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Abstract

We propose a novel representation of local image struc-

ture and a matching scheme that are insensitive to a wide

range of appearance changes. The representation is a col-

lection of local af�ne frames that are constructed on outer

boundaries of maximally stable extremal regions (MSERs)

in an af�ne-covariant way. Each local af�ne frame is de-

scribed by a relative location of other local af�ne frames in

its neighborhood. The image is thus represented by quan-

tities that depend only on the location of the boundaries of

MSERs. Inter-image correspondences between local af�ne

frames are formed in constant time by geometric hashing.

Direct detection of local af�ne frames removes the require-

ment of point-based hashing to establish reference frames in

a combinatorial way, which has in the case of af�ne trans-

form complexity that is cubic in the number of points. Local

af�ne frames, which are also the quantities represented in

the hash table, occupy a 6D space and hence data collisions

are less likely compared with 2D point hashing.

Experimentally, the robustness of the method and its in-

sensitivity to photometric changes is demonstrated on im-

ages from different spectral bands of satellite sensor, on

images of a transparent object and on images of an object

taken during day and night.

1. Introduction

Methods1 based on matching of regions repeatably de-

tected in a transformation-covariant manner have demon-

strated impressive object recognition capabilities. Note-

worthy applications include �Sivic's and Zisserman's Video-

Google system capable of object retrieval in feature-length

�lms [17] and Lowe's real-time object recognition system

[8]. The impact of the methodology is clear from the range

of computer vision problems it has been successfully ap-

plied to: wide baseline stereo matching [1, 9, 13, 21, 19],

1The authors were supported by EU project MRTN-CT-2004-005439

VISIONTRAIN, by EU project IST-004176 COSPAL, and by The Czech

Ministry of Education project 1M0567 CAK.
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Figure 1. Detecting a logo (central image). Successful detection in

images 1-8 is highlighted by a quadrilateral. Note the differences

in appearance. Bottom row: cut-outs from images 6, 7, 8, and 3.

image retrieval from large databases [15, 20], model based

recognition [8, 10, 14], object retrieval in video [17], texture

recognition [7], robot localization [16], and panoramas [2].

All the listed approaches rely on establishing correspon-

dences of local image patches that are projections of the

same pre-image2, i.e. whose appearance in the matched im-

ages is identical, modulo af�ne local geometric deformation

and af�ne photometric transformation. In the paper, we ad-

dress a more general situation where it is only assumed that

intensity discontinuities are preserved; no other assump-

tions about photometric changes or object appearance are

needed. Such situation is common e.g. in the case of match-

ing images from different modalities or spectral bands as in

medicine or remote sensing (see Fig. 4) or when matching

2With the exception of texture recognition where the statement is true

only in a statistical sense.
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images taken during day and night. Consider a different in-

stance of the situation: the nine images depicted in the top

part of Fig. 1. A company logo appears in all of the images

in a number of different color variations, but the position of

discontinuities carry information suf�cient for its recogni-

tion.

We propose a novel image descriptor that is insensitive to

a range of appearance changes. The image is represented by

a collection of local af�ne frames (LAFs) [10] that are con-

structed on outer boundaries of maximally stable extremal

regions (MSERs) [9] in an af�ne-covariant way. The de-

scription of a LAF needed for establishing tentative corre-

spondences is provided by the relative location and pose of

other LAFs in its neighborhood. The neighborhood is also

de�ned in an af�ne-covariant manner. As a result, the im-

age representation depends only on MSER boundaries and

the proposed method successfully matches two views under

the condition that the boundaries have suf�cient repeatabil-

ity. It is shown experimentally that the condition is com-

monly satis�ed. The choice of MSERs is not critical for the

method and any af�ne-covariant detector that permits local

af�ne frame constructions could be used. MSERs were cho-

sen since the detector is available3 and it performed well in

a recent comparison paper [11].

As a second contribution, we propose a geometric hash-

ing [6] method that establishes each tentative correspon-

dence between local af�ne frames in constant time. We

show that local af�ne frames �t well into the geometric

hashing framework, preserving all the advantages of the

method and yet overcoming its limitations. In the origi-

nal Lamdan and Wolfson method [6], for the case of af�ne

transformation between images,N 2D points are invariantly

represented inO(N3) af�ne frames formed from all triplets

of points. The resulting hash table thus has O(N4) entries.
Since each entry is described by a 2D position, data col-

lision is likely. Direct detection of local af�ne frames re-

moves the O(N3) factor. Local af�ne frames (which are

also the objects stored in the hash table) occupy a 6D space

and hence data collisions are unlikely compared with 2D

point hashing.

Note that geometric hashing introduces robustness to

the process of establishing tentative correspondences. This

means that (i) the evidence for a correspondence can origi-

nate in any part of the image and (ii) it does not matter if the

local af�ne frame is near a 3D discontinuity, where some

fraction of frames in its neighborhood will vote for a dif-

ferent af�ne image-to-image transformation. Compare this

with the standard SIFT [8] descriptor matching. If the SIFT

is computed from an area whose pre-image is straddling a

3D discontinuity, the descriptor is unlikely to match after

3Executable of the MSER detector is available at

http://www.robots.ox.ac.uk/�vgg/research/affine.

changing a viewpoint4. The robustness of the LAF matching

process is demonstrated in an experiment where a partially

transparent object is matched on completely different back-

grounds. The problem of wide-baseline image matching in

the presence of severe intensity changes has been address

by the Dual-bootstrap ICP approach of Stewart et al. [18].

The method presented in this paper exploits hashing (is non-

iterative) and relies on the success of the af�ne-covariant re-

gion detector, [18] is an iterative method. The idea of using

a pair of features rather than a single feature has also been

used in the work of Tell and Carlson [19].

The rest of the paper is structured as follows. First, def-

initions used throughout the paper are introduced in Sec-

tion 2. The details of the matching method based on the

geometric hashing are laid out in Section 3. Experimental

validation follows in Section 4 and the paper is concluded

in Section 5.

2. De�nitions

By a LAF we understand an ordered triplet of non-

collinear points L = (x1;x2;x3), where xi = (x; y; 1)>.
Let L

b

= (n1;n2;n3), where n1 = (1; 0; 1)>, n2 =
(0; 0; 1)>, and n3 = (0; 1; 1)>, be a canonical LAF. Let

normalization N be an af�ne transformation that transforms

LAF L to a canonical frame L
b

= NL. Let A be a ma-

trix representing an af�ne transformation with the last row

(0; 0; 1); and let UDV> be a SVD decomposition of the up-

per left 2�2 submatrix of A. Let D = diag(d1; d2), where
d1 � d2. We de�ne anisotropy factor of an af�ne transfor-

mation A as a(A) = d1=d2. The anisotropy factor of LAF is

the anisotropy factor of its normalization.

3. Geometric Hashing with LAFs

The process of establishing tentative correspondences

between two images selects pairs of potentially correspond-

ing image elements. The image elements considered here

are local af�ne frames. A standard approach in wide-

baseline stereo matching algorithms is to describe each im-

age element by an af�ne invariant descriptor. Af�ne invari-

ance is chosen because the perspective projection of a close-

to-planar surface is locally well approximated by an af�ne

transformation. Tentative correspondences are formed on

the basis of descriptor similarity. The invariant measure-

ments are (functions of) the image intensities within some

af�nely covariantly de�ned shape (ellipse, parallelogram),

e.g. [21, 9].

The af�ne invariant descriptor constructed in this pa-

per is derived from the mutual position of two LAFs: one,

called reference frame (RF), provides a coordinate sys-

tem; the other, called description frame (DF), provides a

4Unless the background is uniform.
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Figure 2. Normalization of a LAF is not only dependent on the

viewpoint, but mainly on the the shape of the LAF itself (crops

from Fig. 1 - logo image and image 3). The anisotropy factor of the

normalizations are 6.7 and 8.0 respectively, while the anisotropy

factor of the af�ne transformation mapping L to L0 is 1.3.

6-dimensional af�ne invariant vector (two dimensions for

each of its three points). We exploit the idea of geometric

hashing [6]: discretized 6D descriptors are used as hash-

ing keys, LAFs with similar descriptors are thus found (and

tentative correspondences formed ) in constant time.

Reference frame construction and selection. We assume

that uncertainty regions of locations of points forming LAFs

are circles (i.e. assuming isotropic Gaussian distribution of

positional error). The circles are transformed to elliptical

uncertainty regions in the normalized frame. A reference

frame with high value of anisotropy factor (of its normal-

ization transformation) leads to elongated ellipses of un-

certainty that cover a number of bins (independently of the

choice of the discretization). Consider, for example, LAFs

where the axis form an angle of almost 0 or �. The coor-

dinate systems de�ned by such LAFs are signi�cantly de-

formed. In general, no restrictions on the anisotropy factor

of RFs can be used. Nevertheless, in wide baseline stereo

matching, assumptions on the af�ne transformation are of-

ten made. Wide range of off-plane rotation of the viewpoint

results in a similar anisotropy factor of the image transfor-

mation [8]. Also, high anisotropy together with image dis-

cretization often causes failure in the �rst step of the match-

ing process, i.e. in the detection of af�ne-covariant regions.

In many cases, the anisotropy factor of a LAF is signif-

icantly higher than the anisotropy factor of the transforma-

tion between matched images, see the example in Fig. 2.

We propose to use more than a single reference frame asso-

ciated with a LAF. The restrictions on the image transfor-

mation can be then applied to the RFs. For wide-baseline

stereo matching, we propose six RF constructions, depicted

in Fig. 3. Then, there are six hashing tables for each type of

RF construction, i.e. descriptors originated from the same

type of RF construction can be matched. Not all six RFs

are used for every frame, since the RFs with high value of

the anisotropy factor are more sensitive to noise. Only those

RFs having the anisotropy factor smaller than a threshold,

in our experiments set to the value of 4, are used for af�ne

invariant description.

4.00 1.33 2.16 3.42 2.16 3.42
Figure 3. Different construction of coordinate frames (some in-

volving the center of gravity) and the anisotropy factor of the cor-

responding normalization.

Selection of description LAFs. In order to select descrip-

tion LAFs in an af�ne invariant fashion, the selection has to

be based on af�ne invariant measurements. Since the af�ne

transformation is only a locally valid approximation of the

real image transformation, the description LAFs are selected

in proximity of the reference frame (in our case measured as

a distance from the origin of the reference frame in the RF

coordinate system). If there were no other selection crite-

ria, large RFs would use a large number of (even all) frames

as description LAFs (leading to a computational explosion).

In our approach, the following additional criterion is used:

the reference frame and the description LAF are of similar

scale. Such approach is af�ne invariant, and guarantees (un-

der certain reasonable assumptions on the feature detector)

an independence of the number of description LAFs of the

size of the RF. Moreover, if a feature is detected in both im-

ages with a change of scale, it is likely that features with a

similar scale will survive the image transformation too.

Lazebnik et al. [7] suggested to select description points

that are closer than certain number of pixels (measured in

the coordinate system of the image). However, this ap-

proach is not af�ne-covariant and is very sensitive to scale

changes.

Choice of the description space and its discretization.

There is a number of possible representations of the 6D

af�ne invariant descriptor. Let L1, L2 be two LAFs in the

�rst image and L0

1
, L0

2
in the second image. We express

points of L2 in a coordinate system derived from L1. In our

implementation, we have chosen the coordinates of the 6D

descriptor as polar coordinates of points of the description

LAF L2. The �rst two dimensions are set as polar coor-

dinates of the central point of the description LAF, having

the origin of the coordinate system at the origin of the RF.

The angle is discretized into 25 bins and the distance into

16 bins. The remaining four dimensions are given by the

polar coordinates of the two remaining points from the de-

scription LAF. The origin of the polar coordinate system is

located at the central point of the description LAF. The an-

gles are discretized into 25 and the radii into 6 bins. This

gives 9 � 106 possible values of the descriptor.

Votes counting. The votes are counted in a sparse matrix

represented as a hashing table [5]. The collisions were han-

dled by a secondary hashing function. Even if the same

pairs of LAFs appear in an identical bin for more than a sin-

gle construction of reference frame the vote is counted only

once.



4. Experiments

The proposed approach was tested on two-view estima-

tion of homographies and, in one case, epipolar geometry.

We focused on homographies, since in this case (i) ground

truth is easily established and (ii) the induced one-to-one

correspondence of pixels is easy to visualize. The detec-

tor of MSER regions [9], which was used in all experiments

with default parameters, outputs two disjoint sets of ex-

tremal regions: MSER+ containing regions with the inside

brighter than outside and MSER- with opposite contrast. In

both [9] and [11], tentative correspondences of MSER+ and

MSER- were established separately, i.e. the positive and neg-

ative contrast regions were not allowed to match. Since

one of our objectives is the ability to match under arbitrary

changes of illumination and/or contrast, a union of MSER+

and MSER- was formed. The LAFs were then constructed on

all regions following the procedures described in [10].

Where is the logo? In the experiment, a logo (Fig. 1-center)

was sought in the other eight images. To localize the logo

in the test images, a homography [4] was robustly estimated

by RANSAC [3]. The logo image was downloaded from the

internet and has 450�251 pixel resolution, test images were

shot by a four megapixel digital camera (size 2272�1707).
As shown in (Fig. 1), in all cases the logo was correctly de-

tected and localized. The images were chosen to highlight

the potential of a method exploiting only locations of dis-

continuities. Image 2 (top, center) shows a sticker-on-glass

version of the logo. Somewhat reminiscent of M.C. Esher's

�Three Worlds�, the image is a superposition of object be-

hind the glass and re�ected from the glass. Images 4,5,6 and

7 show the same object during day and night; Image 4 was

taken with a �ash. Cut-outs at the bottom of Fig. 1 demon-

strate the variability of appearance of the logo in images 6,

7, 8 and 3. We mention in passing that the scale of the logo

changes from 0.5 of the original (test image 9) up to 4.9

(test image 2). The current (suboptimal Matlab) implemen-

tation outputs tentative correspondences for an image pair

in terms of seconds.

The matching algorithm was also successfully applied to

all
�
9

2

�
image pairs.

Inter-spectral matching is demonstrated on images ac-

quired by the Landsat Thematic Mapper [12]. The images

shown in Fig. 4 are the thermal (left) and the mid infra-red

band (right) respectively. The thermal and infra-red sensors

have different resolution. Registration information is avail-

able; in the experiment we pretend it is unknown and try to

estimate it as a homography. Note the differences in appear-

ance (intensity) of the two images that are due to changes of

spectral re�ectances of individual materials. Such changes

do not follow a simple model and their effects cannot be re-

moved by normalization. Nevertheless, location of discon-

tinuities is often preserved; transitions between materials

Figure 4. Matching spectral bands of Landsat TM images (top

row). Spatial resolution of the thermal band image (left, 10.40 �

12.50 micrometer range) is half the resolution of the mid-infrared

image (right, 2.08 � 2.35 micrometer range). Registered images or

shown as a mosaic (bottom left) and checkerboard overlay (bottom

right). Note the contract reversal in parts of the image.

(e.g. vegetation type) typically implies step-edge response

in both bands. The variation of appearance, including con-

trast reversal, can be visually observed in Fig. 4 (bottom

right) on the checkerboard overlay. The bands were suc-

cessfully matched; a homography consistent with 49 LAF

correspondences was found by RANSAC. The quality of ten-

tative correspondences, measured by the density of inliers,

was high � 38% in the 100 top-ranked correspondences.

Graf�ti experiment. Results on the Graf�ti set5 have been

reported in a number of publications (e.g. [11] and the ref-

erences within). We include an experiment on one of the

most dif�cult pairs (see Fig. 5a) to allow comparison. In

this case, appearance-based methods work well - there is

no visible change in illumination. Ignoring color and inten-

sity information is only making the matching problem more

challenging. There were 2337 LAFs (818 from MSER+ and

1519 from MSER- respectively) in the �rst image (Fig. 5a)

and 4325 (1735 + 2590) LAFs in the second image(Fig. 5b)

output by the detector. The pair of images was successfully

matched.

We �rst focus on the quality of tentative correspondences

generated by geometric hashing. Since the ground truth is

known, it can be established that 88 LAF were detected in

both images (i.e. there is a corresponding LAF in the other

image with Sampson's error [4] under 2 pixels). If ten-

tative correspondences were sought assuming an arbitrary

change of the intensities, i.e. LAFs originating from MSER+

and MSER- were allowed to match, then the total number of

correct correspondences is 64. The dark solid curve plotted

in Fig. 6 shows the fraction of inliers among n top-ranked

tentative correspondences (ranked by the number of votes).

The density of inliers is such that RANSAC selects a solution

5The Graf�ti images are available at

http://lear.inrialpes.fr/people/Mikolajczyk/Database/graff6.tar.gz



(a) (b) (c)
Figure 5. The Graf�ti experiment. Left image (a) with superimposed 88 LAFs that were detected in both images. Right image (b) with

superimposed boundary of the transformed left image . (c) The anisotropy factor of an af�ne transformation locally approximating the

ground truth homography of the left-to-right image mapping.

in only a few iterations.

We next assess how much is gained if we exploit the

a priori knowledge that illumination did not change. In

this case, LAFs originating from MSER+ and MSER- were

not allowed to match. The number of correctly matched

correspondences increased to 80, which is close to the pos-

sible maximum of 88. The light solid curve plotted in Fig. 6

shows the fraction of inliers among n top-ranked tenta-

tive correspondences (ranked by the number of votes) when

MSER+ and MSER- were matched independently. Finally,

we assess the bene�t of de�ning multiple reference frames

for each LAF. The dashed curve of Fig. 6 shows the fraction

of inliers among n top-ranked tentative correspondences if

only a single reference frame is used; MSER+ and MSER-

were joined in this experiment. Only 32 correct correspon-

dences were among the tentative correspondences formed.

The introduction of multiple reference frames thus doubled

both the number and density of correct tentative correspon-

dences.

Plot (Fig. 5c) shows the spatial distribution of the

anisotropy factor of an af�ne transformation locally ap-

proximating the projective transformation of the images.

The values are plotted for pixels of the left image that are

mapped into (have an image in) the right image.

The ground truth homography H was approximated in

each point x0 = Hx by a �rst order approximation (af�ne

transformation A)

A =

0
@

h1 � x0h7 h2 � x0h8 xx0h7 + yx0h8 + h3
h4 � y0h7 h5 � y0h8 xy0h7 + yy0h8 + h6

0 0 h7x+ h8y + h9

1
A .

The anisotropy factor a(A(H;x)) reaches 4.3 in the right-

most part of the image, while the threshold on the

anisotropy factor of the normalization transformation a(N)
of coordinate frames was set to 4. Note, that this does not

mean, that LAFs from this region cannot be matched. It

fr
ac
ti
o
n
o
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n (# number tentative correspondences)

Figure 6. The fraction of inliers among n top-ranked tentative cor-

respondences. Correspondences are ranked by the number of votes

in the hash table.

Figure 7. Two photographs of a text on a transparent foil, each time

on a different background, and their superposition after successful

registration.

only means that coordinate frames with the anisotropy fac-

tor a(N) below 1.075 have no chance of being matched.

Arbitrary background - text on a transparency. A text

printed on a transparent foil was captured on two different

backgrounds. Some of the letters are detected in both im-

ages. An af�ne-covariant measurement region larger than

the detected letter includes the background, which is never

the same in the corresponding parts of the two images. A

measurement region that covers the letter (or its part) only,

is not discriminative, as most of the letter appears many

times in the text. On the other hand, groups of letters and

their mutual positions provide enough information for the

matching � the two images were successfully registered, see

Fig. 7 (right).

Epipolar geometry estimation. This experiment demon-

strates the performance of the proposed method on a non-

planar scene. The correct epipolar geometry was recovered



Figure 8. The plant scene. An image pair with 50 superimposed

correspondences consistent with the epipolar geometry.

by RANSAC using tentative correspondences obtained by

the proposed method.

Comparison with MSER-LAF approach [10]. On images

with color (intensity) preserved (Figs. 5, 8), both algo-

rithms output approximately equal number of correspon-

dences with the same percentage of inliers. In experiment in

Figs. 4, 7 and on most image pairs from Fig. 1 the method

[10] failed.

5. Conclusions

We proposed a novel image representation � a collection

of local af�ne frames that are constructed on outer bound-

aries of maximally stable extremal regions in an af�ne-

covariant way. We showed how inter-image correspon-

dences between LAFs can be formed in constant time by

geometric hashing. Since LAFs are directly detected in im-

ages, there is no need to establish reference frames combi-

natorially, which leads to very signi�cant ef�ciency gains.

We showed that due to noise, the choice of representation

of a reference frame on a LAFs is an important technicality.

Experimentally, the performance of the method was

demonstrated on two-view matching problems of images

from different modalities (multi-spectral images), images of

a transparent object on variable backgrounds and on images

where albedo changed arbitrarily.

The method was show to perform comparably well to
an orthogonal method [10] that uses patch appearance only
to establish the correspondences. For the matching tasks
where the appearance is preserved, the two methods can be
combined.
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