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Abstract

Many computer vision algorithms include a robust estimation step where
model parameters are computed from a data set containing a significant pro-
portion of outliers. The RANSAC algorithm is possibly the most widely used
robust estimator in the field of computer vision. In the paper we show that un-
der a broad range of conditions, RANSAC efficiency is significantly improved
if its hypothesis evaluation step is randomized.

A new randomized (hypothesis evaluation) version of the RANSAC al-
gorithm, R-RANSAC, is introduced. Computational savings are achieved by
typically evaluating only a fraction of data points for models contaminated
with outliers. The idea is implemented in a two-step evaluation procedure. A
mathematically tractable class of statistical preverification tests for test sam-
ples is introduced. For this class of preverification test we derive an approx-
imate relation for the optimal setting of its single parameter. The proposed
pre-test is evaluated on both synthetic data and real-world problems and a
significant increase in speed is shown.

1 Introduction

Many computer vision algorithms include a robust estimation step where model param-
eters are computed from a data set containing a significant proportion of outliers. The
RANSAC1 algorithm introduced by Fishler and Bolles in 1981 [2] is possibly the most
widely used robust estimator in the field of computer vision. RANSAC has been applied
in the context of short baseline stereo [11, 13], wide baseline stereo matching [8, 14, 10],
motion segmentation [11], mosaicing [6], detection of geometric primitives [1], robust
eigenimage matching [4] and elsewhere.

The structure of the RANSAC algorithm is simple but powerful. Repeatedly, subsets
are randomly selected from the input data and model parameters fitting the sample are
computed. The size of the random samples is the smallest sufficient for determining
model parameters. In a second step, the quality of the model parameters is evaluated on
the full data set. Different cost functions may be used [12] for the evaluation, the standard
being the number of inliers, i.e. the number of data points consistent with the model. The
process is terminated when the likelihood of finding a better model becomes low. The
strength of the method stems from the fact that, to find a good solution, it is sufficient to
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select a single random sample not contaminated by outliers. Depending on the complexity
of the model (the size of random samples) RANSAC can handle contamination levels well
above 50%, which is commonly assumed to be a practical limit in robust statistics [9].

The speed of RANSAC depends on two factors. Firstly, the level of contamination
determines the number of random samples that have to be taken to guarantee a certain
confidence in the optimality of the solution. Secondly, the time spent evaluating the qual-
ity of each of the hypothesized model parameters is proportional to the size N of the data
set. Typically, a very large number of erroneous model parameters obtained from con-
taminated samples are evaluated. Such models are consistent with only a small fraction
of the data. This observation can be exploited to significantly increase the speed of the
RANSAC algorithm.

As the main contribution of this paper, we show that under a broad range of con-
ditions, RANSAC efficiency is significantly improved if its hypothesis evaluation step is
randomized. The core idea of the Randomized (hypothesis evaluation) RANSAC is that
most model parameter hypotheses evaluated are influenced by outliers. For such erro-
neous models, it is sufficient to test only a small number of data points d from the total
of N points (d � N ) to conclude, with high confidence, that they do not correspond to
the sought solution. The idea is implemented in a two-step evaluation procedure. First,
a statistical test is performed on d randomly selected data points. The final evaluation on
all N data points is carried out only if the pre-test is passed. The increase in the speed of
the modified RANSAC depends on the likelihoods of the two types of errors made in the
pre-test: 1. rejection of an uncontaminated model and 2. acceptance of a contaminated
model. Since RANSAC is already a randomized algorithm, the randomization of model
evaluation does not change the nature of the solution – it is only correct with a certain
probability. However, the same confidence in the solution is obtained in, on average, a
shorter time.

Finding an optimal pre-test with the fastest average behaviour is naturally desirable,
but very complex. Instead we introduce in Section 3 a mathematically tractable class of
pre-tests based on small test samples. For this class we derive an approximate relation
for optimal setting of its single parameter. The proposed pre-tests are assessed on both
synthetic data and real-world problems and performance improvements are demonstrated.

The structure of this paper is as follows. First, in Section 2, the concept of evaluation
with pre-tests is introduced and formulae describing the total complexity of the algorithm
are derived. Both the number of samples drawn and the amount of time spent on evalua-
tion of a hypothesized model are discussed in detail. In Section 3, the d-out-of-d class of
pre-test is introduced and analyzed. In Section 4 both simulated and real experiments are
presented and their results discussed. The paper is concluded in Section 5 and plans for
future work are discussed.

2 Randomized RANSAC

In this section, the time complexity of the RANSAC algorithm is expressed as a function
of quantities that characterise the input data and the complexity of the model. We start
by introducing the notations. The set of all data points is denoted U , the number of data
points N = |U |, and ε represents the fraction of inliers in the data set. The size of the
sample is m, i.e. the number of data points necessary to compute model parameters.



Let us first express the total time spent in the R-RANSAC procedure. From the analysis
of the algorithm (Table 1) we derived the average time spent in R-RANSAC in number of
verified data points

J = k(tM + t̄), (1)

where k is the number of samples drawn, t̄ is the average number of data points verified
within one model evaluation, and tM is the time necessary to compute the parameter of
the model from the selected sample.The time needed to verify the consistency of one data
point with the hypothesized parameters was chosen as a unit of time. Note that tM is a
constant independent of both the number of data points N and the fraction of inliers ε.

From (1) we see, that the average time spent in R-RANSAC depends on both the number
of samples drawn k and the average time required to process each sample. The analysis
of these two components follows.

In: U = {xi} set of data points, |U | = N
f : S → p computes model parameters from a data point sample
ρ(p, x) the cost function for a single data point (e.g. 1 if x is

an inlier to the model with parameters p, 0 otherwise)
Out: p∗ parameters of the model maximizing the cost function

k := 0

Repeat until P{better solution exists} < η
(a function of C∗ = max(Ci), i = 1..k, the cost (quality)
of the best tested model and no. of steps k)

k := k + 1

I. Hypothesis

(1) select randomly set Sk ⊂ U , |Sk| = m

(2) compute parameters pk = f(Sk)

II. Preliminary test

(3) perform test based on d � N data points
(4) continue verification only if the test is passed

III. Evaluation

(5) compute cost (quality) Ck =
∑

x∈U ρ(pk, x)
(6) if C∗ < Ck then C∗ := Ck , p∗ := pk

Table 1: Summary of RANSAC and R-RANSAC algorithms. Step II is added to RANSAC

to randomize its cost function evaluation.

The number of tested hypothesis, which is equal to the number of samples, depends
(besides other factors) on the termination condition. Two different termination criteria



may be adopted in RANSAC. The hypothesize-verify loop is either stopped after evaluation
of more samples than expected on average to select a good (uncontaminated) sample.
Alternatively, the number of samples is chosen to ensure that the probability that a better-
than-currently-best sample is missed is lower than a predefined confidence level. We
show that the stopping times for the two cases, average-driven and confidence-driven,
differ only by a multiplicative factor and hence the optimal value in the proposed test is
reached with the same parameters.

Since the sample is selected without replacement, the probability of taking a good
sample is

PI =

(
I
m

)
(

N
m

) =
I! (N − m)!
(I − m)! N !

=
m−1∏
j=0

I − j

N − j
,

where I = εN stands for the number of inliers. For N � m a simple and accurate
approximation is obtained

PI ≈ εm, (2)

which is exactly correct for sampling with replacement and commonly used in the liter-
ature. Since PI > εm, running RANSAC without replacement is on average faster than
estimated with approximation (2). The average number of samples taken before the first
uncontaminated is given by (from properties of the geometric distribution)

k̄ =
1

εmα
, (3)

where α is the probability of a good sample passing the preverification test. Note that
for the randomized version of RANSAC the number of samples is higher than or equal to
the standard version, because a valid solution may be rejected in a preliminary test with
probability 1 − α. In the confidence-driven sampling, at least k samples have to be taken
to reduce the probability of missing a good sample below a predefined confidence level η.
Thus we get, as in [11],

η = (1 − εm α)k, (4)

and solving for k leads to

k =
log η

log (1 − εm α)
. (5)

Since (1 − x) is the first order Taylor expansion of e−x at zero, and (1 − x) ≤ e−x, we
have

η = (1 − εm α)k ≤ e−εmα k

ln η ≤ −εm α k

− ln η

εm α
≥ k

We see, that k ≤ k̄(− ln η), where− ln η is a predefined constant, so all formulae obtained
for the η-confidence driven case can be trivially modified to cover the average case.

The number of data points points tested. So far we have seen that introduction of
a preliminary test has increased the number of samples drawn. For the pre-test to make



sense, this effect must be more than offset by the reduction in the average number of data
points tested per hypothesis. There are two cases to be considered. First, with probability
PI an uncontaminated (’good’) sample is drawn. Then the preverification test is passed
with probability α and all N data points are verified. Else, with probability 1 − α, this
good sample is rejected and only t̄α data points are on average tested. In the second case,
a contaminated (’bad’) sample is drawn, and this happens with probability 1−PI . Again
either the pre-verification step is passed, but this time with a different probability β, and
the full test with all N data points is carried out, or with probability 1 − β, only t̄β data
points are tested in the preverification test.

Here β stands for the probability, that a bad sample passes the preverification test.
Note that it is important that β � α, i.e. a bad (contaminated) sample is consistent with
a smaller number of data points than a good sample. Forming a weighted average of the
four cases, the formula for the average number of tests per sample is obtained:

t̄(d)=PI

(
αN +(1 − α)t̄α

)
+ (1 − PI)

(
βN +(1 − β)t̄β

)
. (6)

Values of α, β, t̄α, and t̄β depend on the type of preverification test.

3 The Td,d Test

In this section we introduce a simple and thus mathematically tractable class of prever-
ification tests. Despite its simplicity, we show in the simulations and experiments of
Section 4 its potential. The test we analyze is defined as follows:

Definition 1 (the T(d,d)) The T(d,d) is passed if all d data points out of d randomly
selected are consistent with the hypothesized model.

In the rest of this section we derive the optimal value for d. First of all we express
constants as introduced in the previous section as

α = εd and β = δd,

where δ is the probability that a data point is consistent with a ”random” model. Since
we do not need to test all d points (since single failure means that the pre-test failed), the
average time spent in the preverification test is

t̄α =
d∑

i=1

i (1−ε) εi−1 and t̄β =
d∑

i=1

i (1−δ) δi−1

Since
d∑

i=1

i(1 − x)xi−1 ≤
∞∑

i=1

i(1 − x)xi−1 =
1

1 − x
, (7)

we have

t̄α ≤ 1
1 − ε

and t̄β ≤ 1
1 − δ

.

The approximation we get after substituting 7 into (6)

t̄(d)≈εm

(
εdN +

1 − εd

1 − ε

)
+ (1 − εm)

(
δdN +

1 − δd

1 − δ

)



is too complicated for finding optimal d. Therefore, we incorporate the following approx-
imations

(1 − εm)
1 − δd

1 − δ
≈ 1,

(1 − εm)δdN ≈ δdN , and

εdN � 1 − εd

1 − ε
,

which are sufficiently accurate for commonly encountered values of ε, δ and N . After
applying these approximations, we have

t̄(d) ≈ N δd + 1 + εm+d N (8)

The average time spent in R-RANSAC in number of verified data points is then approxi-
mately

J(Td,d) ≈ 1
εm εd

(
N δd + εm+d N + 1 + tM

)
(9)

We are looking for the minimum of J(Td,d) which is found by solving for d in ∂J(Td,d)
∂d =

0. The optimal length of the Td,d test is

d∗ ≈
ln

(
ln ε(tM+1)

N (ln δ−ln ε)

)
ln δ

. (10)

The value of dopt must be an integer greater or equal to zero, so it could be expressed as

dopt = max(0, arg min
d∈{�d∗�,�d∗�}

J(Td,d)). (11)

Since the cost function J(Td,d) has only one extremum and for d → ± ∞ we have
J(Td,d) → ∞, we can say that R-RANSAC is faster than the standard RANSAC if

J(T0,0) > J(T1,1).

From this equation we get

N > (tM + 1)
1 − ε

ε − δ
. (12)

4 Experiments

In this section are experiments that show the usefulness of the new randomized RANSAC

algorithm with a preverification tests. The speed-up is demonstrated on the problem of
epipolar geometry estimation. Three experiments are conducted on data from a synthetic,
a short (standard) and wide-baseline stereo matching problems. Results of these exper-
iments are summarized in Tables 2, 3, and 4 respectively. The structure of the tables
is the following. The first column shows the length d of the Td,d test, where d = 0
means standard RANSAC. The number of samples, each consisting of 7 point-to-point
correspondences, that were used for model parameter estimation is given in the second
column. Since the seven-point algorithm [3] for computation of the fundamental matrix
may lead to one or three solutions, the next column, labeled ‘models’, shows the number



d samples models tests inliers time
0 1866 4569 6821218 600 25.0
1 4717 11536 16311 600 6.0
2 11849 28962 33841 600 15.1

Table 2: Synthetic experiment on 1500 correspondences, 40% of inliers, 30 repetitions.

d samples models tests inliers time
0 480 1146 766875 343 2.6
1 960 2301 83953 342 1.4

Table 3: Short baseline experiment on 676 tentative correspondences.

of hypothesized fundamental matrices. The ‘tests’ column displays the number of point-
to-point correspondences evaluated during the procedure. In the penultimate column, the
average number of inliers detected is given. The last column is rather informative and
shows the time in seconds taken by the algorithm. This is strongly dependent on the
implementation.

Synthetic experiment. 1500 correspondences were generated, 900 outliers and 600
inliers. Since the run-time of both RANSAC and R-RANSAC is a random variable, the
programs were executed 30 times and averages were taken. Result are shown in Table 2.
Since the number of correspondences is large, the standard RANSAC algorithm spends a
long time verifying all correspondence as can be seen in column ‘tests’.

The short baseline experiment was conducted on the images from a standard dataset
of the Leuven castle [7]. There were 676 tentative correspondences of the Harris interest
points selected in the basis of the cross-correlation of neigbourhoods. The tentative cor-
respondences contained approximately 60% of inliers. Looking at Table 3, we see that
approximately twice as many fundamental matrices were hypothesized in R-RANSAC, but
more than nine times less correspondences were evaluated.

Wide baseline experiment on the BOOKSHELF dataset. The tentative correspon-
dences were formed as follows. Discriminative regions (MSERs, SECs) [5] were de-
tected. Robust similarity functions on the affine invariant description were used to estab-
lish the mutually nearest pair of regions. Point correspondences were obtained as centers
of gravity of those regions. There were less then 40% of inliers among the correspon-
dences. The speeding-up in this experiment, shown in Table 4, is approximately 50%.

5 Conclusion

In this paper, we presented a new algorithm called R-RANSAC, which increased the speed
of model parameter estimation under a broad range of conditions, due to randomization of

d samples models tests inliers time
0 3094 7582 3078184 161 12.9
1 6366 15583 178217 164 8.7

Table 4: Wide baseline experiment on 413 tentative correspondences.



Figure 1: Short baseline image set

the hypothesis evaluation step. For samples contaminated by outliers, it was shown that
it was sufficient to test only a small number of data points d � N to conclude with high
confidence that they do not correspond to the sought solution. The idea was implemented
in a two-step evaluation procedure (Table 1). We introduced a mathematically tractable
class of pre-tests based on small test samples. For this class an approximate relation for
optimal setting of its single parameter was derived. The proposed pre-test was evaluated
on both synthetic data and real-world problems and a significant increase in speed was
observed. The task for the future is to design an optimal preverification test in a class
broader then the Td,d.



Figure 2: Wide baseline image set
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