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Abstract—Detection of repetitive patterns in images has
been studied for a long time in computer vision. This paper
discusses a method for representing a lattice or line pattern
by shift-invariant descriptor of the repeating element. The
descriptor overcomes shift ambiguity and can be matched
between different a views. The pattern matching is then
demonstrated in retrieval experiment, where different images
of the same buildings are retrieved solely by repetitive patterns.
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I. INTRODUCTION

Man-made environments contain many repeating ele-
ments, e.g. windows on a facade, tiles on the floor or bars
of a railing. These repetitive patterns are distinctive for
humans. However, they pose a problem even for state-of-
the-art image matching and retrieval algorithms, because the
repeating elements are treated independently and since they
are individually indistinguishable they increase the number
of tentative correspondences and possible mismatches, see
the top row in Fig. 1. Our goal is to detect repetitive patterns
and match the entire pattern and thus turn a problem –
ambiguity of individual elements that are difficult to match
– into a strength, i.e. the distinctiveness of the whole pattern.

Different classes of repetitive patterns can be encountered
in images: repetition of the basic building block – tile – on
a 2D lattice, repetition along 1D line, scattered tiles. In this
paper, we consider tiles repeating on a regular 2D lattice
with possible perspective distortion or a regular repetition
along a line. Bottom row of Fig. 1 shows examples of such
repetitive patterns.

In one of the first papers on the subject, Leung and
Malik [1] grow the pattern from local seed window by SSD
registration into a possibly deformed 2D lattice. Schaffal-
itzky and Zisserman [2] use a very similar approach, investi-
gating deeper the geometric transformations that generate the
pattern – they defined perspectively distorted line repetition
as conjugate translation and lattice repetition as conjugate
grid.

Tuytelaars et al. [3] took a global approach by clustering
repeating elements using a cascaded Hough transform. They
focus on detecting symmetries, repetitive patterns play only
a minor role.
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Figure 1. Motivation and examples

A computational model for periodic pattern was proposed
by Liu et al. [4] using the theory of crystallographic groups.
Detection is performed on frontoparallel images of textures,
patterns are classified based on their geometric structure.

Park et al. [5], [6] present impressive results on deformed
lattice discovery focusing on detecting a complete pattern.
The evaluation metric is the percentage of tiles detected
in a pattern. For matching and retrieval, detection of the
entire pattern is of minor importance and the percentage of
detected tiles is not our objective.

To our knowledge, only Schindler et al. [7] attempted
matching or retrieval by repetitive patterns. However, the
matching is not inter-image, but against a manually prepared
groundtruth database of facades. The database is small,
containing only nine patterns.

In contrast to the previous work, we focus not on the
detection itself, but on retrieving images of the same object
by detected repetitive patterns. There is an inherent shift am-
biguity in the repetitive pattern detection which we address
by proposing a shift-invariant descriptor of the pattern.

II. REPETITIVE PATTERN DETECTION

The detection of lattice and line repetitive patterns is de-
scribed in report [8]. Output of any of the cited repetitive pat-
tern detection methods could be used if the implementation
meets the following requirements: it can detect perspectively
distorted lattice and/or line patterns; multiple patterns per
image are handled; it returns representative frontoparallel



(a) view 1 (b) view 2

Figure 2. Tile shift-ambiguity

image of repeating element – tile – for each pattern; and the
returned patterns are sorted by strength.

III. SHIFT-INVARIANT TILE REPRESENTATION

For matching and retrieval, we have to be able to compare
mean tiles M between patterns. If the two compared patterns
are images of the same real-world pattern, their mean
tiles should be similar, except for possible 90,180 or 270
degrees rotation, different scale and translation. The rotation
ambiguity arises due to different ordering or sign of the two
lattice vectors. The translation ambiguity can be caused by
different choice of tile centers. A tile can contain multiple
different interest regions and any of them can be picked as a
seed of the pattern. In different images of the same pattern,
the choice of the same interest region is not guaranteed, see
Fig. 2.

Fourier transform magnitude descriptor. In the fre-
quency domain, image shift affects only the phase com-
ponent. Therefore, for the shift and scale invariant repre-
sentation we can use a normalized vector d of the first
10×10 real coefficients of discrete 2D Fourier transform of
the grayscale tile F = F(M), omitting the first coefficient
(zero frequency).

Fourier transform with zero phase of the first har-
monic. In an idea similar to [9], we adjusted the Fourier
transform phase coefficients φ[F ] to reach zero for the phase
of the first harmonic coefficients in both horizontal and
vertical direction (φ[F (1, 0)] and φ[F (0, 1)])

F ∗ = F(M(m,n))e−jφ[F (0,1)]le−jφ[F (1,0)]k . (1)

The “zero-phased” tiles M∗ = F−1(F ∗) corresponding to
the zero-phased descriptor d are shown in Fig. 3 – notice
their similarity.

The comparison of the zero-phased Fourier transform
descriptor with the simpler Fourier transform magnitude
descriptor ended with a tie as each prevailed on one dataset,
see Fig. 4 for details. We believe that in some cases
the Fourier transform magnitude descriptor might prove
useful because of its higher robustness, despite its lower
discriminative power. We also tested the description by SIFT
descriptor of the zero-phase tile M∗, however it showed the

(a) detected tiles (b) zero-phased tiles

Figure 3. Shift-invariant mean tile. The same pattern can result in shifted
lattice detections in different views – see Fig. 2. The mean tiles are therefore
shifted (a). Our zero-phased mean tile representation is shift-invariant (b).

least successful, probably due to an increased sensitivity to
inaccuracies in the tile size. As a baseline method, pixel
intensities of 10×10 tile were tested – this descriptor is not
shift-invariant and as expected, it has the lowest detection
rate on both datasets.
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Figure 4. Comparison of descriptors: |FT| labels Fourier transform
magnitude descriptor, FTzp is Fourier transform descriptor with zero first
harmonic, SIFTzp is SIFT descriptor of the “zero-phased” tile, and “tile”
descriptor is a simple vector of intensities of 10× 10 tile.

Peaks in color RGB histogram. The above mentioned
descriptors take into account only image intensity. To take



advantage of the color information, we also calculate and
store two largest peaks in the color RGB histogram of the
mean tile. However, it should be noted that for our main test
objects, facades, color is only a minor cue.

IV. IMAGE RETRIEVAL BY REPETITIVE PATTERNS

We formulated the task of image retrieval as follows: for
a given image query Iq (and set of its repetitive patterns
Cq), retrieve from the dataset I set of images Rq containing
objects most similar to some object in the query image.
Figure 5 shows an example of successful retrieval: the
pattern correspondence which had the greatest influence on
the match between the query and the retrieved image is
marked by red, green and cyan for the first, second and
third retrieved image respectively.

(a) query image (b) retrieved response – three best matches

Figure 5. Retrieval by image query

The list of repetitive patterns Cq of the query image is
compared to repetitive patterns Ci, where i ∈ {1 . . . |I|}, of
each image in the dataset and match score Sq,i is calculated,
see Sec. IV-A. The retrieved images are chosen as the ones
with the highest match score.

We are aware that this naive each-to-each matching with
complexity of a single query linear in the dataset size is
acceptable only for a limited size of the dataset.

A. Match Score of an Image Pair

The match score Si,j of an image pair (Ii, Ij) is calculated
solely from their repetitive patterns (Ci, Cj), the images
themselves are not used at this stage. For each pattern
Cik ∈ Ci, we find the best matching pattern Cjl ∈ Cj with
match score sk, see Sec. IV-B for calculation of the match
score between two patterns. Figure 6 shows an example of
matching sets of patterns from two images.

The matching score sk between patterns Cik and Cjl is
adjusted by ranking of the patterns inside their respective
lists Ci, Cj

s′k =
(

1− 1
2

k + l

|Ci|+ |Cj |

)
sk . (2)

This adjustment reflects the intention that large and strong
patterns should have greater influence on the match score
between images than small local patterns. The ranking inside
lists can be used as a measure of the pattern strength because
the pattern list in each image is required to be sorted as
described in Sec. II.

Figure 6. Matching sets of patterns of two images. First column shows
mean tiles of patterns of the first image, first row contains mean tiles
from the second image. We show tiles before the zero-phase normalization.
Numbers in the table are match scores between each pattern pair. From each
row, the maximum is selected, i.e. s1 = 0.56 and s2 = 0.03.

A linear combination of the highest three pattern matches
s∗1, s

∗
2, s
∗
3 ∈ {s′k} form the match score of an image pair

(Ii, Ij): Si,j = 0.65s∗1 + 0.3s∗2 + 0.05s∗3, where the coeffi-
cients were obtained as weights of linear classifier on feature
vector (s∗1, s

∗
2, s
∗
3) learned by SVM.

B. Match Score of two Repetitive Patterns

The match score sk,l = sT sC of two repetitive patterns
Cik and Cjl is a product of two measurements: similarity
sT ∈ 〈0, 1〉 of grayscale mean tiles and similarity sC ∈
〈0, 1〉 of color histograms.

Tile similarity sT . The similarity between normalized
vector descriptors of grayscale tiles is calculated as sT =
1− |dik − djl |.

Color similarity sC . The color of both tiles is represented
by two peaks in RGB histogram pik = (pik,1,p

i
k,2) and pjl ,

where p = (r, g, b, n) ∈ 〈0, 1〉4, n being the relative count
of pixels in the peak bin. The similarity formula has to take
into account the possibility that the peaks are switched

sC = 1−
min

(
|pik − pjl |, |pik − (pjl,2,p

j
l,1)|

)
max

(
|pik|, |p

j
l |

) . (3)

Lattice size similarity sL. We also tested a third factor,
lattice size similarity. Each lattice has its width and height
expressed in a number of tiles as l = (w, h). The similarity
is computed as

sL = 1− 1
2

(
|wk − wl|

max(wk, wl)
+
|hk − hl|

max(hk, hl)

)
. (4)

We neglect the possibility that the width and height are
switched, because in the prevailing type of images in our
test data – building facades – the orientation remains almost
always constant (sky up).

However, the lattice size similarity showed as misleading
in experiments due to image crop or occlusion by other
buildings the lattice size often differs significantly.

V. EXPERIMENT

The method was tested on two dataset: 1) our dataset
Pankrac+Marseilles1 with 106 images of app. 30 buildings

1http://cmp.felk.cvut.cz/data/repetitive



and 2) the building subset of near-regular texture dataset
PSU-NRT [6], containing 117 images with over 20 build-
ings.

For each image Ii ∈ I, the groundtruth is labeled as a
set of images Gi ⊆ I that contains some object from I , i.e.
Gi is the groundtruth response to the query by image Ii.
The response Ri is either set of n images with the highest
matching score Si,j or thresholded set Ri = {Ij : Si,j ≥ θ},
where θ is the threshold on the image match score. Figure 7
shows example responses Ri with three best matching im-
ages. The trade-off between detection rate and false positive
rate can be adjusted by n or by θ, see Fig. 4.

Figure 7. Retrieval experiment – queries on the left followed by 3 best
matches

As expected, the retrieval by repetitive patterns performed
better on the Pankrac+Marseilles dataset, where the av-
erage size of the tile image is larger and more details
are observable. It corresponds to the purpose of these two
datasets, authors of the PSU-NRT dataset used it solely for
detection of repetitive patterns in single images, whereas our
Pankrac+Marseilles dataset was created to test retrieval.

The average detection time by our Matlab implementation
on 1000×700 image is 25 seconds. The time to run a single

query on 106 images dataset is 1 second, increasing linearly
with the size of the dataset.

VI. CONCLUSIONS

We presented a method for image retrieval using repetitive
patterns as the only feature. The contribution of the paper
lies in 1) representing the pattern by a shift-invariant tile
that can be matched to tiles of the same pattern detected
in different views and 2) demonstrating that this repetitive
pattern representation can be used to retrieve images from
a dataset. Our dataset used for testing is publicly available
together with the groundtruth.

Although the retrieval results of our method alone would
not be sufficient especially on larger datasets, the repetitive
pattern matching can be used to boost performance of
standard matching methods based on single image features.
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