluation in generations

Automatic image processing:

- Analyses require thousands of images to be processed
- Very time consuming for experts

Schema of Drosophila development

Sample images

Image analysis pipeline

Drosophila Datasets

Just a few annotations in biomedical imaging is common issue...

- Noisy images with local deformations
- Low image variance (patterns)

	Domain	Semantic annot.	Instance annot.
Ovaries	2.5D	72	250
Imaginal discs	2D	15	-

Drosophila ovary - semantic segmentation

Drosophila imaginal discs - semantic segmentation

Notations

Image related

- Ω set of pixels (image plane)
- I input image function I : $\Omega \rightarrow Rm$
- L set of labels

Superpixels

Segmentation & Region growing

- $y_{_{\Omega}} \qquad \text{pixel-wise segmentation function } y\Omega:\Omega\to L$
- Y_{Ω} ordered set of pixel-wise segmentation Y Ω = yΩ (Ω)
- y superpixel segmentation function $y : S \to L$ with abbrev. for ys = y(s)
- Y ordered set of superpixel segmentation Y = y(S)
- x feature vector
- X set of features $xs \in X$ for all superpixels
- $d_{_{\!\!\{M,E,T\,\}}}$ Manhattan, Euclidean and Tchebychev distances
- U, B unary (data) and binary (pairwise) term for GC respectively
- g image descriptor
- r vector of ray distances
- c vector of object centers
- m statistical shape model m = [c, r, Θ , w]
- M mixture of shape model
- w vector with model weights
- q cumulative probability of spatial prior

Dictionary Learning

- g image appearance (binary association to a class)
- G set of images $g \in G$
- \boldsymbol{y}_{Ω} , $\boldsymbol{Y}_{\Omega}^{-}$ atlas (binary patterns, segmentation)
- w vector with binary weights
- W matrix with binary weights $w \in W$

Superpixels - Imaginal discs

Superpixels - Drosophila ovary

regularization $\xi = 0.1$ regularization $\xi = 0.3$ regularization $\xi = 0.5$ size $v = 30 \, [px]$ = 60 [px] 2 size

Overview

- 1. Problem statement
- 2. Used datasets
- 3. Instance segmentation
 - a. Structure (tissue) segmentation on superpixels
 - b. Center detection and ellipse fitting
 - c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Supervised and unsupervised segmentation using superpixels, model estimation, and Graph Cut

Jiří Borovec, Jan Švihlík, Jan Kybic, David Habart, "**Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut,**" Journal Electron. Imaging 26(6), 061610 (2017), <u>DOI:</u> <u>10.1117/1.JEI.26.6.06161</u>0.

Segmentation method overview

Image segmentation method consisting of the following steps:

- 1. Computation of superpixels SLIC
- 2. Extraction of superpixel-based descriptors:
 - a. Color mean, median, energy, STD
 - b. Texture Leung-Malik filter bank
- 3. Calculating image-based class probabilities:
 - a. Supervised Random Forest, k-NN, Adaboost, ...
 - b. Unsupervised Gaussian Mixture Model
- 4. Spatial regularized superpixel classification using Graph Cut
 - a. Edge weights color, features, model

Problem formulation

Formulation (standard) as

$$Y^* = \arg \max_{Y} P(Y|X) = \arg \max_{Y} \frac{p(X|Y) \cdot P(Y)}{p(X)}$$
$$P(Y) = \prod_{s \in S} h(y_s) \cdot \prod_{(i,j) \in \mathcal{N} \subseteq S^2} R(y_i, y_j)$$
$$Y^* = \arg \max_{Y} \prod_{i \in S} \left(p(\boldsymbol{x}_i|y_i) \cdot h(y_i) \right) \cdot \prod_{(i,j) \in \mathcal{N}} R(y_i, y_j)$$

Energy minimisation

$$Y^* = \arg\min_{Y} \sum_{s} \underbrace{-\log\left(p(\boldsymbol{x}_s|y_s) \cdot h(y_s)\right)}_{U_s(y_s)} + \underbrace{\sum_{(i,j) \in \mathcal{N}} -\log R(y_i, y_j)}_{\beta w_{i,j} B(y_i, y_j)}$$

Superpixel features

Influence of superpixel parameters

Low feature representativeness

Optimum (~compromise)

Low separability

Graph Cut - Edge weights

Segmentation results with SOA (F1-score)

		Method	imaginal disc	ovary
G	vise	Weka	0.6923	0.5800
wis		Weka & GC(0, 100)	0.6887	0.5810
el-1	p	Weka & GC(1, 50)	0.6887	0.5965
Pix	vise	Weka & GC(10, 50)	0.6887	0.1395
in the second of	erv	Weka & GC(50, 100)	0.6850	0.6007
	Superpixels Jnsuper. Sup	ideal segm. Y_A	0.9696	0.9067
		Supertextons	-	0.7488
kels		our RF	0.8181	0.8201
ciq		our RF & GC	0.8229	0.8600
Ibei		our GMM	0.7542	0.5967
Su		our GMM & GC	0.7644	0.6039
		our GMM [gr]	0.7301	0.6009
		our GMM [gr] & GC	0.7564	0.6083

Advantage of using Graph Cut

Supervised vs Unsupervised

VS.

Overview

- 1. Problem statement
- 2. Used datasets

3. Instance segmentation

- a. Structure (tissue) segmentation on superpixels
- b. Center detection and ellipse fitting
- c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Detection and localization of Drosophila egg chambers in microscopy images

Borovec J., Kybic J., Nava R. (2017) **Detection and Localization of Drosophila Egg Chambers in Microscopy Images**. In: Machine Learning in Medical Imaging. LNCS, vol 10541. Springer, <u>DOI:</u> <u>10.1007/978-3-319-67389-9</u>_3.

Center detections - illustration

Image

Input segm.

Goal

27

Schema

- 1. Extract pixel features
 - a. Label histogram
 - b. Ray features
- 2. Train classifier
- 3. Group center candidates
- 4. Ellipse fitting

Features for center detection

Label histogram

Ray features

Classification & Grouping

Train classifier on 3 zones

Negative

Clustering of center candidates with DBSCAN

No not case Positive

Ellipse fitting

Fitting ellipses to boundary points to maximise foreground labels inside ellipse

Ellipse fitting

Ellipse pruning

Ellipse approximation eliminate multiple center detection in single egg

Egg chambors	Stage						
Egg chambers	1	2	3	4	5		
number	921	1403	865	834	836		
false negatives	306 (33%)	158 (11%)	6 (0.7%)	1 (0.1%)	0 (0.0%)		
multiple detections (MD)	37 (4.0%)	31 (2.2%)	109 (12%)	80 (9.6%)	90 (11%)		
MD after ellipse fitting	18 (2.0%)	13 (0.9%)	27 (3.1%)	20 (2.4%)	30 (3.6%)		
false positives			43 (0.9%)	-			

Overview

- 1. Problem statement
- 2. Used datasets

3. Instance segmentation

- a. Structure (tissue) segmentation on superpixels
- b. Center detection and ellipse fitting
- c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Region growing using superpixels with learned shape prior

Jiří Borovec, Jan Kybic, Akihiro Sugimoto, "**Region growing using superpixels with learned shape prior,**" Journal Electron. Imaging 26(6), 061610 (2017), <u>DOI: 10.1117/1.JEI.26.6.06161</u>1.

Region growing - variational framework

Formulated as:

Region growing - variational framework

Where:

$$P_{g}(g \mid y) = \prod_{i \in \Omega} P_{g}\left(g(s(i)) \mid y(s(i))\right) = \prod_{s \in S} P_{g}\left(\mathbf{y}_{s} \mid y(s)\right)^{|\Omega_{s}|}$$

$$P_{m}(g \mid M) = \prod_{i \in \Omega} P_{m}\left(g(s(i)) \mid M\right) = \prod_{s \in S} P_{m}\left(\mathbf{y}_{s} \mid M\right)^{|\Omega_{s}|}$$

$$P_{R}(g) = \prod_{(u,v) \in \mathcal{M}_{S}} H\left(\mathbf{y}(u), \mathbf{y}(v)\right)$$
Resolves in energy minimisation:
$$E'(g) = \sum_{s \in S} \underbrace{|\Omega_{s}| \left[D_{s}(\mathbf{y}_{s}) + \beta V_{s}(\mathbf{y}_{s})\right]}_{U_{s}(y_{s})} + \gamma \sum_{(u,v) \in \mathcal{M}_{S}} B\left(\mathbf{y}(u), \mathbf{y}(v)\right)$$

Appearance model

Associating a probability for each pixel (superpixel) whether it belongs to an object or not

$$P_g(\mathbf{y}(s)|g_s) = \begin{cases} P_g(g_s) & \text{for } \mathbf{y}(s) \neq 0\\ 1 - P_g(g_s) & \text{for } \mathbf{y}(s) = 0 \end{cases}$$

Measured shapes

Measured egg shapes as ray features from training examples (~250 eggs)

Shape model & prior

Gaussian model from all measured Ray features

Prior is represented as integral of probabilities

Mixture of Gaussian models

$$P_m(\mathbf{y}_s = k \mid M) = \begin{cases} q(s, m_k) & \text{for } k > 0\\ \prod_l (1 - q(s, m_l)) & \text{for } k = 0 \end{cases}$$

RG - optimisation

- Iterative approach on object boundaries
- Alternating: region growing & update shape prior
- Strategies:
 - Greedy
 - Graph Cut
 - Binary
 - Multi-class
 - Object swapping

Algorithm 1: Region growing.

Input: S: superpixels, g: superpixel descriptors, c_k : initial object centers, M: mixture of statistical shape models

Output: object segmentation y

- 1 compute data cost *D*;
- 2 from object centers c_k set initial segmentation y and model shape parameters m_k ;
- 3 compute shape cost V;
- 4 while not converged do
- s update object pose parameters c_k and Θ_k ;
- **if** significant change of center c_k position, orientation Θ_k and object area **then**

update remaining object shape parameters m_k ;

update shape costs V for all s close to k;

- 9 end
- 10 find superpixels ∂S_k on the external object boundary of k;
- optimize (7.10) wrt **y** by changing $s \in \partial S_k$ using the greedy or Graph Cut algorithms;

12 end

7

8

Result compared to SOA

High Jaccard index with reasonable processing time

	Jaccard	accuracy	F_1 score	precision	recall	time [s]
Watershed	0.5705	0.9246	0.9246	0.9246	0.9246	5
Watershed (w. morph.)	0.5705	0.9270	0.9198	0.9136	0.9327	7
Morph. snakes (image)	0.4251	0.8769	0.8070	0.9053	0.7987	784
Morph. snakes (P_y)	0.6494	0.8812	0.8812	0.8812	0.8812	968
Graph Cut (pixel-level)	0.7143	0.9204	0.9204	0.9204	0.9204	15
Graph Cut (superpixels)	0.3164	0.8643	0.8643	0.8643	0.8643	3
RG2Sp (greedy)	0.7527	0.9577	0.9577	0.9577	0.9577	72
RG2Sp (Graph Cut)	0.7544	0.9568	0.9568	0.9568	0.9568	9

Overview

- 1. Problem statement
- 2. Used datasets
- 3. Instance segmentation
 - a. Structure (tissue) segmentation on superpixels
 - b. Center detection and ellipse fitting
 - c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Binary Pattern Dictionary Learning of gene expressions

Borovec J., Kybic J. (2016) **Binary Pattern Dictionary Learning for Gene Expression Representation in Drosophila Imaginal Discs.** In: Computer Vision – ACCV 2016 Workshops. Lecture Notes in Computer Science, vol 10117, Springer, <u>DOI: 10.1007/978-3-319-54427-4_4</u>0.

Pipeline: segmentation - registration - BPDL

Decomposition methods

Formulation

$$\min_{Y,W} \|X - Y \cdot W\|^2$$

- Standard approaches
 - Non Negative Matrix Factorisation
 - Fast Independent Component Analysis
 - Sparse Principal Component Analyses
 - Dictionary Learning with Matching pursuit

Formulation

• Image representation

• Similarity measure (Hamming distance)

• Regularize neighbouring pixels

Optimization criterion

$$\hat{\mathbf{g}} = \sum_{l \in \mathbb{L}} \mathbf{w}_l \cdot [\![\mathbf{y} = l]\!]$$

mmming distance)

$$F(\mathbf{g}, \mathbf{y}, \mathbf{w}) = \sum_{i \in \Omega} [\![\mathbf{g}_i \neq \hat{\mathbf{g}}_i]\!]$$

ng pixels

$$H(\mathbf{y}) = \sum_{\substack{i,j \in \Omega, i \neq j, \\ d(i,j) = 1}} [\![\mathbf{y}_i \neq \mathbf{y}_j]\!]$$

$$\mathbf{y}^*, \mathbf{w}^* = \arg\min_{\mathbf{y}, \mathbf{W}} \frac{1}{N} \sum_n F(\mathbf{g}^n, \mathbf{y}, \mathbf{w}^n) + \beta \cdot H(\mathbf{y})$$

Alternating minimization

• Update weights - maximise overlap

$$w_{l} = \llbracket P(\mathbf{g}, \mathbf{y}, l) \geq \sigma \rrbracket \quad \text{where } \sigma = 1$$

and
$$P(\mathbf{g}, \mathbf{y}, l) = \frac{\sum_{i \in \Omega, \mathbf{y}_{i} = l} \llbracket \mathbf{g}_{i} = 1 \rrbracket}{\sum_{i \in \Omega, \mathbf{y}_{i} = l} \llbracket \mathbf{g}_{i} \neq 1 \rrbracket} = \frac{\left\| \llbracket \mathbf{y} = l \rrbracket \right\|}{\sum_{i \in \Omega, \mathbf{y}_{i} = l} (1 - \mathbf{g}_{i})} - 1$$

Update atlas
$$\frac{1}{N} \sum_{i \in \Omega} \sum_{\underline{n}} \left| \mathbf{g}_{i}^{s} - \sum_{l \in \mathbb{L}} \mathbf{w}_{l}^{s} \cdot \llbracket \mathbf{y} = l \rrbracket \right| + \sum_{\substack{i, j \in \Omega, i \neq j, \\ d(i, j) = 1}} \llbracket \mathbf{y}_{i} \neq \mathbf{y}_{j} \rrbracket$$

Algorithm

Algorithm 1 General schema of BPDL algorithm.

- 1: initialise atlas \mathbf{y}
- 2: while not converged do
- 3: update weights $\mathbf{w} \in \mathbf{W}$
- 4: reinitialise empty patterns in \mathbf{y}^*
- 5: update atlas \mathbf{y}^* /via Graph Cut
- 6: end while

It makes the algorithm more robust to initialisation.

Synthetic datasets

Synthetic images

Comparison on synth. images

datasets		NMF	FastICA	sPCA	DL	BPDL		
v	1	$(size \ 64 \times 64 \ px, \ 13 \ patterns)$						
	ARS	1.0	1.0	1.0 0.992		0.999		
pure	diff.	0.0	0.0	0.029	08 0.019	0.0		
	time	2.333	340.32	18.29	01 737.47	6.029		
	ARS	0.785	0.948	0.78	0 0.779	0.992		
deform	diff.	0.017	0.004	0.02	9 0.033	0.005		
	time [s]	4.001	312.18	15.00	00 700.03	7.561		
DEN	ARS	0.091	0.878	0.00	9 0.0727	0.951		
	diff.	0.048	0.010	0.06	1 0.0499	0.003		
	time [s]	4.490	439.04	11.42	20 697.599	9.562		

Comparison on synth. images

datasets		NMF	FastICA	sPCA	DL	BPDL		
v	2	$(size \ 128 \times 128 \ px, \ 23 \ patterns)$						
	ARS	1.0	1.0	0.98	9 1.0	0.999		
pure	diff.	0.0	0.0	0.03	7 0.0	0.005		
	time [s]	82.329	5533.4 460.82		14786.	88.260		
deform	ARS	0.818	0.846	0.80	1 0.807	0.970		
	diff.	0.019	0.015	0.05	6 0.046	0.004		
	time [s]	144.10	5683.2	477.4	13619.	165.22		
D&N	ARS	0.120	0.612	0.02	4 0.144	0.877		
	diff.	0.036	0.036	0.09	2 0.039	0.013		
	time [s]	77.399	6912.9	485.4	4 13729.	289.51		

Input segmented imaginal discs

Visualise results on imaginal discs

Gene & atlas

Used patterns

Pattern activation

Extracted Atlases for Imaginal discs

Results on imaginal discs

No ground truth atlases...

Method	Numb	Time [min]		
Wiethou	10	20	30	
NMF	0.0939	0.0823	0.0723	10
FastICA	0.1197	0.0779	0.0485	24
sPCA	0.0476	0.0413	0.0352	477
DL	0.0939	0.0648	0.0596	338
BPDL	0.0467	0.0395	0.0361	20

Parameter selection

& More discs

Overview

- 1. Problem statement
- 2. Used datasets
- 3. Instance segmentation
 - a. Structure (tissue) segmentation on superpixels
 - b. Center detection and ellipse fitting
 - c. Region growing on superpixels
- 4. Binary Pattern Dictionary Learning
- 5. Conclusion & Future work

Conclusion

- Presented four image processing methods:
 - Image segmentation on superpixels
 - Center detection on segmented images
 - Region growing with shape prior
 - Binary Pattern Dictionary Learning
 - Implementation:
 - <u>http://borda.github.com/pyImSegm</u>
 - <u>http://borda.github.com/pyBPDL</u>
- Future work
 - Complete image analysis pipeline in 2.5D
 - Try instance segmentation with CNNs

0 ...

We have our method BPOL and also as compose it to state of the act, see Extended and

