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Abstract

A novel algorithm for robust RANSAC-like estimation of
epipolar geometry (of uncalibrated camera pair) from two
correspondences of local affine frames (LAFs) is presented.
Each LAF is constructed from three points independently
detected on a maximally stable extremal region.

The algorithm assumes that a sufficiently accurate ap-
proximation of the fundamental matrix is obtained from two
LAF correspondences by the 6-point algorithm of Stewénius
et al. The so-far-the-best hypotheses are further processed by
so-called local optimization to estimate the epipolar geom-
etry. Special attention is paid to planar sample degeneracy,
since the probability of drawing two coplanar LAF corre-
spondences is not negligible. Combining the 6-point solver,
local optimization, and the degeneracy test enables RANSAC
to draw samples of only two LAFs to generate hypotheses
and thus to reduce the number of samples drawn.

We experimentally show that using the 6-point algorithm
(approximating the real camera by camera with unit aspect
ratio, zero skew, principal point in the center of image, and
a common unknown focal length) generates hypotheses that
are sufficient for EG estimation in LO-RANSAC framework.

1. Introduction

The problem of wide-baseline stereo has recently re-
ceived considerable attention [6, 14, 7, 9]. As a rule, wide-
baseline methods establish correspondence of entities which
provide geometric constraints stronger than a single point-
to-point correspondence. For instance, the popular SIFT
keypoint operator [6] determines a location, scale and ori-
entation; the latter two quantities implicitly define a second
point. The LAF-MSER method of Obdržálek et al. [8] exploits
local affine frames (LAFs), i.e. three ordered points detected
in an affine-covariant way.

The seven point algorithm embedded in RANSAC is a
standard method for epipolar geometry estimation [5]. Chum
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and Matas [1, 2] studied whether the required seven point-to-
point correspondences obtained from three correspondences
of LAFs allows efficient estimation of epipolar geometry.
Since the speed of RANSAC is inversely proportional to an
exponential function of the sample size, drawing at random
three LAF instead of seven point-to-point correspondences
potentially reduces running times by orders of magnitude.
The key issue is whether the spatial distribution of the nine
points – three triplets of nearby point in a LAF – allows good
estimates of epipolar geometry. Experiments in [2] show
that standard RANSAC fails in this case. However, a simple
modification called local optimisation of the so-far-the-best
solution leads to an algorithm that benefits from the small
sample size without losing efficiency; speed-ups of up to 103

are reported.
In this paper, we take the approach to an extreme and

design an algorithm that computes EG from two corre-
spondences of local affine frames using the recently pro-
posed 6-point EG estimation algorithm of Stewénius et al.
[10, 11]. The new 2LAF-LO-RANSAC algorithm is shown ex-
perimentally to have competitive performance, requiring a
very small number of RANSAC iterations.

The rest of paper is structured as follows. In Section 2
the structure of the 2LAF-LO-RANSAC algorithm and its com-
ponents are described in detail. Experiments presented in
Section 3 validate the design decisions and performance of
the algorithm. The paper is concluded in Section 4.

2. Algorithm

We first introduce the building blocks of the 2LAF-LO-
RANSAC algorithm: the RANSAC estimator [4], the local op-
timisation for RANSAC [1], a method detecting degenerated
configurations [3] and the six-point solver for EG [10, 11].

RANSAC is a simple but powerful algorithm. Repeatedly,
subsets are randomly selected from input data T and model
parameters θ fitting the sample are computed. The size m of
the random samples is the smallest sufficient for determining
model parameters. In a second step, the quality of the model
parameters is evaluated on the full data set. Different cost
functions may be used [13], the standard being the size of
the support, i.e. the number of data points consistent with
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CO - Corner (160 inliers in 626 correspondences) BO - Box (335 inliers in 1472 correspondences)

CW - China Wall (106 inliers in 380 correspondences) WA - Wash1(137 inliers in 591 correspondences)

Figure 1. Images pairs and characteristics of problems used in experiments.

the model. The process is terminated when the likelihood of
finding a better model becomes low, i.e. the probability η of
missing a set of inliers I of size I within k samples falls
under predefined threshold η0

η = (1− P (I))k. (1)

The probability P (I) that an uncontaminated sample of size
m is randomly selected from N = |T | correspondences is

P (I) =

(
I
m

)(
N
m

) = m−1∏
j=0

I − j

N − j
≈ εm, (2)

where ε is the fraction of inliers ε = I/N . Let the support
S(θ, T ,∆) : Θ → T be the set of data points consistent
with model θ i.e.

S(θ, T ,∆) = {x ∈ T |ρ(θ,x) ≤ ∆},

where ρ(θ,x) is a distance measure (e.g. Sampson’s error
[5]) and ∆ a user-specified threshold. The average number
of samples that has to be drawn to satisfy η ≤ η0 is

kη0
(Sk) =

ln(η0)
ln(1− P (Sk))

. (3)

LO-RANSAC (RANSAC with local optimisation). Note that the
expression for probability η controlling RANSAC termination
as defined by Equations (1) and (2) is valid only under
the assumption that a selection of any random sample not
contaminated by outliers leads to the correct solution, i.e.
to a solution supported by all inliers. However, as shown
in [1], this assumption is often invalid. For standard 7-point
and 8-point EG estimators, all-inlier samples fail at a rate that
can be unnoticed and/or ignored2, despite the fact that the

1Images of Wash were gracefully provided by Tinne Tuytelaars.
2At least the problem has not been often reported in the literature.

rate is not negligible — Murray and Tordoff [12] observed
that about two to three times more samples were needed
than predicted by theory. For algorithms that estimate EG
from LAFs, we observed that the percentage of all-inlier
samples leading to a correct EG estimate is negligible, less
than 0.1% on the scenes shown in Fig. 1! This observation
is consistent with [2], which demonstrates that EG cannot
be efficiently computed form three LAF correspondences by
standard RANSAC. However, it is also shown in [1] that the
so called ”local optimisation” overcomes the problem. We
show, if an appropriate local optimisation is adopted, the
result also holds for the six point solver [11] estimating EG
from two LAF correspondences.

The core insight of LO-RANSAC is the following. For the
success of a particular estimator within a RANSAC frame-
work, it is not necessary that any all-inlier sample generates
an EG hypothesis that is close to optimal. It is sufficient
if a significant proportion of EGs estimated from all-inlier
samples has support higher (more correspondences consis-
tent with it) than almost all EGs estimated from contaminated
samples, i.e. EGs with random support. If this property holds,
an EG hypothesis from an all-inlier sample is very likely to
be so-far-the-best, i.e. it is the EG with the largest support
observed so far. It is proved in [1] that as the RANSAC pro-
gresses, only very few so-far-the-best EG hypothesis emerge.
It is therefore possible to apply even fairly complex opti-
misation procedures on the so-far-the-best model without
affecting overall time complexity.

Degeneracy. The presence of degenerate configurations
is a surprisingly common mode of failure of RANSAC. A
(dominant) plane is a typical degenerate configuration in EG
estimation – EG cannot be recovered from a coplanar, even
an all-inlier one. In [3], it was shown that even if a part of a
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sample (at least five points out of a seven point sample) lies
in a plane, the estimated EG may be incorrect and yet having
significantly higher than random support. Unsurprisingly,
the problem of degenerated configurations is acute if an EG
is estimated from a small number (three or two) of LAFs.
The smaller the sample the higher the probability that the
whole sample comes from a single plane. Potential degen-
eracy is therefore checked for each so-far-the-best sample,
as suggested in [3]. When a planar configuration is detected,
the plane-and-parallax [3] algorithm is exploited to estimate
the EG.

Six point solvers in 2LAF-LO-RANSAC. Two LAFs [8] pro-
vide six point-to-point correspondences. Practical six point
solvers have been recently introduced [10, 11]. We adopted
the algorithm [11], since it has the least restrictive assump-
tions about the camera. In [11], it is assumed that the intristic
camera parameters are known up to a common focal length
f . In the paper, the (unknown) intristic parameters are as-
sumed to be: a unit aspect ratio, zero skew, and the principal
point in the center of the image. Such an approximation is
reasonable for many currently used sensors. Experimentally,
we show that the algorithm is not affected by slight deviation
from the model (i.e. different focal length, rectangular pix-
els see Exp. 3). Note, that the EG based on the assumptions
on actually unknown intristic parameters is only used as an
approximation of the fundamental matrix F. Such an approx-
imation allows generation of reasonable initial hypotheses
while reducing the sample size to two LAF correspondences.

Input: set of data points T , thresholds η0 , ∆
Output: model θ∗ with largest support S∗

1. repeat
2. Draw a random sample of minimal size m from

data points T .
3. Model parameters θi computed from the minimal

set by estimator E.
4. Calculate the support Si of the model θi.
5. if new maximum has occurred (|Si| > |Sj | for

∀j < i):
6. if a degenerated configuration is detected
7. Perform plane-and-parallax search for EG

and appropriate local optimisation.
8. otherwise
9. Apply local optimisation.

10. Store the best model θ∗ with support S∗.
11. until the probability η of finding model with sup-

port larger than S∗ falls under η0 .

Algorithm 1. The structure of LO-RANSAC with the
degenerated configuration test.

2.1. 2LAF-LO-RANSAC algorithm

The 2LAF-LO-RANSAC algorithm is an instance of LO-
RANSAC with a test for a degenerated configuration. Its struc-
ture is summarized in Alg. 1; the parameters are: T is a set of
LAF correspondences, the minimal size m = 2, the estimator
E is the six point solver [11]. Handling of degenerated con-
figurations [3] proceeds as follows. If a non-random num-
ber of correspondences consistent with a homography H is
found, a plane-and-parallax method [3] is employed. A LAF
correspondence outside the plane is sought by RANSAC sam-
pling tentative correspondences off the plane. If a correspon-
dence is found that leads to an EG with support significantly
(i.e. non-randomly) larger than the support of the original
H-dominated estimate, the plane and parallax algorithm is
successful.

3. Experimental results

Four scenes (Fig. 1) with different number of correspon-
dences and inlier ratios were chosen to evaluate efficiency
and performance of the 2LAF-LO-RANSAC algorithm. In all
experiments, LAFs on maximally stable extremal regions [7]
were detected and three point tentative region correspon-
dences (T ) established as in [8]. The quality of tentative
correspondences was artificially degraded by untuning the
parameters of the matching process.

Abbrev. Estim. Degen. test Data points
7PTS 7pt

√
7x LAF centers

3LAF 8pt
√

3x LAF

3LAF ND 8pt − 3x LAF

2LAF 6pt
√

2x LAF

2LAF ND 6pt − 2x LAF

Table 1. LO-RANSAC variants used.

A reference model θr of EG was computed using seven
point LO-RANSAC and a set Ir, correspondences consistent
with θr was stored (see Fig. 1). Compared LO-RANSAC vari-
ants are listed in Tab. 1.

Experiment 1 (Efficiency of 2LAF-LO-RANSAC). In the-
ory, i.e. according to equation (2), drawing minimal samples
of size m = 2 should increase the probability P (I) and sig-
nificantly reduce the expected average number of samples k
(Eqn. 3). In practice, a certain fraction of all-inlier samples
will lead to random EG due to the influence of noise, poor
conditioning and violated assumptions e.g. of equal focal
lengths. We define efficiency of a LO-RANSAC variant as the
fraction of the all-inlier samples that leads to a model with
support size (approximately) equal to I . To measure and
compare the efficiency, the following synthetic experiment
(see Tab. 2) was conducted.

One thousand random all-inlier samples are generated
from the inliers of the reference epipolar geometry. For each
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Scn. Alg. |θB | |θD| |θN | |θG|
7PTS 6 733 261 785
3LAF 115 779 106 641

CO 3LAF ND 117 0 883 458
2LAF 184 676 140 553
2LAF ND 163 0 837 362
7PTS 0 957 43 998
3LAF 71 912 17 918

BO 3LAF ND 78 0 922 900
2LAF 209 707 84 766
2LAF ND 224 0 776 743
7PTS 19 466 515 815
3LAF 342 517 141 341

CW 3LAF ND 328 0 672 246
2LAF 298 515 187 274
2LAF ND 307 0 693 184
7PTS 110 195 695 646
3LAF 380 369 251 353

WA 3LAF ND 396 0 604 180
2LAF 425 140 435 247
2LAF ND 408 0 592 161

Table 2. Synthetic test, results for 1000 random all-
inlier samples. For ND algorithms all hypotheses are
assumed non-degenerated.

sample, an initial hypothesis θ0 is computed from a mini-
mal set of data points. Subsequent steps of LO-RANSAC (see
Alg. 1) variants with local optimisation and degeneracy test
are executed. Column θB shows the number of θ0 hypoth-
esis that are consistent with less than an accidental number
of correspondences. This fraction of all-inlier hypotheses
cannot be distinguished from an outlier contaminated hy-
pothesis and hence degrades the efficiency of LO-RANSAC.
The number of degenerated and non-degenerated all-inlier
samples is shown in columns θD and θN . Finally, the number
of “good” hypothesis is shown in column θG. Hypotheses
are considered “good” if the number of consistent corre-
spondences is at least 90% of the |Ir|, i.e. the number of
inliers of reference EG.

We observed (see Tab. 2) that the efficiency of the seven
point estimator does not drop under 65% even on the nois-
iest scene – Wash. 3LAF-LO-RANSAC and 2LAF-LO-RANSAC
performs better on the scenes Corner and Box with higher
inlier ratio. On the noisy and hard scenes, their efficiency
drops down to around 30% for 3LAF-LO-RANSAC algorithm
and 25-30% for 2LAF-LO-RANSAC algorithm. Therefore, to
achieve a desired probability of success η0 , the number of
samples drawn before termination needs to take efficiency in
account. Note however that in the performance test (Exp. 3)
theoretical number of samples is used to observe differences
between algorithms.

Experiment 2 (The robustness of the 6pt solver). Pro-
posed 2LAF-LO-RANSAC algorithm uses the six point solver
[11] to estimate the initial hypothesis that assumes calibrated

Scn. Alg. #inls #samples #LOs
7PTS 162.13 42307.93 8.97
3LAF 161.23 177.47 4.28

CO 3LAF ND 157.69 219.83 4.41
2LAF 160.74 44.65 3.03
2LAF ND 132.22 86.39 3.69
7PTS 334.83 99838.93 9.13
3LAF 334.46 256.08 4.74

BO 3LAF ND 321.23 290.75 4.27
2LAF 334.29 57.02 2.79
2LAF ND 315.58 64.45 2.81
7PTS 106.00 26396.00 8.73
3LAF 104.07 151.15 3.76

CW 3LAF ND 102.86 203.60 3.76
2LAF 101.50 46.84 2.84
2LAF ND 90.38 73.64 3.34
7PTS 136.43 96872.83 8.30
3LAF 135.14 257.93 3.10

WA 3LAF ND 125.23 484.80 3.73
2LAF 130.27 69.61 2.37
2LAF ND 121.22 104.86 2.84

Table 3. Average number of inliers, samples and num-
ber of LOs taken in 100 runs of RANSAC algorithms.

cameras up to an unknown common focal length. The first
three assumptions: the principal point in the middle of the
image, zero skew, and unit aspect ratio often hold with mod-
ern cameras, while the assumption of common focal length
is often violated. The sensitivity to different focal lengths is
tested on the Corner scene with focal length ratio of about 3.
No significant decrease in performance was observed. Ro-
bustness to aspect ratio was tested on the China Wall scene.
One coordinate was artificially scaled with factor from 0.5
to 2.0. Similar performance (see Fig. 2) was observed for all
factors.

Experiment 3 (The speed of RANSAC algorithms).
The speed of 2LAF-LO-RANSAC, 3LAF-LO-RANSAC and seven
point LO-RANSAC is summarised in Tab. 3. As expected, the
average number of samples is highest for the seven point
algorithm. For 2LAF-LO-RANSAC algorithm it is around one
fourth (i.e. proportional to ε) of the 3LAF-LO-RANSAC algo-
rithm and about thousand times less compared to the seven
point algorithm on hard scenes.

For deeper insight in the performance of algorithms, the
histograms Fig. 3 of the support size of the model found
in each run were computed. Results show that the degen-
eracy test and the special local optimisation is necessary
for 2LAF-LO-RANSAC algorithm. The 2LAF-LO-RANSAC al-
gorithm without the degeneracy test, i.e. when the so-far-
the-best models are processed only with local optimisation,
fail to produce a stable solution on difficult problems. On
the China Wall and Wash scenes, approximately 40% of ex-
ecutions (see Fig. 3) produced solutions with less than 90%
of the reference method’s support.
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Figure 2. Number of inliers in 100 runs of 2LAF algorithm on China Wall scene with different aspect ratios.
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Figure 3. Number of inliers in 100 runs of RANSAC
algorithms. Dashed line delimits 90% of inliers ac-
cording to reference model.

4. Conclusions

The 2LAF-LO-RANSAC algorithm that estimates epipolar
geometry from two LAF correspondences was proposed. Two
LAF correspondences provide six point-to-point correspon-
dences that are used to generate RANSAC hypotheses by the
state-of-the-art 6pt solver [10, 11]. Experimentally, it was
shown that the algorithm performs well only if the methods
[2, 3] for local optimisation and degeneracy detection are
used. Compared to 3LAF-LO-RANSAC algorithm, the 2LAF-
LO-RANSAC algorithm requires lower number of samples,
local optimisations, and significantly lower number of itera-
tions than the seven point LO-RANSAC with degeneracy test.
In experiments where the inlier ratio ranged from 23% to
28% the number of iterations ranged from 45 to 70 for 2LAF-
LO-RANSAC, 151 to 258 for 3LAF-LO-RANSAC, and 26396 to
99840 for LO-RANSAC.
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[8] J. Matas, Š. Obdržálek, and O. Chum. Local affine frames
for wide-baseline stereo. In Proc. of the ICPR, 2002.

[9] P. Pritchett and A. Zisserman. Wide baseline stereo matching.
In Proc. ICCV, pages 754–760, 1998.
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