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Abstract

Approximating non-linear kernels by finite-dimensional feature maps is a popular
approach for accelerating training and evaluation of support vector machines or
to encode information into efficient match kernels. We propose a novel method
of data independent construction of low-dimensional feature maps. The problem
is formulated as a linear program that jointly considers two competing objectives:
the quality of the approximation and the dimensionality of the feature map.

For both shift-invariant and homogeneous kernels the proposed method achieves
better approximation at the same dimensionality or comparable approximations at
lower dimensionality of the feature map compared with state-of-the-art methods.

Keywords: explicit feature maps, shift-invariant kernels, homogeneous kernels,
linear programming

1. Introduction

Kernel machines, such as support vector machines (SVMs), can approximate
any function or decision boundary arbitrarily well when provided with enough
training data. However, such methods scale poorly with the size of the training
set. On the other hand, it was shown [1] that linear SVMs can be trained in
linear time with the number of training examples, which allows its application to
very large datasets. Approximate embeddings, or feature maps, can preserve the
accuracy of kernel methods and enable scaling to large datasets at the same time.

The demand for linear approximations of non-linear kernel functions is not
limited to SVM classification. The idea of efficient match kernels [2] has been
used in various areas of computer vision. Example applications relying on linear

Preprint submitted to Image and Vision Computing August 17, 2017



approximations of non-linear kernels include image matching and retrieval. Ker-
nel description is used for interest points [3, 4], and for encoding dominant orien-
tations of keypoints [5] into aggregated image descriptors, such as VLAD [6] or
Fisher vectors [7].

Formally, for a positive definite kernel [8] K : Rn × Rn → R there exists a
Hilbert space H and a mapping Ψ : Rn → H so that K(x,y) = 〈Ψ(x),Ψ(y)〉H,
where 〈·, ·〉H is a scalar product in H. We propose a new method to estimate a
low-dimensional mapping Ψ̂ : Rn → RD so that Ψ̂(x)>Ψ̂(y) ≈ 〈Ψ(x),Ψ(y)〉H.
Naturally, a necessary property of the approximation is that minimal error is in-
troduced. From the computational perspective, the dimensionality of the approx-
imate feature should be minimal, too. These two criteria clearly compete. We
propose an objective that trades off both criteria. The objective is relaxed into a
linear program and can be optimized efficiently.

1.1. Related work
We briefly review the most relevant work on data independent (no training

data needed) methods of kernel approximation. Random Fourier features were in-
troduced by Rahimi and Recht in [9]. The feature map is a Monte Carlo approxi-
mation of the kernel where each dimension of the feature map is a cosine function
drawn from the distribution given by the spectrum of the kernel signature. The
Monte Carlo approach requires a relatively high number of samples to provide an
accurate approximation, however, unlike most approaches, it is directly applicable
to high-dimensional input data. The idea has been extended from shift-invariant
kernels to skewed multiplicative histogram kernels in [10]. Maji and Berg [11] ap-
proximate the intersection kernel by a sparse feature map in closed-form. In [12]
high dimensional sparse feature maps are derived and their relation to product
quantisation is shown. Vedaldi and Zisserman [13] introduced a generalization
of explicit feature maps to the family of additive homogeneous kernels. The pro-
posed method achieves a considerably better approximation of feature maps of
the same dimensionality or an equally good approximation of lower dimension-
ality of the feature maps compared to the results of [13], which are implemented
in [14]. We also show that the proposed method allows for the optimization of
meaningful errors measured on the homogeneous kernel output, rather than solely
approximating the kernel signature. This article is an extended version of [15].
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2. Problem formulation

In this section, the problem of shift-invariant kernel approximation is outlined,
and then the proposed approach is described. For now, we will focus only on one
dimensional kernels K(x, y) : R × R → R. Kernels in more dimensions are
discussed in section 6.

Consider a family of shift-invariant (or stationary) kernels

K(x, y) = K(x+ c, y + c) ∀x, y, c ∈ R. (1)

A signature k(λ) : R → R of a shift invariant kernel K is defined as k(λ) =
K(−λ/2, λ/2), which fully specifies the kernel, since K(x, y) = k(x− y).

We will study approximations K̂ : R × R → R to shift-invariant kernels;
in particular, those that can be written as the inner product of low-dimensional
feature maps Ψ̂ : R→ RD

K̂(x, y) = Ψ̂(x)>Ψ̂(y) ≈ K(x, y).

The kernel K will be approximated by approximating the kernel signature k by
k̂ : R→ R of the form

k̂(λ) =
∑
ω∈Ω

αω cos(ωλ), (2)

where ω is a frequency, Ω is a finite set of frequencies Ω ⊂ [0, ωmax], and αω ∈ R+
0

are non-negative weights. Kernels of the form of (2) can be directly converted to
feature maps

Ψ̂ω(x) =

( √
αω cos(ωx)√
αω sin(ωx)

)
. (3)

From the identity

cos(x− y) = cos(x) cos(y) + sin(x) sin(y)

it follows that
Ψ̂ω(x)>Ψ̂ω(y) = αω cos(ω(x− y)).

The feature map Ψ̂(x) defined by the signature k̂ is a concatenation of Ψ̂ω for
all ω ∈ Ω. The dimensionality D(k̂) of the feature map Ψ̂(x) is

D(k̂) =
∑
ω∈Ω

δ(αω)Dω, (4)
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where δ(αω) = 0 for αω = 0, and δ(αω) = 1 otherwise,

Dω =

{
1 ω = 0
2 ω > 0.

Here, Dω denotes the dimensionality of the feature map for a particular frequency
ω. The value of Dω = 1 for ω = 0 comes from the fact that Ψ̂0 =

(√
αω, 0

)>,
where the zero can be dropped from the embedding.

Input domain. The input x of the kernel function is typically some measurement,
such as coordinates of a point in a canonical patch (of fixed size), the angle of
dominant orientation, or an entry of a normalized histogram. We make the as-
sumption that the measured features x come from a bounded interval x ∈ [a, b].
This assumption is natural for many practical problems. Given the properties of
shift-invariant kernels, x ∈ [a, b] implies that the kernel signature k needs to be
approximated on the interval [−M,M ], M = b− a.

Error function. The similarity of the original signature function k and its approx-
imation k̂, is measured by an error function C(k, k̂) ∈ R+

0 . In order to use discrete
optimization methods, the error function used in the paper will only depend on a
finite number of points z from an evaluation set Z, z ∈ Z ⊂ [0,M ]. The points
z are non-negative, as both k and k̂ are symmetric. The discretization of the input
domain is optimal for quantities that are discrete, such as for pixel coordinates. In
many domains, a sufficiently fine discretization introduces negligible error com-
pared to the error introduced by the measurement estimation, e.g., the angle of the
dominant orientation of a feature patch. If a continuous input domain is essential,
then the number |Z| of the points z has to be adjusted with respect to the maximal
frequency ωmax and the spectrum of the kernel signature k.

In the paper, the following two error functions will be used

C1(k, k̂) =
∑
z∈Z

w(z) · |k(z)− k̂(z)|, (5)

C∞(k, k̂) = max
z∈Z

w(z) · |k(z)− k̂(z)|, (6)

where w(z) ∈ R+
0 are weights that adjust the relative importance of the approxi-

mation error at point z. For all w(z) = 1 constant, (5) represents L1 norm and (6)
represents L∞ norm.

4



2.1. Optimization
Two antagonistic objectives have to be considered in the approximation task:

keeping the dimensionality D(k̂) of the embedding low and obtaining the best
possible approximation, as measured by C(k, k̂), of the kernel as possible.

Since D(k̂) is not convex and not continuous, we apply an LP relaxation [16]
to make the optimization tractable. Instead of dealing with the dimensionality
D(k̂), which is a weighted L0 norm (4), a weighted L1 norm

D̄(k̂) =
∑
ω∈Ω

Dωαω (7)

is used. Recall that αω ≥ 0.
The task of finding an approximation k̂ that minimizes D̄(k̂) while preserving

the closeness of the approximation is formulated as a linear program,

min
k̂
D̄(k̂) subject to C(k, k̂) ≤ Cmax ∈ R+.

The task of finding an approximation k̂ of fixed dimensionalityDmax of the feature
map is sought while minimizing C(k, k̂) is approximated by a linear program

min
k̂
D̄(k̂) + γC(k, k̂),

where γ ∈ R+ is a constant controlling the trade-off between the quality of the
approximation and the relaxed dimensionality D̄ of the feature map. A version
of binary search for the appropriate weight γ is used: the LP is executed with an
initial value of γ. The output is checked for the value of D (not D̄), if D ≤ Dmax

the value of γ is increased (higher importance to the fit cost); otherwise, the value
of γ is decreased (higher importance to the solution sparsity). The solution with
the best fit is selected among the LP outputs with D ≥ Dmax.

2.2. Alternative feature maps
Methods, such as [9], that adopt a Monte Carlo approximation to the kernel use

a different feature map than (3). While (3) generates a two-dimensional feature
map for each non-zero frequency ω 6= 0, the alternative feature map adds only
one-dimension with each frequency ωi

Ψ̂i(x) = cos(ωix+ bi), (8)

5



where ωi is drawn from the normalized spectrum of k(λ), and bi is drawn from
a uniform distribution on the interval [0, 2π]. A dot product Ψ̂i(x)Ψ̂i(y) of this
feature map for x and y

cos(ωix+ bi) · cos(ωiy + bi) =
cos(ωi(x− y))

2
+
cos(2bi + ωi(x+ y))

2
(9)

is not shift-invariant, as it also depends on x+ y in addition to x− y. The feature
map can be seen as a Monte-Carlo approximation: for a fixed ωi, the second term
of (9) is integrated out by a sufficient number of samples of b∫ 2π

0

cos(2b+ ωi(x+ y)) db = 0.

In practice, with a finite number of samples, kernel approximations based on the
feature map (8) are only approximately shift invariant. The feautre map (8) is ap-
propriate for Monte-Carlo estimates, but not suitable for low-dimensional feature
maps.

3. Periodic kernels

Let k be a kernel signature that is periodic with period 2M . The task in this
section is to approximate k on the interval [−M,M ], which is equivalent to ap-
proximating on R since k is periodic. The spectrum of k is restricted to harmonics
of the base frequency π/M , and hence

Ω0 =
{
i
π

M

∣∣∣ i ∈ N0

}
. (10)

A standard approach to this problem is to project the function k to an orthogonal
basis cos(iπ/Mλ). The function k is then approximated using basis functions
with the highest values of the coefficients. Such an approach is efficient for one
dimensional kernels, and the method proposed in this paper does not bring any
contribution to this problem. Results for multiplicative kernels (Section 6) are
applicable to periodic functions.

4. Aperiodic kernels

In this section, we derive an approximation of kernels on the interval [−M,M ]
with signature that is aperiodic (or do not have period 2M ). Many shift invariant
kernels, including the RBF kernel, are not periodic.
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Figure 1: Kernel signature k = cos(0.6λ) (solid black curve) that is not periodic on the interval
[−π, π] is approximated via approximating periodic function g (solid black and dashed black)
using only harmonic angular frequencies Ω = N0. Frequencies with negative coefficients are
truncated which leads to a poor approximation (red curve).

4.1. Discrete frequencies
Following [13], for an aperiodic kernel signature k, there is a function g with

period 2M and g(λ) = k(λ) for λ ∈ [−M,M ]. Then approximating periodic g,
as in the previous section, using harmonic frequencies Ω0 (10) only, approximates
k on [−M,M ].

This approach has two drawbacks: First, even though k has a non-negative
spectrum due to Bochner’s theorem, this does not hold for g. All frequencies with
negative weights have to be left out [13]. As a consequence, the approximation of
the signature function k cannot be arbitrarily precise, even for very high dimen-
sional feature maps. Second, approximating g instead of k is not optimal with
respect to the dimensionality of the feature map. To demonstrate these claims,
consider the toy example in Figure 1. The kernel signature k(λ) = cos(0.6λ)
approximated on [−π, π] is not periodic with the period of 2π. The approxima-
tion of periodic g by harmonic frequencies ω ∈ N0 with non-negative coefficients
is not satisfactory. The exact feature map, originating from k̂ = cos(0.6λ), is
two-dimensional, but the optimal frequency ω∗ = 0.6 /∈ Ω = N0

1.
A simple generalization of the above approach increases the number of possi-

1The problem can be alleviated by approximating the signature k = cos(0.6λ) on interval
[−5π, 5π]. This toy example was selected as an extreme case to demonstrate the drawbacks of the
standard approach.
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Figure 2: Approximating kernel signature k = cos(0.6λ) (solid black curve) on [−π, π] via ap-
proximation of periodic function g (solid black and dashed black) with period 4π using harmonic
frequencies F = {i/2 | i ∈ N0}. There are no constraints imposed on g on (π, 3π). Approxima-
tion by 4D feature map drawn in red.

ble frequencies with increasing j ∈ N

Ωj =
{
i
π

2jM

∣∣∣ i ∈ N0

}
. (11)

Since Ωj ⊂ Ωj+1, approximation with frequencies Ωj+1 will not be worse than
with Ωj . With j approaching infinity, the set Ωj will contain frequencies arbitrarily
close to any real-valued frequency. However, sets Ωj with large j are impractical
in real problems. Sets Ωj of practical use lead to better approximations than Ω0,
but still can only reach a discrete subset of possible frequencies.

Using the set of frequencies in (11) can be interpreted as approximating a pe-
riodic function g(λ) with period of 2j+1M , where g(λ) = k(λ) for λ ∈ [−M,M ],
and no constraints imposed on g(λ) in interval λ ∈ (M, 2jM). The situation is
depicted in Figure 2 for j = 1.

4.2. Continuous frequencies
In the framework of discrete optimization used in this paper, the pool of fre-

quencies Ω is required to be finite and, for practical reasons, not extremely large.
To access any real frequency while preserving finite Ω, we will slightly modify
the form of the approximation of the kernel signature k̂ to

k̂(λ) =
∑
ω∈Ω

αω cos((ω + dω)λ), (12)

where
|dω| ≤ dmax (13)
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is a small difference of the frequency. The differences dω are estimated jointly
with the weights αω by the linear program. That is, instead of using exactly fre-
quency ω in the approximation, any frequency within the interval [ω − dmax, ω +
dmax] can be used. The first order Taylor expansion of the cosine function in the
frequency variable ω (not in λ) reads

cos((ω + dω)λ) ≈ cos(ωλ)− dωλ sin(ωλ). (14)

Such an approximation is good only in a small neighbourhood of ω, which is
controlled by the size dmax of the“trust region” (13). By substituting (14) into
(12), we obtain

k̂(λ) =
∑
ω∈Ω

αω cos(ωλ)−
∑
ω∈Ω

dωαωλ sin(ωλ). (15)

By introducing an auxiliary variable βω = dωαω, equation (13) transforms to

|βω| ≤ αωd
max. (16)

Both (15) and (16) in variables (αω, βω) are in a form that can be written as a
linear program. Compared to the original formulation, |Ω| variables βω, and 2|Ω|
constraints (16) were introduced to the linear program.

The advantages of the proposed approach are illustrated in Figure 3 on the
1D RBF kernel approximation. Compared with the classical approach of orthog-
onal projection onto the harmonic-frequencies cosine basis, the proposed method
approximates the kernel signature exactly on the domain of interest, the interval
[−M,M ], using no additional constraints. Further comparisons on 1D RBF kernel
approximation can be found in Figure 4.

Implementation details. In our experiments, we first apply an approximation with
a discrete set Ω of frequencies equally spaced in [0, ωmax], with spacing at most
dmax = 0.1 as described in section 2.1. Then, an iterative process is performed.
Each iteration alternates between the LP approximation, which uses the first order
Taylor expansion formulation (12) and the frequency update

dω = βω/αω ... compute d’s
ω ← ω + dω ... update frequencies

dmax ← dmax/2 ... reduce the max step.
The iteration is used to eliminate the approximation error introduced by the Taylor
expansion. In each step, the allowed difference in frequency dmax is halved, which
guarantees convergence.
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Figure 3: Comparison of the standard approximation using harmonic frequencies and the pro-
posed method on a 1D RBF kernel: (a) harmonic frequencies result in a periodic function and
thus implicitly enforce additional constraint on [M, 2M ], (b) result of the proposed method, (c)
frequencies and weights used by the two methods, (d) the proposed method in general produces
non-periodic function (neglecting the finite precision for the frequencies).
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5. Homogeneous kernels

A homogeneous kernel is a positive definite kernel K : R+
0 × R+

0 → R+
0

satisfying
Kh(cx, cy) = cKh(x, y) ∀x, y, c ≥ 0.

Following [13], by setting c =
√
xy, any homogeneous kernel can be decomposed

as

Kh(x, y) =
√
xy ·Kh

(√
x/y,

√
y/x
)

=

=
√
xy · kh(log y − log x), (17)

where kh(λ) is a signature of Kh

kh(λ) = Kh(e
−λ/2, eλ/2).

The signature of the homogeneous kernel (17) resembles the signature of the shift-
invariant kernel after transforming the input domain into log-space. The homoge-
neous kernel can be approximated [13] by approximating the signature kh(λ) with
k̂(λ) in a manner similar to (2). The resulting feature map is

Ψ̂ω(x) =

( √
αωx · cos(ω log x)√
αωx · sin(ω log x)

)
.

While for shift-invariant kernels optimizing the signature approximation was
equivalent to optimizing the kernel approximation, we show that for homogeneous
kernels the situation is different. We will demonstrate it on the L∞ error measure,
since it is independent of the data distribution. Derivation for other error measures
is straightforward.

We first derive minimization mink̂ εA of the absolute L∞ error,

εA = max
x,y∈(0,b]

|Kh(x, y)− K̂h(x, y)| = (18)

= max
x,y∈(0,b]

√
xy ·

∣∣∣kh (log
y

x

)
− k̂

(
log

y

x

)∣∣∣ .
Let λ = log y − log x ≥ 0 (which is equivalent to y ≥ x) without a loss of
generality, as kh is symmetric. The error εA can be written as

εA = max
y∈(0,b],λ≥0

ye−λ/2|kh(λ)− k̂(λ)|

= b ·max
λ≥0

e−λ/2|kh(λ)− k̂(λ)|.
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This is achieved by optimizing the approximation of signature kh with weighted
C∞ error function (6) with weight

wA(λ) = e−λ/2. (19)

Similarly, we derive the minimization mink̂ εR of the relative L∞ error

εR = max
x,y∈(0,b]

|Kh(x, y)− K̂h(x, y)|
Kh(x, y)

= (20)

= max
λ

1

kh(λ)
|kh(λ)− k̂(λ)|.

Optimizing of L∞ for the relative kernel error (20) is equivalent to optimizing the
weighted C∞ error of the kernel signature approximation with weight

wR(λ) =
1

kh(λ)
. (21)

While wA is decreasing, that is, the fit should be tighter for small λ, wR is
increasing and a better fit should be at the tail of the kernel signature.

To apply the proposed approximation method, we need to select the size of
the interval [−M,M ], where the kernel signature should be approximated. The
optimal choice is M = log(b/m), where b is the largest expected input value and
m is the smallest non-zero input value. For instance, for histograms with 8-bit
entries, such as SIFT [17], M = log(255/1).

6. Kernels in more dimensions

Measurements in many applications take the form of high-dimensional vectors
x,y ∈ X n, where X is R or R+

0 depending on the type of the input data. We will
use xi to denote i-th component of vector x. So far only one dimensional kernels
have been considered. These kernels can be extended to higher-dimensional input
by either additive or multiplicative combination.

Additive kernels are defined as

K(x,y) =
n∑
i=1

Ki(x
i, yi).

In computer vision, the following homogeneous additive kernels are commonly
used: χ2, intersection, Hellinger, and Jensen-Shannon kernels [13]. The feature
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map for the additive kernel is a concatenation of feature maps for each dimension.
The additive construction of the feature map increases the dimensionality D of
the feature map linearly with the input dimension n, which is acceptable and we
will not study the multi-dimensional additive feature maps further.

Multiplicative kernels, such as multi-dimensional RBF with diagonal Σ, can
be written as

K(x,y) =
n∏
i=1

Ki(x
i, yi).

The feature map is a tensor (Kronecker) product of the feature maps for each input
dimension Ψ̂(x) =

⊗
Ψ̂(xi). Specifically, for two kernelsK1 andK2 and input

vectors x = (x1, x2), y = (y1, y2), we have

K(x,y) = K1(x1, y1)·K2(x2, y2) ≈
(

Ψ̂Ω1(x1)⊗Ψ̂Ω2(x2)
)>(

Ψ̂Ω1(y1)⊗Ψ̂Ω2(y2)
)

,

resulting in an explicit feature map

Ψ̂ω1ω2(x) = Ψ̂ω1(x1)⊗ Ψ̂ω2(x2) =
√
αω1αω2


cos(ω1x1) cos(ω2x2)
sin(ω1x1) cos(ω2x2)
cos(ω1x1) sin(ω2x2)
sin(ω1x1) sin(ω2x2)

 , (22)

for every ω1 ∈ Ω1 and ω2 ∈ Ω2.
The construction of the multiplicative kernel, often called modulation, in-

creases the dimensionality of the final feature map Ψ̂(x) exponentially with the
number of input dimensions. Therefore, multiplicative kernels constructed by
modulation are suitable only for low-dimensional input data. We will discuss
multiplicative kernels in detail in section 6.2.

The proposed method for discrete optimization is not suitable for approximat-
ing kernels with high-dimensional input data. In practice, direct application is
tractable for kernels up to 3 dimensions. Nevertheless, even with this limitation,
there are practical applications that would benefit from our approach. Consider
problems where low dimensional geometric data, such as the position of a point
in a patch and the orientation of the gradient at that point, are to be encoded, e.g.,
in interest point descriptors such as in [3] or [4]. Two different approaches using
different forms of functions k̂ approximating the kernel signature will be consid-
ered. The optimization formulation is essentially identical to the one-dimensional
case, including the extension exploiting the entire continuous spectrum from sec-
tion 4.2. The difference is in the construction of the frequency pool Ω and the dis-
crete evaluation domain Z. The size of these sets is the bottleneck of the discrete
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optimization approach, as both sets grow fast with the increasing dimensionality
n of the input data. Two different forms of functions k̂ approximating the kernel
signature will be considered. The approaches are compared in section 7.4.

6.1. Approximation by projections
A general method for direct approximation of the n-dimensional kernel signa-

ture uses form of the approximation k̂P similar to [9]

k̂P (λ) =
∑
ω∈Ω

αω cos(ω>λ), (23)

where λ = x− y ∈ Rn, Ω ⊂ Rn. Geometrically, k̂P can be seen as projecting λ
onto ω and then encoding the projection by a cosine with frequency ‖ω‖. Visu-
alization for n = 2 is shown in Figure 5 (top row). Since (23) is only symmetric
for each line passing through the origin, that is k̂P (λ) = k̂P (−λ), the evalua-
tion set has to be constructed as Z ⊂

∏n−1
i=1 [−Mi,Mi] × [0,Mn]. The finite pool

of frequencies is Ω ⊂ Rn. The projection method is capable of approximating
multi-dimensional kernels, even those that are not multiplicative.

6.2. Approximation by modulation
For multiplicative kernels, the following form of k̂M is useful

k̂M(λ) =
∑
ω∈Ω

αω

n∏
i

cos(ωiλi). (24)

The geometric interpretation of the form of k̂M is shown in Figure 5 (bottom row).
Since (24) is symmetric along all axes, that is

k̂M((λ1, . . . , λn)>) = k̂M((±λ1, . . . ,±λn)>),

it is sufficient to optimize only in Z ⊂
∏n

i=1[0,Mi]. Let Ψ̂i be a feature map opti-
mized separately over the i-th dimension from frequencies Ωi and corresponding
weights αωi , and let

Ω⊗ = {ω = (ω1, , . . . , ωn) | ωi ∈ Ωi}, (25)

αω =
n∏
i=1

αωi , Dω =
n∏
i=1

Dωi for ω=(ω1, . . . , ωn).
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The feature map constructed from frequencies Ω⊗ and weights αω is equivalent
to Ψ̂(x) =

⊗
Ψ̂(xi).

The dimensionality of feature map Ψ̂ can be reduced by dropping frequencies
ω with small coefficient αω. Even though frequencies with small αωi may still
be important for approximation in dimension i, the product of such weights can
exponentially reduce the impact. We refer to this greedy method as ’

⊗
no LP’ in

the experiments. Better approximation results are achieved by executing the pro-
posed LP optimization. Using the frequency pool Ω⊗ (25) significantly increases
the speed of the algorithm.

Note that frequencies from the modulation approach can be transformed into
frequencies of the projection approach using identity

cos(x) cos(y) = cos(x+ y)/2 + cos(x− y)/2. (26)

However, while the left-hand side of the equation represents one entry in the fre-
quency pool Ω for modulation, it generates two entries for the projection case.
Overall, the projection approach is more general at the cost of larger LP problem
(larger in both, the size of Ω and in the size of the evaluation set Z, as discussed
in section 6.1). The visual difference of the approximation is shown in Figure 6
(top three plots).

Any multiplicative kernel can be expressed using either projections or modula-
tions, see equations (25) and (26). However, the approximations delivered by both
methods may not be multiplicative kernels, i.e. the kernels cannot be, in general,
decomposed into a product of kernels acting on each dimension separately.

6.3. Efficient approximation with L∞ error
In this section, an algorithm reducing the number of constraints in the lin-

ear program optimization is discussed. The approach is specific to the L∞ er-
ror. The method is described for the multiplicative kernels using the modulation
parametrization, but is applicable to any parametrization.

Minimizing the L∞ error C∞(k, k̂) (6) for n-dimensional kernel signature k
is performed by a linear program that is minimizing the error ε subject to the
constraints

|k(z)− k̂(z)| =

∣∣∣∣∣k(z)−
∑
ω∈Ω

αω

n∏
i

cos(ωizi)

∣∣∣∣∣ ≤ ε (27)
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Figure 6: Comparison of kernel signature approximations of a symmetric 2D RBG kernel by pro-
jections, modulation, FastFood [18], and modulation of harmonic frequencies. Only one quadrant
of the kernel signature is shown.

for every z ∈ Z ⊂ Rn, z = (z1, . . . , zn)>. The constraint (27) generates two
rows in the constraint matrix in the following form

( ∏n
i cos(ωi1z

i), . . . ,
∏n

i cos(ωi|Ω|z
i), −1

−
∏n

i cos(ωi1z
i), . . . , −

∏n
i cos(ωi|Ω|z

i), −1

)
αω1

...
αω|Ω|

ε

 ≤
(

k(z)
−k(z)

)
. (28)

The full constraint matrix has |Ω| + 1 columns and 2|Z| rows. Both |Ω| and |Z|
grow exponentially with the dimension n of the kernel input. Increasing the size of
the matrix makes the proposed optimization slower, or even intractable. Reducing
the number of frequencies |Ω| (the number of columns in the constraint table) will
compromise the quality of the approximation.

Provided that the frequencies used in Ω and the sampling rate of Z are chosen
to avoid aliasing, most of the constraints (27) are trivially satisfied and are not ac-
tive during the optimization. This observation gives rise to an efficient algorithm
similar to the cutting plane algorithm [19, 20]. The optimization is executed iter-
atively, using only a subset Zi ⊂ Z to generate the constraints (27). The optimal
solution for Zi is a lower bound on the optimal solution for the full set Z. After
each iteration, points in z∗ ∈ Z violating the constraints the most are added into
Zi+1 to generate new constraints for the next iteration. If there is no point in Z,
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Figure 7: Approximating a kernel with a periodic signature.

for which the constraint is violated, the algorithm has converged to the optimal
solution, as if all constraints were used. The convergence is guaranteed in a finite
number of steps, in the worst case when all constraints are used, i.e. Zi = Z,
i ≤ |Z|.

7. Experimental comparison

In this section, we evaluate the quality of the proposed feature map construc-
tion. First, a periodic kernel is considered. Then, 1D aperiodic function are ap-
proximated: a 1D RBF kernel and homogeneous kernels with detailed evaluation
of the χ2 kernel. Finally, the two dimensional RBF kernel approximation is eval-
uated, and the efficient algorithm optimizing L∞ error on a 3D kernel is tested.

7.1. Periodic functions: a sanity check
In this section, we briefly compare the approximation achieved by the orthog-

onal projection onto the cosine basis with harmonic frequencies and the proposed
method. While the orthogonal projection minimizes the sum of squared errors,
the proposed method minimizes the L∞ error.

As an example of a commonly used periodic kernel, the orientation kernel [4]
is used. The orientation kernel is a periodic kernel with period of 2π derived from
the Von Mises distribution, with kernel signature defined as

kθ(λθ) =
eκ cos(λθ) − e−κ

2 sinh(κ)
(29)

We compare the 7D explicit feature map approximation to the kernel with param-
eter κ set to κ = 5, see Figure 7. The L∞ error of the methods is 0.1134 and
0.0824, while the RMS is 0.0542 and 0.0586 respectively.
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χ2 intersect J-S
L∞ RMS L∞ RMS L∞ RMS

Ours 5D 0.163 0.081 10.922 5.376 0.019 0.009
VLFeat 5D 3.205 1.251 30.119 6.679 2.911 1.203
Ours 7D 0.011 0.005 8.238 4.053 9e−4 3e−4
VLFeat 7D 0.143 0.053 22.287 4.436 0.127 0.070

Table 1: Comparison of approximation precision of different homogeneous feature maps. Maxi-
mal error L∞ and root mean square RMS error are compared on x, y ∈ {0, . . . , 255}.

For periodic function, it is optimal to use the harmonic frequencies since they
are periodic. The proposed continuous method results in harmonic frequencies,
even if they were not included in the initial pool of frequencies.

7.2. RBF kernel
A number of different feature maps approximating a one-dimensional RBF

kernel with σ2 = 0.2 on interval x, y ∈ [0, π] were compared. Figure 4(a) shows
two examples of rather poor approximations of the underlying kernel signature: an
orthogonal projection onto a cosine basis with angular frequencies Ω = {0, . . . , 5}
resulting in 11D feature map, and a random explicit feature map of 64 dimen-
sions [21]. Since random explicit feature maps are only approximately shift-
invariant, the plot shows Ψ̂RF(0)>Ψ̂RF(λ). Figure 4(b) shows the values of the
absolute error k(λ)− k̂(λ) for three comparable feature maps: an orthogonal pro-
jection onto a cosine basis with angular frequencies Ω = {0, . . . , 8} resulting
in 17D feature map (labelled 17D harmonic), the 11D feature map by the pro-
posed discrete method (section 4.1), and the 11D feature map by the proposed
continuous method (section 4.2). All three approximations would be indistin-
guishable from the exact k on Figure 4(a). It can be seen that the proposed contin-
uous method is superior to the orthogonal projection, despite the fact that it uses
only 11 dimensions compared to 17 of the orthogonal projection. The continu-
ous method reduces the optimized C∞ error function over the discrete method to
approximately one half in this case (from 6.7 · 10−3 to 3.3 · 10−3).

7.3. Homogeneous kernels
We thoroughly evaluate the proposed method on a χ2 kernel approximation

χ2(x, y) = 2xy/(x+y). We compared the approximation by the proposed method
with the state-of-the-art method of [13] available in VLFeat [14]. Our approach al-
lows the error function on the kernel to be optimized, while the competing method
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Figure 8: Comparison of the absolute error of the χ2 approximation. Left column is the pro-
posed method optimizing (18), right column shows results for Vedaldi [13], VLFeat implemen-
taion [14]. The first two rows compare the proposed 5D mapping to 7D mapping of VLFeat on
x, y ∈ {0, . . . , 127} and x, y ∈ {0, . . . , 255}, respectively. The third row shows the error of the
7D proposed mapping and 5D mapping of VLFeat for comparison.
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Figure 9: Comparison of different χ2 approximations: (a) the absolute error for large ratios of the
input values; (b) a close up with three dotted vertical lines at 1/512, 1/256 and 1/128 respectively;
(c) relative error of the approximation. The error range colour mapping is fixed for the first and
second row. Logarithm of the number in brackets states the size M of the interval on which the
kernel signatures were approximated.
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approximates the kernel signature. The comparison on the commonly used homo-
geneous kernels is summarized in Table 1.

First, we compare the absolute error of the approximation. For this experi-
ment, the εA error (equation (18)) was minimized for the proposed method. The
approximation errors are plotted in Figure 8. The first row compares our 5D fea-
ture map to the 7D feature map of VLFeat [14] on input data x, y ∈ {0, . . . , 127}.
Note that the input values can be arbitrarily scaled, and only the smallest non-
zero ratio of the values is relevant. The kernel signature for the proposed method
was optimized on the interval [−M,M ], where M = log 127. Even though
the proposed method provides a lower dimensional feature map and L∞ error
was optimized, it outperforms (on this interval) the method of VLFeat [14] in
L∞ error (maxx,y |χ2(x, y) − χ̂2(x, y)| : 0.048 vs. 0.071) as well as in L2 error
(
∑

x,y(χ
2(x, y)− χ̂2(x, y))2 : 9.121 vs. 11.272).

The middle row of Figure 8 compares the proposed 5D feature map (M =
log 255) and the 7D feature map of VLFeat [14] on the input data x, y ∈ {0, . . . , 255}.
The 7D feature map provides a slightly better approximation than the 5D map;
however, the error range of the two feature maps is approximately the same. Re-
placing a 7D feature map by 5D feature map reduces the memory requirements
and kernel evaluation time by 28% .

For a full comparison, we have included (bottom row of Figure 8) the proposed
7D feature map (M = log 255) with an order of magnitude lower error that the two
previously compared feature maps, and also the 5D feature map of VLFeat [14]
with an order of magnitude higher error than the two previous feature maps. From
this experiment we see that (1) the proposed approximation outperforms the state-
of-the-art feature maps, and (2) the feature map should be optimized for the input
domain of particular application.

In the next experiment, we study how the approximation behaves outside the
region for which it was optimized. The approximation error for different meth-
ods is plotted in Figure 9 for the values of the ratio x/y up to 1/107. It can be
observed that outside the optimal region, the error of the kernel signature approx-
imation |k̂(λ)−k(λ)| increases and thus the error of the kernel

√
xy|k̂(log y/x)−

k(log y/x)| also increases. Since k(λ) decays and k̂(λ) is bounded, |k̂(λ)− k(λ)|
is also bounded. As a result, for sufficiently large |λ|, the error of the kernel is
dominated by

√
xy and approaches zero. In Figure 9, the green curve corresponds

to a kernel signature that has been optimized for a large enough interval so that
the upper bound on the error is less than the optimized L∞ inside the interval, thus
having optimal error bound everywhere. This is only possible for error measures,
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such as εA (18), with decreasing weight w(λ) (19).
The last experiment with the χ2 kernel considers the relative error εR of the

kernel fit (20). Three feature maps are compared: the proposed 5D and 7D maps
constructed to minimize the relative error, and the 7D map by VLFeat [14]. The
plot in Figure 9 (c) show that the proposed method significantly outperforms its
competitor.

7.4. Symmetric RBF kernel in 2D
Four methods approximating the symmetric 2D RBF kernel with σ2 = 0.2

with kernel input variables x,y ∈ [0, π]2 were compared: two using the projec-
tion method described in section 6.1, and two using the modulation method (sec-
tion 6.2). For the projection method, two different initializations of the frequency
pool Ω were used: a general initialization by the discretization of angle and fre-
quency ‖ω‖ of ω, referred to as ’Proj’; and by frequencies equivalent to Ω⊗ (25),
obtained as a Cartesian product Ω⊗ = Ω1D × Ω1D, where Ω1D corresponds to the
11D feature map form section 7.2 (referred to as ’Proj

⊗
’). For both methods,

the full LP optimization on 2D input, including the continuous extension, was
performed.

Both modulation methods (section 6.2) were initialized by Ω⊗. One method
(’
⊗

’) exploits the full LP optimization on 2D input, including the continuous
extension. For the last method (’

⊗
no LP’) the feature map is selected greedily

based on the estimate αω = αω1αω2 . The quantitative result are summarized in
Table 2, and the qualitative results of approximations by 31 dimensional feature
maps is shown in the leftmost column of Figure 6.

The fastest approach ’
⊗

no LP’ is the least precise. The most general ap-
proach ’Proj’ is the slowest and performs slightly worse than the two approaches
initialized by results of 1D optimization.

We made the following observations for the modulation methods: (1) the lin-
ear program selects different components than the greedy approach, (2) after the
continuous extension, the frequencies in Ω are no longer on a grid, which is orig-
inally defined by the Cartesian product Ω1 × Ω2.

Finally, the comparison with other methods shown in Figure 6 demonstrates
that any of the proposed methods is superior to existing methods.

7.5. Efficient approximation with L∞ error
In this section, an embedding encoding 2D position and an angle, x = (x, y, θ) ∈

[0, π]2 × [0, 2π], is constructed. The dot product of the embedding approximates
a multiplicative kernel, a product of Gaussian kernels with σ2 = 0.2 on x and y

23



D(k̂) Proj Proj
⊗ ⊗ ⊗

no LP
31 0.1199 0.0984 0.1061 0.2370
73 0.0292 0.0148 0.0137 0.0439
101 0.0092 0.0038 0.0038 0.0122

Table 2: Comparison of the L∞ error of the 2D RBF kernel approximation.
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Figure 11: Approximation of a three dimensional kernel signature: 2D Gaussian in λx and λy
modulated by a periodic orientation kernel in λθ (see Figure 10). Plots show slices through an
approximation by a 101D explicit feature map. The top left slice (showing λx and λy for fixed
λθ = 0) is comparable to plots in Figure 6. The plots in the last column show areas where the
kernel signature values should be flat zero.

24



(as in section 7.4) and an orientation kernel on θ with κ = 5 (as in section 7.1).
Such a kernel can be used, for example, in a patch descriptor framework [4]. The
components of the kernel signature are visualized in Figure 10.

The kernel was approximated using the efficient approximation of L∞ intro-
duced in section 4.2, including the extension to estimate the continuous frequen-
cies. The frequency pool was initialized by the modulation of 9D feature maps
for all three sub-kernels. The pure modulation leads to 729D explicit features
maps. We show results of the proposed method resulting in a 101D feature map
in Figure 11. After convergence, only 0.74% of the constraints (points of the eval-
uation set Z) were used. The approximation takes about 40 seconds in a Matlab
implementation on a laptop (i5 CPU @ 2.60 GHz, 16GB RAM).

8. Conclusions

A novel method of data independent construction of low dimensional feature
maps was proposed. The problem is cast as a linear program that jointly consid-
ers competing objectives: the quality of the approximation and the dimensionality
of the feature map. The proposed discrete optimization exploits the entire con-
tinuous spectrum of frequencies and achieves considerably better approximations
with feature maps of the same dimensionality or equally good approximations
with lower dimensional feature maps compared to the state-of-the-art methods. It
was also demonstrated that the proposed method allows for the optimization of
meaningful errors measured on the homogeneous kernel output, rather than solely
approximating the kernel signature.

Any application that uses explicit features maps would benefit from the results
of this paper. The code is available [22].
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