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ABSTRACT

An extension of theRANSAC procedure is proposed. By
adding a generalized model optimization step (theLO step)
applied only to models with a score (quality) better than
all previous ones, an algorithm with the following desirable
properties is obtained: a near perfect agreement with the-
oretical (i.e. optimal) performance and lower sensitivity to
noise and poor conditioning. The chosen scheduling strat-
egy is shown to guarantee that the optimization step is ap-
plied so rarely that it has minimal impact on the execution
time.

The potential of theLO step is demonstrated on two new
matching algorithms that are straightforward implementa-
tion of LO-RANSAC: 1. an algorithm for simultaneous esti-
mation of epipolar geometry and radial distortion and 2. an
algorithm estimating epipolar geometry from three region-
to-region correspondences.

Experiments show that the new estimators have perfor-
mance superior to the state-of-the-art. The latter algorithm
speeds up the estimation of epipolar geometry more than
thousand times and thus permits solving complex problems
with inlier ratio below 10%. The former represents a class
of algorithms where theLO step includes switching to a
more complex model (with more degrees of freedom). Sur-
prisingly, due to the increased number of inliers of the more
complex (and more precise) model, theLO step significantly
reduces the execution time.

1. INTRODUCTION

The RANSAC algorithm [2, 11, 10] is a robust estimator
widely used in the field of computer vision, especially in
the two view geometry – either homography or epipolar ge-
ometry (EG) – estimation [5, 9, 13, 7, 3, 8, 6].

The main contribution of the paper is an extension of
theRANSAC algorithm. By adding a generalized model op-
timization step (theLO step) applied only to models with a
score (quality) better than all previous ones, an algorithm
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with the following desirable properties is obtained: a near
perfect agreement with theoretical performance and lower
sensitivity to noise and poor conditioning.

Fig. 1: Correspondences established by the proposed algorithm on
the ‘Flower’ pair. Tentative correspondences contained only 7% of
inliers. Some of the corresponding points are connected between
the images to visualize the correspondence.

The potential of the proposed extension of theRANSAC

algorithm is supported by two new matching algorithms ex-
ploiting LO-RANSAC: First, a modified algorithm for simul-
taneous estimation of epipolar geometry (EG) and radial
distortion (RD) [3] is described. Experimental validation
shows that the new estimator is superior to known algo-
rithms in quality (the number of detected matches), preci-
sion and speed of the matching. Second, an algorithm esti-
mating epipolar geometry from three region-to-region cor-



respondences is introduced. Exploiting the affine-invariant
local frames described in [7], three point-to-point correspon-
dences are found for each region-to-region correspondence.
The expected run-time then falls fromO(ε−7) to O(ε−3).
The straightforward consequence is a significant enlarge-
ment of the class of problems that are solvable1.

The rest of the paper is structured as follows: TheLO-
RANSAC algorithm [1] is reviewed in Section 2. Algorithm
for estimation of EG under a more complex camera model
which includes radial distortion is introduced and experi-
mentally verified in Section 3. Details of the new algorithm
that computes EG from three region-to-region correspon-
dences are given in Section 4. The paper is concluded in
Section 6.

2. LO-RANSAC

The structure of theRANSAC algorithm is simple but pow-
erful. Repeatedly, subsets are randomly selected from the
input data points (a set of points fromR2 when a line is be-
ing estimated, a set of tentative correspondences when EG
is being estimated) and model parameters fitting the sam-
ple are computed. The sizem of the random samples is the
smallest sufficient to determine model parameters. In a sec-
ond step (verification), the quality of the model parameters
is evaluated on the full data set. Different cost functions
may be used [12] for the evaluation, the standard being the
the cardinality of the support, i.e. the number of data points
consistent with the model. LetP be the probability that an
uncontaminated sample of sizem is randomly selected from
a setU of N data points is

P =

(
I
m

)(
N
m

) =
m−1∏
j=0

I − j

N − j
≈ εm, (1)

whereε is the fraction of inliersε = I/N . The sampling
process is terminated [2, 11] when the likelihood of finding
a better model becomes low. Assuming (incorrectly, as we
later show) thatP is also the probability of finding a correct
solution, the termination criterion is formulated as follows.
The sampling is repeated until the probabilityη of missing a
set of inliersI of sizeI = |I| within k samples falls under
a predefined thresholdη0,

η = (1− P )k. (2)

The number of samples that has to be drawn to satisfyη ≤
η0 is

kη0,ε = log(η0)/ log(1− P ). (3)

1The idea of using multiple points in the estimation process is in princi-
ple simple. However, since the three points associated with a single region
are in close proximity, the precision of the estimated epipolar geometry
may be questioned. The experiments confirmed, that acquisition of a new
local optimization step into theRANSAC algorithm was essential to solve
the problem.
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Fig. 2: An example of aβ-sample (solid line) in line detection by
RANSAC. The two point outlier-free sample led to a model that is
not consistent with all inliers (circles). The dashed line represents
the optimal model, the dotted lines depict the tolerance areas.

However, it has been observed experimentally [10, 1]
that RANSAC often runs much longer than predicted by the
mathematical model of the process, i.e. by equations (1) and
(3). To explain the phenomenon, we introduce the follow-
ing terminology:

A β-sampleis a subset of the set of inliersI. The setB of
all β-samples of sizem has

(
I
m

)
elements.

An α-sample is a subset of the set of inliersI such that
the model computed from the sample is consistent with all
inliers. Bothβ-samples andα-samples are uncontaminated
by definition, i.e. they are free of outliers.
A γ-sampleis a subset of all tentative correspondences con-
taining at least one incorrect correspondence (i.e. at least
one outlier). This type of sample is often called ‘contami-
nated’.

The discrepancy between the predicted and observed
RANSAC run times can be explained in terms of cardinal-
ities of the setB of β-samples and the setA of α-samples.
The termination criterion tacitly assumes, that allβ-samples
areα-samples, i.e. that every model computed froman un-
contaminated sampleis consistent withall inliers. This fa-
vorable situation is rare in practice. SinceRANSAC gener-
ates hypotheses from minimal sets, both noise in the data
and poor conditioning of the model computation can ‘re-
move’ an uncontaminated sample from the set ofα-samples
A. The situation is demonstrated in the context of line de-
tection in Fig. 2. In [1], it is shown that in the process of es-
timating either homography or EG from point-to-point cor-
respondences the difference in theA andB sets leads to
an increase in the number ofRANSAC cycles by a factor
of two to three. In the case of epipolar geometry estima-
tion from three region-to-region correspondences (analyzed
in Section 4), the ratio of cardinalities ofA andB is so
low that it renders the approach, in connection with stan-
dardRANSAC, impractical.

The LO-RANSAC is based on the observation that vir-
tually all models estimated from an uncontaminated min-



imal sample contain large fraction of inliers within their
support. An optimization2 process starting from the so-
far-the-best hypothesized model is therefore inserted into
RANSAC. Applying the proposed optimization step produces
an algorithm with a near perfect agreement with theoreti-
cal (i.e. optimal) performance. In other words,LO-RANSAC

makes the setsA andB almost identical. Therefore eq. (2)
becomes valid forLO-RANSAC. The structure of theLO-
RANSAC algorithm is presented in Alg. 1.

Repeat until the probability (2) of finding model with support
larger thanI∗ in k-th step falls under predefined thresholdη0:

1. Select a random sample of minimum sizem from U .
2. Estimate model parameters consistent with the sample.
3. Calculate the supportIk of the model, i.e. the data points

with error smaller than a predefined thresholdθ. If Ik > Ij

for all j < k (i.e. when a new maximum is reached), then
run:
LO step. Apply optimization. Store the best model found
and its supportI∗ (I∗ ≥ Ik due to the optimization).

Algorithm 1: The structure ofLO-RANSAC. Note, that the algo-
rithm is terminated based on the optimized supportI∗, whereas
execution of theLO step depends on supports of sampled hypothe-
sesIj .

2.1. The additional computational cost

The LO step is carried out only if a new maximum in the
number of inliers is reached, i.e. when standardRANSAC

stores its so-far-the-best result. How often does this hap-
pen? The number of data points consistent with a model
from a randomly selected sample can be thought of as a
random variable with an unknown density function. This
density function is the same for all samples, so the prob-
ability thatk-th sample will be the best so far is1/k. The
average number of maxima reached withink samples is thus

k∑
x=1

1
x
≤

∫ k

1

1
x

dx + 1 = log k + 1. (4)

The logarithmic growth of the number ofLO step invoca-
tions as a function of the number of hypothesize-and-verify
cycles allows application of relatively computationally ex-
pensive optimization methods without an impact on the over-
all speed of the algorithm.

2.2. TheLO step

Different methods of the best model optimization with re-
spect to the two view geometry estimation were proposed
and tested [1]. The following procedure performed the best.

2Note, that theLO-RANSAC doesnot try to compete with the bundle
adjustment methods. The aim is to provide a better starting point for the
bundle adjustment than standardRANSAC in shorter time.

Fig. 3: ’Orange house’, 45% of inliers. A low radial distortion
example.

Constant number (twenty in our experiments) of samples
are drawn only fromIk, while the verification is performed
on the set ofall data pointsU (so called ‘inner’RANSAC).
Since the proportion of inliers inIk is high, there is no
need for the size of sample to be minimal. The problem has
shifted from minimizing the probability of including an out-
lier into the sample (the reason for choosing minimal sam-
ple size) to the problem of reduction of the influence of the
noise on model parameters. The size of the sample is there-
fore selected to maximize the probability of drawing anα-
sample. In a final step, model parameters are ‘polished’ by
an iterative reweighted least squares technique.

In Section 3 we show that theLO-RANSAC algorithm
can not only maximize the support of model by improving
its precision, but it can also switch to a more complex model
with more accurate fit.

3. ESTIMATING RADIAL DISTORTION

The benefits of exploiting a more complex model within the
LO step can be demonstrated on the problem of simultane-
ous estimation of EG and radial distortion (RD). RD is a
deviation from the pinhole model commonly encountered
in cameras, especially with wide-angle lenses. Fitzgibbon
[3] introduced an algorithm for joint estimation of EG and
RD given 9 point correspondences. It follows from eq. (1)
that the price paid for the inclusion of Fitzgibbon’s RD esti-
mation is an increase in the number of samples drawn by a
factor of1/ε2. Since typicallyε ∈ [0.1, 0.5], the nine point
RANSAC for EG and RD estimation (9ptRANSAC) is 4 to
100 slower than the standard 7ptRANSAC.

3.1. TheLO -RANSAC-RD algorithm

We present the simultaneous estimation of EG and RD as
an algorithm in theLO-RANSAC framework. The algorithm
draws 7 correspondence samples to estimate EG without
RD in the hypothesize-verify loop and includes RD model
in the LO step. Such sampling strategy ensures thatLO-
RANSAC-RD has the same time complexityO(ε−7) as the
7pt RANSAC. To parameterize the RD model, we have cho-
sen the division model [3]

p =
1

1 + λ|x|2
x,



Fig. 4: ’Courtyard QY’ image pair, 48% of inliers. High radial
distortion example. Central part (1400 x 1400 pixels, view field
100◦) of the fish-eye images. Original first image on the left, the
second (different) image with RD removed on right.
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Fig. 5: Histograms of the numbers of inliers detected by different
RANSAC algorithms: A - 7ptLO-RANSAC with no RD estimation,
B - 9pt RANSAC, C - LO-RANSAC-RD.

whereλ is the only model parameter,x stands for the mea-
sured point,|x| for the distance ofx to the optical center
(center of the image) andp for the undistorted point so that
the epipolar constraint can be written asp′Fp = 0. EG and
RD were simultaneously estimated in theLO step solving
quadratic eigenvalue problem as in [3].

3.2. Experiments

Performance of three algorithms, 7ptLO-RANSAC (A),
9pt RANSAC (B) and LO-RANSAC-RD (C), was compared
on image pairs with low RD (Orange house, Fig. 3) and high
RD (Courtyard QY, Fig. 4). The number of detected inliers
is shown in Fig. 5. Alg. B finds more inliers than A because
it uses a more precise model. Alg. C finds more inliers than
B due to theLO step. The speed of A,B and C is measured
by the number of samples drawn (Tab. 1). Alg. B is the
slowest, as its time complexity isO(ε−9), compared with
O(ε−7) of A and C. As a consequence of eq. (3), C termi-
nates much earlier than A since it finds a higher number of
inliers. Finally, the stability of the radial distortion estima-
tion was measured. The graphs of the distribution of esti-
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Fig. 6: The distribution of estimated parameterλ of radial distor-
tion for 9ptRANSAC (B dashed) andLO-RANSAC-RD (C solid).

RANSAC 7pt LO 9pt LO–RD

Orange house 5 528 31 456 790
Courtyard QY 1 861 6 863 432

Table 1: The average number of samples drawn over 100 runs of
different RANSAC algorithm. Almost 40 times speed-up between
9pt RANSAC andLO-RANSAC-RD was observed.

mated parameterλ, depicted in Fig. 6, show that C is more
stable than B – the variation ofλ is smaller.

4. EG FROM THREE CORRESPONDENCES

In wide-baseline matching, the process of selection of tenta-
tive correspondences often produces region-to-region map-
pings. However, the strong constraints the mappings pro-
vide are ignored in the EG estimation stage. The fundamen-
tal matrix is computed from seven point-to-point correspon-
dences, with each region-to-region mapping providing just
a single point-to-point correspondence [13, 9, 7] .

In this section, we assume that a set of region-to-region
tentative matches is available, and that three independent
point-to-point matches can be obtained per each. In exper-
iments, we used the output of the method published in [7],
where the triplet of points originating from one region is
called ’local affine frame’ (LAF).

4.1. The 3LAF LO -RANSAC algorithm

The algorithm is a straightforward application of
LO-RANSAC. To hypothesize a model of epipolar geom-
etry, random samples of three region correspondences are
drawn. Three region correspondences give nine point cor-
respondences. These are used to estimate the fundamental
matrix F using the linear eight-point algorithm [4]. TheLO

step is applied (as always) only to the models that are so far
the best and includes both the ‘inner’RANSAC and iterative
polishing, as described in Section 2. A region correspon-
dence is consistent with a hypothesized epipolar geometry
iff all three points are consistent.

4.2. Experiments

To highlight the advantage of 3LAF LO-RANSAC, tests were
carried out on two image pairs (Fig. 1 and 8) with only about



Fig. 7: Epipolar lines and 84 detected correspondences (markers)
superimposed over the ‘Bookshelf’ pair.

Method EG consist. iterations

Flower,518tentative corr.,7% inliers
7pt LO-RANSAC N/A ≈ 684 000 000
3LAF RANSAC 25 47 668
3LAF LO-RANSAC 36 14 880

Bookshelf,201tentative corr.,42% inliers
7pt LO-RANSAC 83 1705
3LAF RANSAC 47 245
3LAF LO-RANSAC 84 41

Ascona,584tentative corr.,20% inliers
7pt LO-RANSAC 116 284 868
3LAF RANSAC 65 2 867
3LAF LO-RANSAC 116 384

Table 2: Summary of experimental results. Number of correspon-
dences found consistent with the epipolar geometry and the num-
ber ofRANSAC iterations required to reach the solution. Note that
all the numbers are random variables.

7% and 20% of tentative correspondences correct respec-
tively. The bookshelf test pair (Fig. 7) represents an indoor
scene with large scale difference between the two views.

Results of the conducted experiments are summarized in
Tab. 2. For the ’Flower’ pair, the fraction of inliers is so low
that the standard seven-point method failed. In the other
two pairs, a significant speed-up measured by the number
iterations was achieved.

It is important to note that when applying the 3-frame
RANSAC without theLO step (3LAF RANSAC), the set of de-
tected inliers is significantly smaller, as shown in the middle
column of Tab. 2. We believe that this is due to the fact that
local affine frames are typically very small and the three
points from a single region lie in near proximity. Conse-
quently, the EG estimated from a minimal number of corre-
spondences, as well as its support set, are unstable.

Clearly, application of theLO step is a very important
ingredient of the newly proposed algorithm. As a final re-
mark, we note that requiring all three point-to-point corre-
spondence that form a region-to-region correspondence to
obey the EG constraint also reduces the number of false
positive matches, as the probability that a random corre-
spondence will satisfy the epipolar constraint is decreased.

Fig. 9: The ‘Lobby’ pair, 28% of inliers. Central parts of the fish-
eye images. Original first image on the left, the second image with
radial distortion removed on right. Correspondences detected by
3LAF LO-RANSAC-RD superimposed over the images (markers).

5. ALL-IN-ONE.

Estimation of RD and the idea of using LAFs for EG es-
timations can be applied at the same time. The 3LAF LO-
RANSAC-RD algorithm estimates EG from three region-to-
region correspondences as 3LAF LO-RANSAC, then uses the
sameLO step asLO-RANSAC-RD. The Courtyard QY prob-
lem Fig. 4 is solved by 3LAF LO-RANSAC-RD after less then
30 samples (compare with Tab. 1) with the same precision as
when usingLO-RANSAC-RD. A more complicated match-
ing with only 28% of inliers (see Fig. 9) was solved after
only 133RANSAC cycles.

6. CONCLUSIONS

In this paper, theLO step toRANSAC algorithm was intro-
duced. Three applications demonstrating the properties of
LO-RANSAC framework were presented.

First, LO-RANSAC-RD, an algorithm for joint estima-
tion of the epipolar geometry and radial distortion was pre-
sented. We showed, that the algorithm: 1. has the same
complexity as the 7ptRANSAC, i.e. O(ε−7), 2. produces



Fig. 8: Epipolar lines and correspondences superimposed over ‘Ascona’ pair. Close-ups with regions and LAFs highlighted are shown in
the middle.

more inliers than the 7ptLO-RANSAC and hence can be ter-
minated earlier, and 3. is more stable than the 9ptRANSAC

(both the number of detected inliers and the estimated pa-
rameter of radial distortion have smaller variance).

Second, 3LAF LO-RANSAC – a new algorithm for the
correspondence problem – was described. Exploiting output
of the processes proposed in [7] for computation of affine-
invariant local frames, three point-to-point correspondences
were found for each region-to-region correspondence and
used in epipolar geometry estimation. We have experimen-
tally shown that: 1. 3LAF LO-RANSAC estimates epipolar
geometry in time that is orders of magnitude faster than
the standard method, 2. that the precision of the 3LAF LO-
RANSAC and the standard method are comparable, and 3.
thatRANSAC without theLO step applied to triplets of points
from a single region is significantly less precise than the
new 3LAF LO-RANSAC algorithm. The presented matching
method is pushing the limit of solvable problems, allowing
EG estimation in correspondence problems with the ratio of
inliers below 10%.

Finally, the combination of the previous two algorithms
was tested. The 3LAF LO-RANSAC-RD algorithm has ad-
vantages of bothLO-RANSAC-RD and 3LAF LO-RANSAC.
The simultaneous estimation of EG and RD increases the
precision and the number of correct matches, the time com-
plexity is reduced toO(ε−3). This compares favourably
with theO(ε−9) complexity of the state-of-the-art.
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