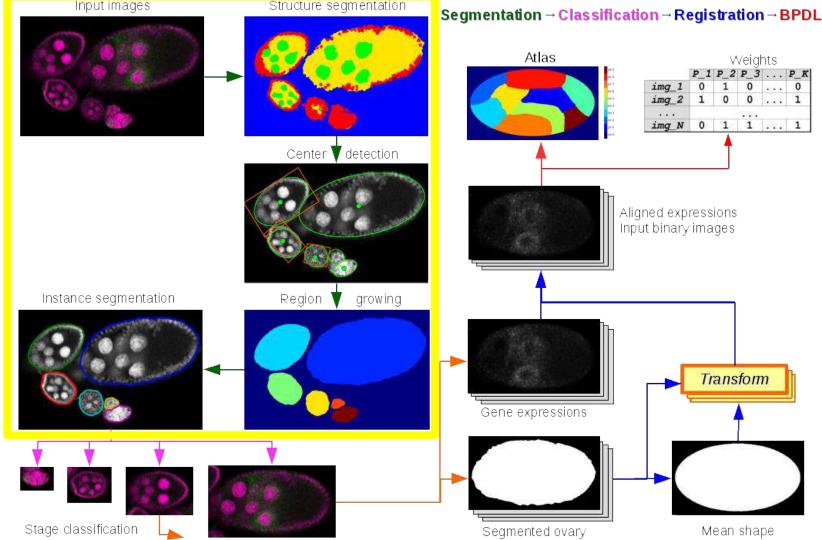
Image segmentation & Region growing

Jiří Borovec @ CMP, FEL, ČVUT

23.11.2017 http://cmp.felk.cvut.cz/~borovji3/

Image analyses pipeline



Resources

- Publications:
 - Borovec J., Svihlik J., Kybic J., Habart D. (2017). Supervised and unsupervised segmentation using superpixels, model estimation, and Graph Cut. SPIE Journal of Electronic Imaging 26(6), 061610, http://doi.org/10.1117/1.JEI.26.6.061610
 - Borovec J., Kybic J., Nava R. (2017) Detection and Localization of Drosophila Egg Chambers in Microscopy Images. In: Wang Q., Shi Y., Suk HI., Suzuki K. (eds) Machine Learning in Medical Imaging. MLMI 2017. LNCS, vol 10541. Springer, Cham. <u>http://doi.org/10.1007/978-3-319-67389-9_3</u>
 - Borovec J., Kybic J., Sugimoto, A. (2017). Region growing using superpixels with learned shape prior. SPIE Journal of Electronic Imaging 26(6), 061611, <u>http://doi.org/10.1117/1.JEI.26.6.061611</u>
- Implementation: <u>https://github.com/Borda/pyImSegm</u>

pyImSegm

Image segmentation - general superpixel segmentation & center detection & region growing

View On GitHub

Image segmentation toolbox

Superpixel segmentation with GraphCut regularisation

Object centre detection and Ellipse approximation

Superpixel Region Growing with Shape prior Installation and configuration

Image segmentation toolbox

build passing codecov 🥺 codecy 🔨 run shippable coverage 83% 🥥 PASSED

Superpixel segmentation with GraphCut regularisation

Image segmentation is widely used as an initial phase of many image processing tasks in computer vision and image analysis. Many recent segmentation methods use superpixels because they reduce the size of the segmentation problem by order of magnitude Also, features on superpixels

Supervised and unsupervised segmentation using superpixels, model estimation, and Graph Cut

Jiří Borovec, Jan Švihlík, Jan Kybic, David Habart, "**Supervised and unsupervised segmentation using superpixels, model estimation, and graph cut,**" Journal Electron. Imaging 26(6), 061610 (2017), DOI: 10.1117/1.JEI.26.6.061610.

Image analysis pipeline

- 1. Structure (tissue) segmentation
 - a. computation of superpixels SLIC
 - b. extraction of superpixel-based descriptors;
 - c. calculating image-based class probabilities;
 - d. spatial regularized superpixel classification using Graph Cut

2. Center detection

- a. center candidate training & prediction
- b. candidate clustering
- c. ellipse fitting

3. Region growing

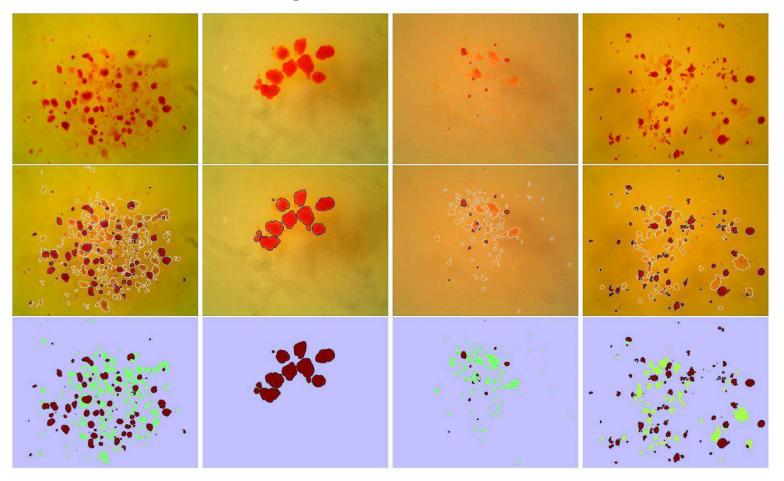
- a. learning statistical model
- b. region growing

Segmentation method overview

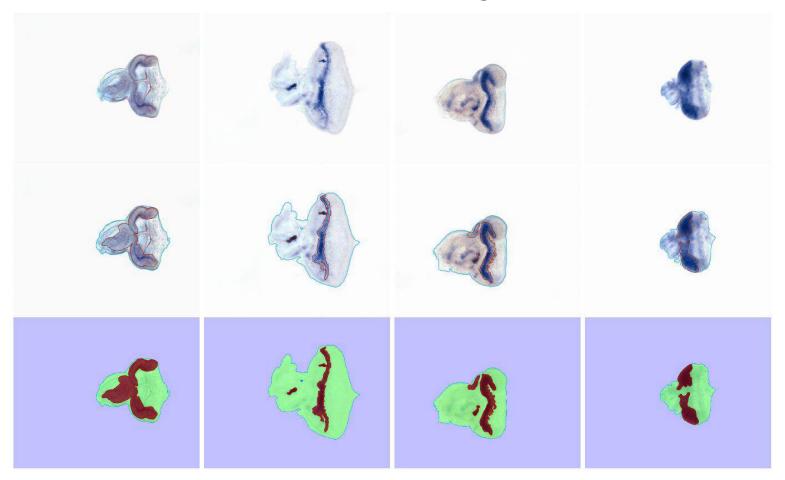
Image segmentation method consisting of the following steps:

- 1. Computation of superpixels SLIC
- 2. Extraction of superpixel-based descriptors;
 - a. Color mean, median, energy, STD
 - b. Texture Leung-Malik filter bank
- 3. Calculating image-based class probabilities;
 - a. Supervised Random Forest, k-NN, Adaboost, ...
 - b. Unsupervised Gaussian Mixture Model
- 4. Spatial regularized superpixel classification using Graph Cut
 - a. Edge weights color, features, model

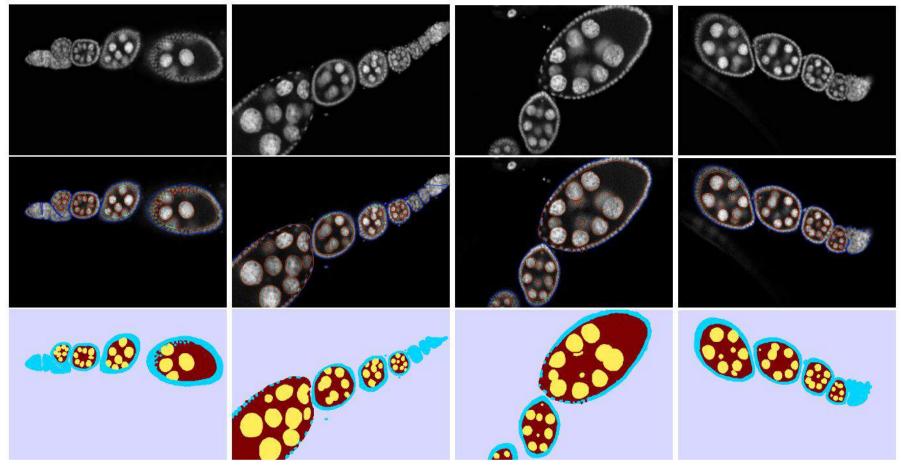
Used datasets - Langerhan islets

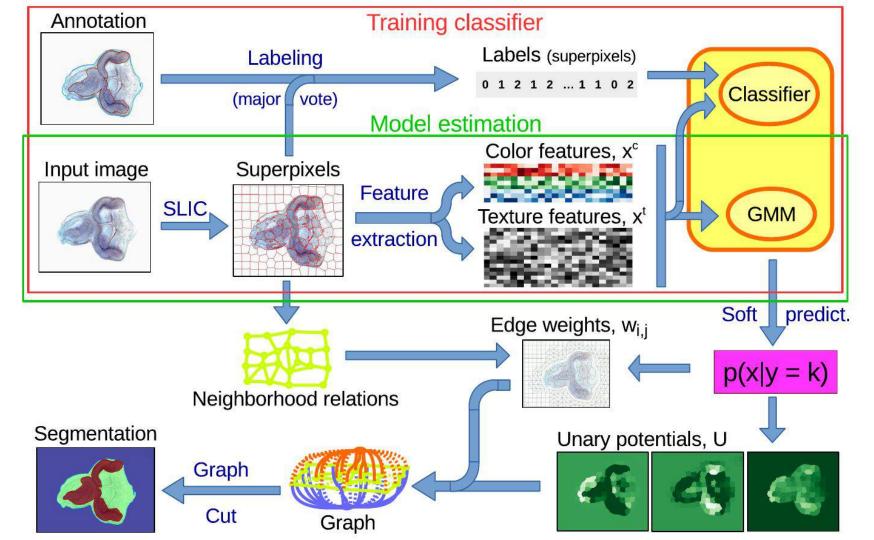


Used datasets - Drosophila imaginal discs



Used datasets - Drosophila ovary





Problem formulation

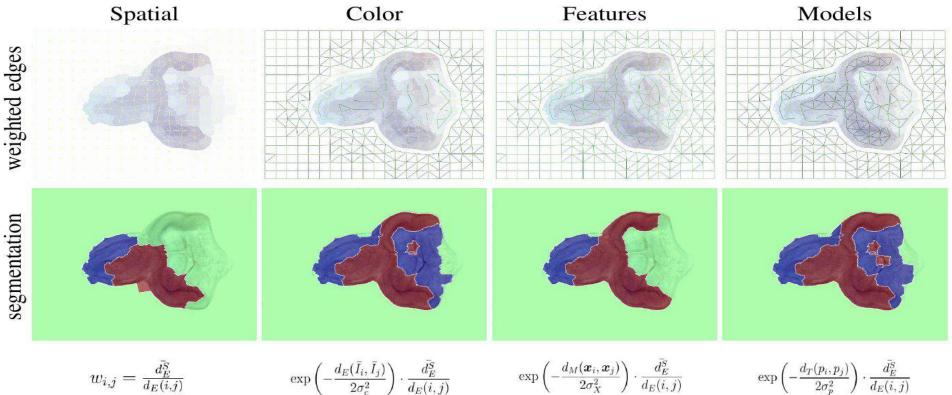
Formulation (standard) as

$$Y^* = \arg \max_{Y} P(Y|X) = \arg \max_{Y} \frac{p(X|Y) \cdot P(Y)}{p(X)}$$
$$P(Y) = \prod_{s \in S} h(y_s) \cdot \prod_{(i,j) \in \mathcal{N} \subseteq S^2} R(y_i, y_j)$$
$$Y^* = \arg \max_{Y} \prod_{i \in S} \left(p(\boldsymbol{x}_i | y_i) \cdot h(y_i) \right) \cdot \prod_{(i,j) \in \mathcal{N}} R(y_i, y_j)$$

Energy minimisation

$$Y^* = \arg\min_{Y} \sum_{s} \underbrace{-\log\left(p(\boldsymbol{x}_s|y_s) \cdot h(y_s)\right)}_{U_s(y_s)} + \underbrace{\sum_{(i,j) \in \mathcal{N}} \underbrace{-\log R(y_i, y_j)}_{\beta w_{i,j} B(y_i, y_j)}}_{\beta w_{i,j} B(y_i, y_j)}$$

Graph Cut - Edge weight



 $w_{i,j} = \frac{d_E^S}{d_E(i,j)}$

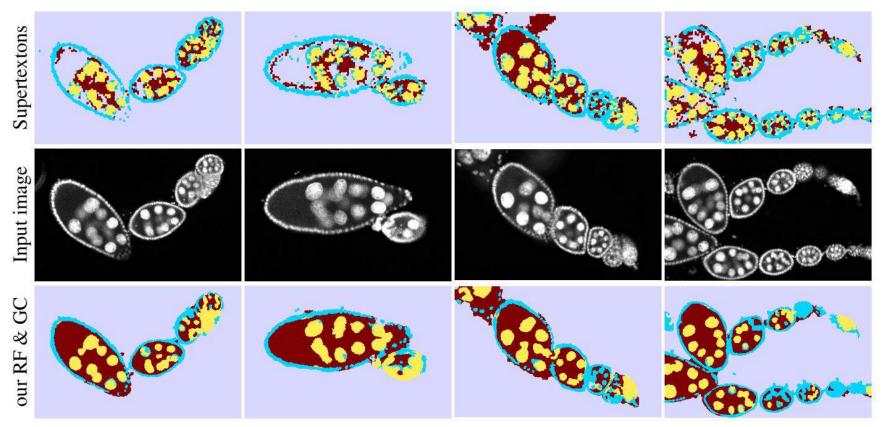
 $\exp\left(-\frac{d_E(\bar{I}_i,\bar{I}_j)}{2\sigma_c^2}\right)\cdot\frac{\bar{d}_E^S}{d_E(i,j)}$

 $\exp\left(-rac{d_M(oldsymbol{x}_i,oldsymbol{x}_j)}{2\sigma_X^2}
ight)\cdotrac{d_E^S}{d_E(i,j)}$

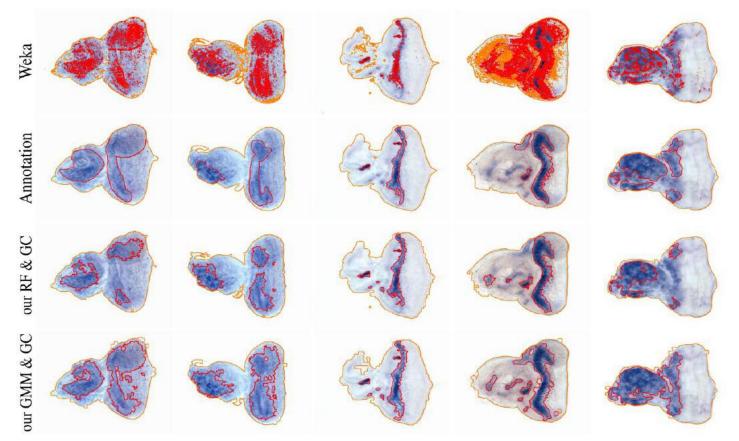
Segmentation results with SOA (F1-score)

		Method	Lang. islets	imaginal disc	ovary
Pixel-wise	Supervised	Weka ⁴⁴	0.7374	0.6923	0.5800
		Weka & GC(0, 100)	0.7373	0.6887	0.5810
		Weka & GC(1, 50)	0.7376	0.6887	0.5965
		Weka & GC(10, 50)	0.6935	0.6887	0.1395
		Weka & GC(50, 100)	0.6862	0.6850	0.6007
		NPA ³³	0.8420	-	-
Superpixels		ideal segm. Y_A	0.8590	0.9696	0.9067
		Supertextons ¹⁷	-	-	0.7488
		our RF	0.8565	0.8181	0.8201
		our RF & GC	0.8570	0.8229	0.8600
	Unsuper.	our GMM	0.5358	0.7542	0.5967
		our GMM & GC	0.5465	0.7644	0.6039
		our GMM [gr]	0.5682	0.7301	0.6009
		our GMM [gr] & GC	0.5816	0.7564	0.6083

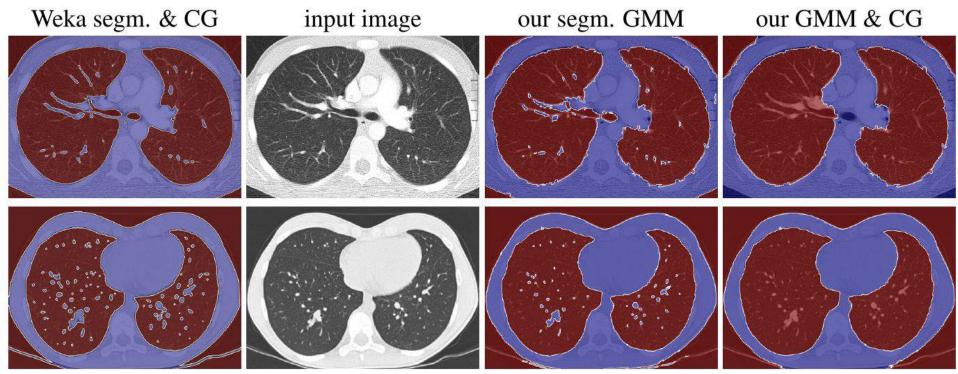
Advantage of using Graph Cut



Supervised vs Unsupervised



Unsupervised with Graph Cut



Detection and localization of Drosophila egg chambers in microscopy images

Borovec J., Kybic J., Nava R. (2017) **Detection and Localization of Drosophila Egg Chambers in Microscopy Images**. In: Machine Learning in Medical Imaging. LNCS, vol 10541. Springer, DOI: 10.1007/978-3-319-67389-9_3

Image analysis pipeline

- 1. Structure (tissue) segmentation
 - a. computation of superpixels SLIC
 - b. extraction of superpixel-based descriptors;
 - c. calculating image-based class probabilities;
 - d. spatial regularized superpixel classification using Graph Cut

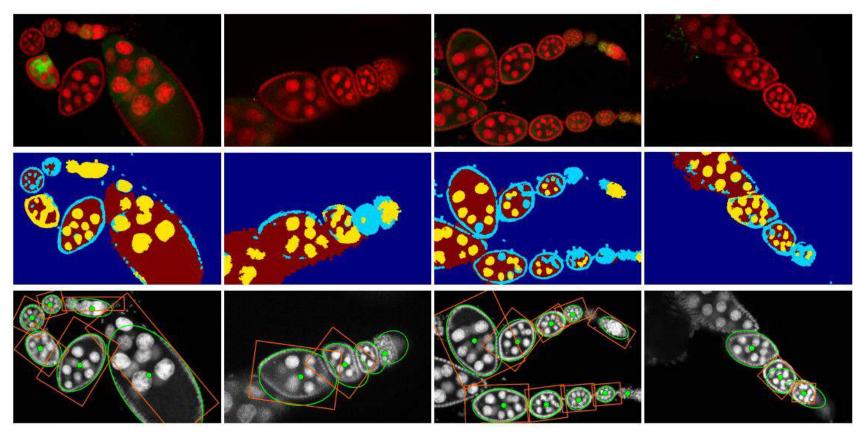
2. Center detection

- a. center candidate training & prediction
- b. candidate clustering
- c. ellipse fitting

3. Region growing

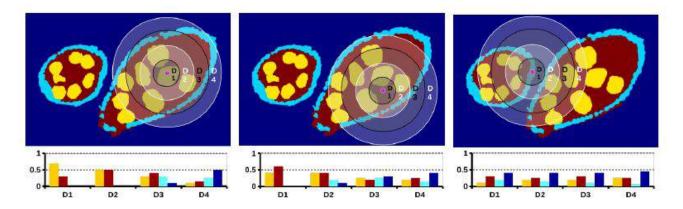
- a. learning statistical model
- b. region growing

Center detections

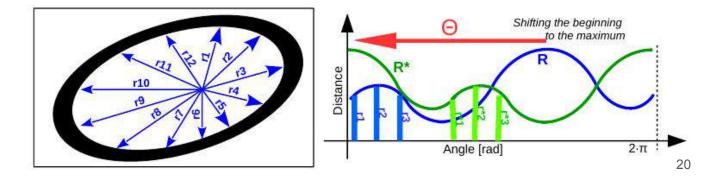


Features for center detection

• Label histogram



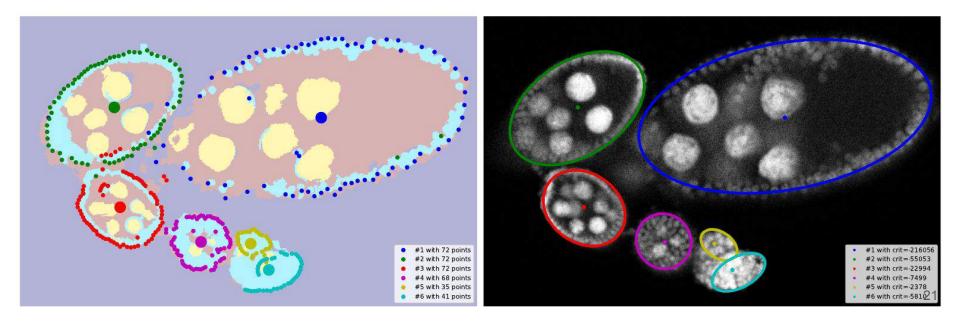
• Ray features

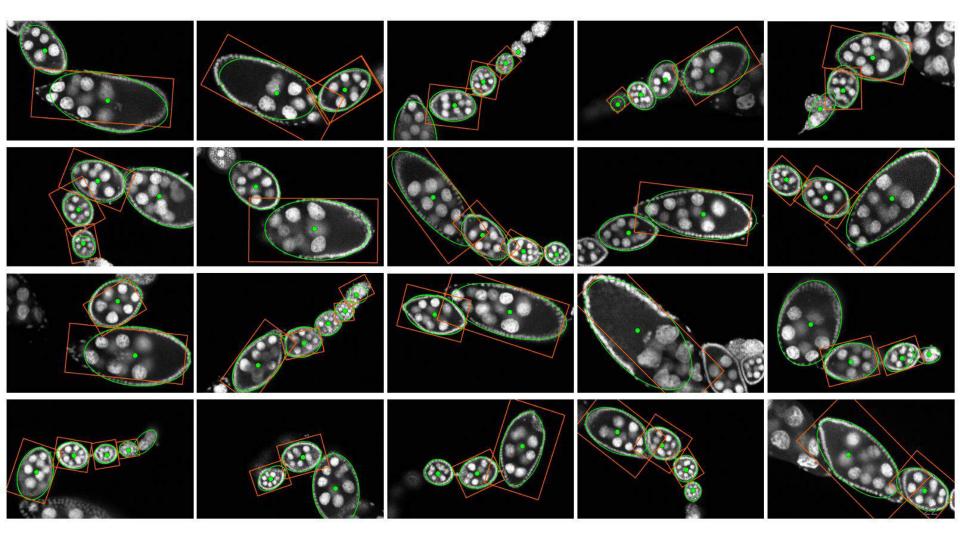


Ellipse fitting

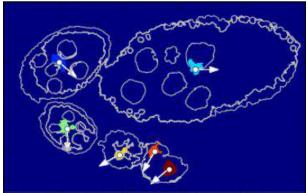
Maximize likelihood

$\prod_{i\in\Omega_F} P_F(Y_i) \cdot \prod_{i\in\Omega\setminus\Omega_F} P_B(Y_i)$





Iteration #1 with E=1221716



Region growing using superpixels with learned shape prior

Jiří Borovec, Jan Kybic, Akihiro Sugimoto, "**Region growing using superpixels with learned shape prior,**" Journal Electron. Imaging 26(6), 061610 (2017), DOI: 10.1117/1.JEI.26.6.061611.

Image analysis pipeline

- 1. Structure (tissue) segmentation
 - a. computation of superpixels SLIC
 - b. extraction of superpixel-based descriptors;
 - c. calculating image-based class probabilities;
 - d. spatial regularized superpixel classification using Graph Cut

2. Center detection

- a. center candidate training & prediction
- b. candidate clustering
- c. ellipse fitting

3. Region growing

- a. learning statistical model
- b. region growing

Region growing - variational framework

Formulated as:

$$P(g(s) \mid y, \boldsymbol{M}) = \frac{1}{Z(\boldsymbol{M}, y)} P_y(g \mid y) P_m(g \mid \boldsymbol{M}) P_R(g)$$

Where:

$$P_{y}(g \mid y) = \prod_{i \in \Omega} P_{y}\left(g(s(i)) \mid y(s(i))\right) = \prod_{s \in S} P_{y}\left(g(s) \mid y(s)\right)^{|\Omega_{s}|}$$
$$P_{m}(g \mid \boldsymbol{M}) = \prod_{i \in \Omega} P_{m}\left(g(s(i)) \mid \boldsymbol{M}\right) = \prod_{s \in S} P_{m}\left(g(s) \mid \boldsymbol{M}\right)^{|\Omega_{s}|}$$
$$P_{R}(g) = \prod_{(u,v) \in \mathcal{N}_{S}} H(g(u), g(v))$$

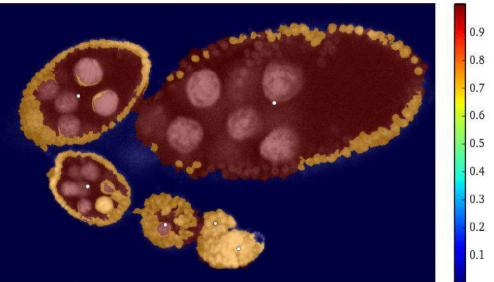
Resolves in energy minimisation:

$$E'(g) = \sum_{s \in S} |\Omega_s| \Big[D_s \big(g(s) \big) + \beta V_s \big(g(s) \big) \Big] + \sum_{(u,v) \in \mathcal{N}_S} \gamma B \big(g(u), g(v) \big)$$

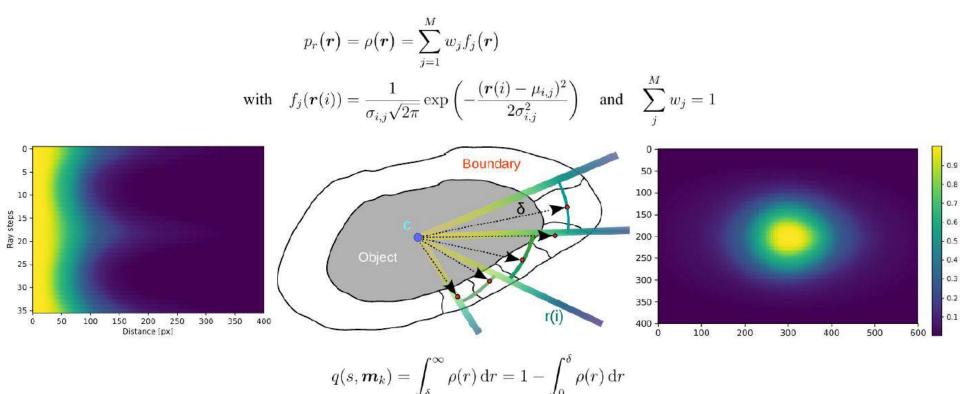
Appearance model

Associating a probability for each pixel / superpixel whether it belongs to an object or not

$$P_y(g(s)|y_s) = \begin{cases} P_y(y_s) & \text{for } g(s) \neq 0\\ 1 - P_y(y_s) & \text{for } g(s) = 0 \end{cases}$$



Shape model & prior



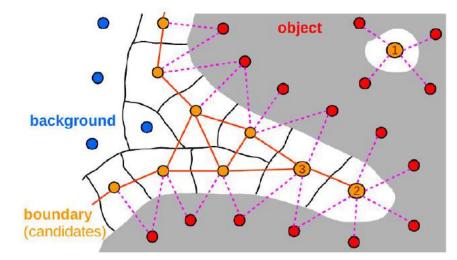
Mixture model

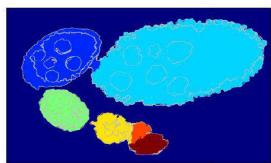
$$P_m(g(s) = k \mid M) = \begin{cases} q(s, m_k) & \text{if } n \neq 0 \\ \prod_l (1 - q(s, m_l)) & \text{for } k = 0 \end{cases}$$

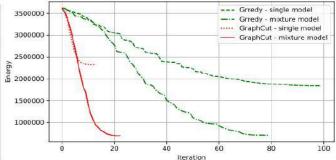
$$P_m(g(s) = k \mid \mathbf{M}) = \begin{cases} q(s, \mathbf{m}_k) & \text{for } k > 0\\ \prod_l (1 - q(s, \mathbf{m}_l)) & \text{for } k = 0 \end{cases}$$

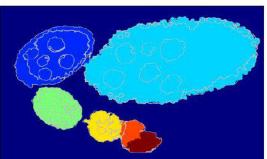
Region growing - optimisation

- Greedy
- Multi-class Graph Cut
- Binary Graph Cut
- Object swapping



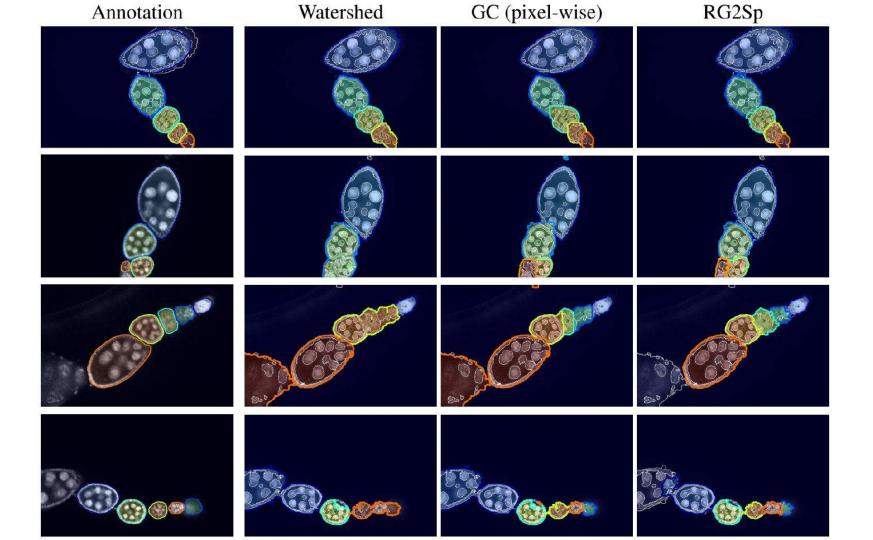






Result compare to SOA

			-	•••		
	Jaccard	accuracy	F_1 score	precision	recall	time [s]
Watershed	0.5705	0.9246	0.9246	0.9246	0.9246	5
Watershed (w. morph.)	0.5705	0.9270	0.9198	0.9136	0.9327	7
Morph. snakes (image)	0.4251	0.8769	0.8070	0.9053	0.7987	784
Morph. snakes (P_y)	0.6494	0.8812	0.8812	0.8812	0.8812	968
Graph Cut (pixel-level)	0.7143	0.9204	0.9204	0.9204	0.9204	15
Graph Cut (superpixels)	0.3164	0.8643	0.8643	0.8643	0.8643	3
RG2Sp (greedy)	0.7527	0.9577	0.9577	0.9577	0.9577	72
RG2Sp (Graph Cut)	0.7544	0.9568	0.9568	0.9568	0.9568	9



Conclusion

- Presented 3 image methods
 - Image segmentation on superpixels
 - supervised
 - Partially-supervised
 - unsupervised
 - Center detection on segmented images
 - Region growing with shape prior
- Future work
 - Compte image analysis pipeline
 - Explore Instance segmentation with NN
 - o ...

