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Abstract

A new method for highly efficient min-Hash generation
for document collections is proposed. It exploits the in-
verted file structure which is available in many applications
based on a bag or a set of words. Fast min-Hash genera-
tion is important in applications such as image clustering
where good recall and precision requires a large number of
min-Hash signatures.

Using the set of words represenation, the novel exact
min-Hash generation algorithm achieves approximately a
50-fold speed-up on two dataset with 105 and 106 images
respectively. We also propose an approximate min-Hash
assignment process which reaches a more than 200-fold
speed-up at the cost of missing about 2-3% of matches.

We also experimentally show that the method generalizes
to other modalities with significantly different statistics.

1. Introduction

In the last decade, very large collections of images have
become readily available. Discovering groups of images of
the same object or landmark in a very large collection is
a challenging problem with a number of applications like
city-size reconstruction [6], image clustering [3] and the
discovery of canonical views [11]. Importantly, sets of im-
ages of objects or surfaces acquired in a range of view-
ing and illumination conditions provide input, when cor-
respondences are established, for machine learning tech-
niques applied to computer vision problems. Data-driven
approaches have become very popular and often signifi-
cantly outperform manually designed solutions. Examples
of recent developments in this domain include descriptor
learning [12, 13], learning of descriptor distances [9], and
improved feature space quantization [10].

In problems where generic solutions are sought, the di-
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versity of the data, e.g. of the locations and scenes, is an im-
portant factor that prevents a bias of all subsequent results.
The required amount and precision of such low-level (corre-
spondence) annotation by far exceeds the capabilities of hu-
man annotation, including cheap internet-based efforts. The
training data collections should simulate the situation that
all possible data have been seen during the training phase.

The min-Hash has been shown in [3] to scale well to
web-size collections of images and to support establishing
correspondence and finding spatially-related images in such
collections. The clustering method presented in [3] consists
of two stages: first, min-Hash matching is used to generate
the so called cluster seeds; in the second stage, the clusters
are formed around the seeds.

In the paper, we address the first step – generating the
min-Hash signatures. We propose two variants, one ap-
proximate and one exact, of a novel min-Hash construc-
tion method. The exact variant results in approximately
a 50-fold speed-up over the standard min-Hash, while de-
livering identical results. The approximate variant offers a
user-controlled trade off between speed and accuracy. For
instance, at the recall reduced by about 2- 3% the min-Hash
generation speed is improved more then 200 times.

Fast min-Hash generation is important in applications
such as clustering and matching where low overlaps of vi-
sual words are encountered1. In such cases, good recall
and precision of the constant-time hashing-based matching
method requires a large number (hundreds to thousands) of
min-Hash sketches and thus signatures [3]. If a single min-
Hash generation for all images in a collection takes tens of
seconds, a speed-up of two orders of magnitude has a strong
practical impact. Further more, for difficult image pairs
(with low similarity) increasing the number of min-Hash
signatures increases the chance of match discovery close to
linearly, see Figure 1(c).

The rest of the paper is structured as follows. First, the
relevant background on min-Hash is reviewed in Section 2.
The proposed method for min-Hash speed-up, both the ex-

1Unlike in near duplicate detection
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act and approximate variant, is described in Section 3. Ex-
perimental evaluation follows in Section 4.

2. Background Review : min-Hash

Before presenting the highly efficient method for com-
putation of min-Hash for a collection of images, the essen-
tials necessary for understanding min-Hash techniques are
reviewed. A detailed description is given in e.g. [2, 5].

The min-Hash algorithm is a Locality Sensitive Hash-
ing [7] for sets. In the min-Hash method, images are rep-
resented as sets of visual words. This is a weaker repre-
sentation than a bag of visual words since word frequency
information is reduced into a binary information (present or
absent). However, it was shown that for large vocabularies
the set of words and bag of words representations are almost
identical [4].

There is a number of equivalent definitions of the min-
Hash. It will be convenient to use the definition exploiting
ordering of the vocabulary by a random permutation π. Let
N be the size of the vocabulary and

π(i) : {1 . . . N} → {1 . . . N}

a permutation of N elements. Let p(i) be an inverse func-
tion to π(i). That is, π(i) gives the rank of visual words wi,
while p(i) is the index of i-th smallest visual word in the
ordering induced by π.

A min-Hash signature of a set A is defined as h(A)
where

h(A) = min
i:wi∈A

π(i). (1)

Such a function has the property that the probability of two
sets having the same value of the min-Hash signature is
equal to their set overlap, i.e. the ratio of the cardinalities
of the intersection and union of the two sets. Let A1 and
A2 be sets of visual words. To simplify the notation and
terminology, in connection with min-Hash we use the term
‘similarity’ and the set overlap interchangeably:

sim(A1,A2) =
|A1 ∩ A2|
|A1 ∪ A2|

∈ [0, 1]. (2)

For a random permutation π the probability of two images
to have the same min-Hash signature is then

P{h(A1) = h(A2)} = sim(A1,A2).

To estimate the similarity of two images, multiple inde-
pendent min-Hash functions hj (i.e. independent random
permutations πj of the vocabulary) are used. The fraction
of the min-Hash functions that assign an identical min-Hash
signature to the two sets is an unbiased estimate of the sim-
ilarity of the two images.

Retrieving similar images. So far, a method to estimate a
similarity of two images was discussed. To efficiently re-
trieve images with high similarity, the values of min-Hash
functions hi are grouped into s-tuples called sketches. Sim-
ilar images have identical values of the min-Hash signature
for many random permutations πi (by the definition of simi-
larity) and hence have a high probability of having the same
sketches. On the other hand, dissimilar images have low
chance of forming an identical sketch. Identical sketches
are efficiently found by hashing.

The probability of two sets having at least one sketch (of
size s) out of r in common, i.e. the probability of at least
one collision, is

PC(A1,A2) = 1− (1− sim(A1,A2)
s)r. (3)

The probability depends on the similarity of the two im-
ages and on the two parameters of the method: the size of
the sketch s and the number of (independent) sketches r.
Figure 1 (a) and (b) visualizes the probability of collision
plotted against the similarity of two images for fixed s = 3
and r = 512. Figure 9 shows examples of image pairs and
their similarity.
Word weighting. It has been shown that different features
carry different amount of information and that weighing vi-
sual words by their relative importance improves retrieval
quality [1]. An extension to min-Hash proposed in [5] intro-
duces a method of vocabulary permutation generation that
allows to assign different weights to different features. Let
di ≥ 0 be the importance of a visual wordwi. The weighted
set overlap similarity of two sets A1 and A2 is

simw(A1,A2) =

∑
wi∈A1∩A2

di∑
wi∈A1∪A2

di
. (4)

It was shown that the weighted measure (with idf in [5]) has
two advantages compared with the original set overlap: it
better captures the image similarity, and reduces the num-
ber of false sketch collisions. All plots in the paper were
generated using idf weighted min-Hash, plots for standard
min-Hash are indistinguishable.

3. Fast generation of min-Hash signatures for
image collections

In this section, we present a novel efficient construction
of min-Hash representation for large image collections. The
process is explained for a single min-Hash function h. To
generate multiple min-Hash signatures, the procedure is re-
peated with different hash function, i.e. with the different
random permutations of the vocabulary. Let N be the size
of the vocabulary. Let a permutation of the vocabulary be π
and its inverse p be defined as in Section 2.

In the standard min-Hash, the signature is generated for
each image separately by selecting a visual word present
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Figure 1. The dependence of probability PC of at least one sketch collision, equation (3): (a) as a function of the similarity sim of the two
images for for r = 40, 512 and 2048 ; (b) a close up of the same plot – note the logarithmic scale on the vertical axis; (c) as a function
of the number of sketches r, the probability PC increases almost linearly with the number of sketches r for similarities sim = 0.04, 0.05,
and 0.06.
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Figure 2. The dependence of the probability PR of assigning a sin-
gle min-Hash for an image with 300, 800, and 2000 visual words
respectively after processing k visual words. The size of the vo-
cabulary is 1M visual words. Note that at k = 10000 only 1% of
the inverted lists has been processed.

Input: p(i) - ordering of the vocabulary, k - the number
of visual words to be used
Output: M [1 : D] array of min-Hash signatures for all
D images
initialize M [1 : D] = NDef
for i = 1 : k

for every image j containing visual word wp(i) do
if M [j] == NDef then
M [j] = i

end
end

end

Algorithm 1. Partial min-Hash signature generation using the
inverted file.

in the image with the smallest value of h. In the proposed
method, documents with the same min-Hash are processed
in a single step of the assignment process. To do so effi-
ciently, the inverted file structure used in the image retrieval
is exploited.

The assignment procedure proceeds as follows. From the
definition, visual word wp(1) is the smallest element from
the whole vocabulary with respect to ordering induced by
π. Thus, any document containing wp(1) will have this the
visual word as its min-Hash signature (for hash function h
induced by π). Id-s of all such documents are stored in a list
of the inverted file associated with wp(1). Similarly, visual
word wp(2) will be a min-Hash signature of all documents
that contain wp(2) and do not contain wp(1). In general,
wp(i) is a min-Hash signature for exactly those documents
that contain visual word wp(i) and do not contain any visual
word wp(j), where j < i. This leads to the following simple
algorithm (summarized in Algorithm 1).

At the beginning, all images are marked as not having a
min-Hash defined. Then, starting with wp(1), the inverted
lists are scanned in the order given by p(i). All images in
a list corresponding to wp(i) with undefined min-Hash are
assigned the min-Hash value π (p(i)) = i. When the al-
gorithm passes through all lists of the inverted file, all non-
empty images are guaranteed to have a min-Hash signature
assigned. However, the complexity of such an approach is
the same as the complexity of the standard min-Hash con-
struction – each feature in each document is touched once.

Clearly, the procedure is very efficient at the beginning
of the assignment process when almost none of images have
a min-Hash assigned. Gradually, the inverted lists include
higher and higher proportion of images with min-Hash as-
signed from previous iterations.
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Figure 3. Oxford 105k statistics. (a) histogram of the number of
unique visual words per image, (b) the fraction of resolved im-
ages during processing top k visual words, note that k = 2 · 104
represents only 2% of visual words.

3.1. Partial min-Hash assignment with inverted lists

In the following paragraphs, we study what happens if
the procedure does not consider all visual words, but is ter-
minated after traversing only first k lists corresponding to
visual words wp(1) to wp(k).

Let us consider the probability that a particular image
has a min-Hash signature assigned after processing the first
k visual words by traversing their list in the inverted file.
The probability PR that a document will be resolved (will
have a min-Hash signature defined) depends not only on the
number of processed lists k but and also on the number of
different visual words f in that image. The probability that
an image with f visual words, uniformly and independently
drawn from the vocabulary of N words, includes a visual
word is equal to f/N . The probability of resolving such an
image after k visual words is approximated by

PR(f, k) = 1−
(
1− f

N

)k

. (5)

The relation would be exact if the k visual words were se-
lected with replacement, in our case they are selected by the
permutation without replacement. Equation (5) provides a
lower bound and it is a close approximation for k � N .
Figure 2 shows the probability PR for a vocabulary of size
N = 1M and different values of k and f . The number of
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Figure 4. Histogram of the number of sketch collisions involv-
ing sketches resolved after considering k inverted lists for Oxford
105k dataset. Only 2.0% of collisions lie beyond k = 2000.

resolved images depends on the distribution of the number
f of unique visual words in images

E[PR(k)] =
∑
f

P (f)PR(f, k). (6)

To show the behaviour on a realistic database we use the
Oxford 105k as a running example. Figure 3(a) shows the
relative frequencies, used as an estimate of P (f). The dis-
tribution peaks at about 1000 visual words. The dependence
in eqn. (6) is made explicit in Figure 3(b). Virtually all im-
ages have a min-Hash assigned for k=10 000, that is after
considering about 1% of all inverted files.

An empirical dependence of the success rate of the par-
tial min-Hash on the number of used lists of the inverted file
is shown in Figure 4. A brief mathematical analysis of the
dependence is presented in appendix A.

3.2. Fast exact min-Hash calculation

For some applications it might be necessary, or conve-
nient, to generate the min-Hash signature for all images. To
exploit the efficient procedure using the inverted file struc-
ture, we propose a hybrid algorithm which is exact in the
sense that every image is assigned the same min-Hash as
with the standard algorithm. For the top k inverted lists,
the algorithm described in the previous subsection is used.
Then, the min-Hash signature of the unresolved images is
obtained as in the standard min-Hash – minimal element
with respect to the permutation π will be selected from each
unresolved image.

The complexity of this second step is given by the prod-
uct of the number of unresolved images and by the aver-
age number of visual words in those images. The num-
ber of unresolved images is derived from equation (6) as
D(1 − E[PR(k)]), where D is the total number of images,
see Figure 5(a). The average number of visual words in un-
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Figure 5. Oxford 105k: The product of the number of unresolved images (a) and the average number of features in unresolved images (b)
determines the time (c) required to resolve all unresolved images after processing k inverted lists.

resolved images after processing first k visual words is

E[fN (k)] =

∑
f fP (f)(1− PR(f, k))∑
f P (f)(1− PR(f, k))

. (7)

Since the probability PR increases with the number of vi-
sual words in an image, more images with a large number
of visual words will be resolved with every processed list
of the inverted file. Hence, the expected number of visual
words in unresolved images after k iterations is a decreas-
ing function of k, as shown in Figure 5(b) for the Oxford
105k dataset. The time complexity of the hybrid method as
a function of k is plotted in Figure 6.
Note on the weighted min-Hash. The idf weighted min-
Hash algorithm preferably assigns low ranks in the ordering
π to visual words from shorter lists of the inverted file (cor-
responding to visual words with a higher weight). This ren-
ders the statistical analysis intractable. However, our exper-
iments empirically show that the efficiency of the proposed
algorithm is the same for both weighted and the standard
similarity measure.

3.3. Sketches with the NDef symbol

In this section, a “lazy” version of the exact algorithm
is proposed. Instead of using a standard min-Hash algo-
rithm to generate the min-Hash signature for all unresolved
images, a special symbol NDef is used as a min-Hash sig-
nature for such documents. Evaluating the min-Hash func-
tion is postponed and executed only for images that have a
matching sketch that includes the NDef symbol. The fol-
lowing table shows different examples of sketches of size 2
of two images.

Image 1 Image 2 sketch collision
1 (1, 2) (1, 2) matching
2 (1, 3) (2,3) non-matching
3 (1,NDef) (2, NDef) non-matching
4 (1,2) (1, NDef) non-matching
5 (1, NDef) (1, NDef) could match
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Figure 6. Time complexity of the exact algorithm on Oxford 105k
for a range of k values (green curve). The optimum is reached
for k∗ ≈ 6400. First, the inverted file is used to generate min-
Hash signatures up to the k-th smallest visual word in the vocab-
ulary (blue line). The unresolved images are subject to standard
min-Hash signature generation procedure (red curve). The exact
method achieves more than 50-fold speed-up taking 48 millisec-
onds compared to the standard min-Hash applied to all images
taking 2.57 sec, which is the value of the red curve at k=0. Note
that the horizontal axis starts at the value of k = 2000. The red
curve (std min-Hash on unresolved) corresponds to the curve in
Figure 5(c).

The NDef symbol acts as a new element of the vocabulary.
In order to define a sketch collision, all entries of the sketch
must be identical. Therefore, the examples in rows 2 and
3 are not matching, because the first entry of the sketch is
different. The example in row 4 cannot be matching either:
even though the second image has an the second min-Hash
signature unresolved, it cannot be equal to 2 which is the
min-Hash signature of the first image. This is due to the
fact that the list of the inverted file associated with w2 has
been processed (is has generated the min-Hash signature for
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the first image) and the second image is certainly not con-
taining w2, otherwise the min-Hash signature would have
been resolved.

The sketch hashing follows the same procedure as in the
standard. If a collision of a sketch containing a NDef sym-
bol was encountered, the unresolved min-Hash signatures
are obtained in the standard manner. The sketches are con-
sequently compared again to verify whether the collision is
valid or not. This way, some images do not have some of
their min-Hash signatures (without the NDef symbol) gen-
erated at all, since these are not necessary.

The lazy evaluation can reduce the number of evaluated
unresolved min-Hashes to approximately one third, depend-
ing on the number k of the inverted lists processed (see Fig-
ure 11). This may be useful for applications where the exact
min-Hash is required, but only the inverted file resides in the
memory, while the access to the data for standard min-Hash
is slower.

4. Experiments
In this section, we experimentally measure the speed-

up achieved by the proposed approach. To demonstrate the
wide applicability two different modalities are considered:
images represented by sets of visual words and binary im-
ages represented as a set of pixels.

4.1. Visual words

Besides the Oxford 105k dataset, the speed of the exact
and partial min-Hash methods was validated on a collection
of 5 million image downloaded from Flickr. Let us first
consider the partial algorithm.

The speed-up of the partial method depends on the loss
of collisions that can be tolerated. Fortunately, a min-Hash
signature with a high value is unlikely to be generated and,
as analysed in Appendix A, even less likely to lead to a col-
lision. This dependence is visualised in Figures 4 and 8.
The full speed-up vs. loss of collisions curve is presented
in Figure 7. For instance, at k = 2000 a speed-up of 240
(Oxford 105) and 215 (Flickr 5M) is achieved at the loss
of 2.1% (Oxford 105k) and 3.1%(Flickr 5M) collisions re-
spectively.

Figure 9 shows samples of image pairs retrieved by a
sketch collisions in Oxford 105k. The image pairs are or-
dered by the largest value of the min-Hash signature in the
colliding sketch. If a lower number k of lists of the inverted
file were processed, the sketch would have been undefined.
Note the relation between the number of features in the im-
ages and the value of k. Images with low number of features
may require high values of k to be matched by a sketch col-
lision, even if the images are exact duplicates.

The results of the exact variant for the Oxford 105k im-
age collection shown in Figure 6 are qualitatively the same
as the results on the Flickr 5M dataset, see Figure 10; note
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Figure 7. The trade-off between the accuracy and the speed of the
partial algorithm for Oxford 105k and Flickr 5M datasets. Points
representing k = 2000 , 3000, and 7000 are marked on the curves
(the lower k the higher speed-up).
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Figure 8. Histogram of the number of sketch collisions of sketches
resolved after k inverted lists for Flicker 5M dataset. Only 3.1%
of collisions lie beyond k = 2000.

the different time scales. The optimal values of k, i.e. the
optimal number of inverted lists scanned, is equal to 6400
(Oxford 105k) and to 7000 (Flickr 5M) respectively2. The
speed-up achieved at the optimal k is 50 (Oxford 105k) and
45 (Flickr 5M) times respectively. The performance is in-
sensitive to the exact value of k, both Figures 6 and 10 show
a broad valley with near-optimal performance between 6000
to 8000 visual words that are assigned using inverted files.

Finally, we study the impact of the lazy min-Hash gener-
ation. Figure 11 demonstrates the gain of the method evalu-
ated on Oxford 105k dataset. For low values of k, there are
many unresolved min-Hash signatures in the sketches. This
causes a large number of sketches to match on the NDef
symbols, which requires high fraction of the min-Hash sig-

2Performance was evaluated only for values of k that are multiples of
200
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20 / 8521 / 29.1% 55 / 2663 / 22.6% 118 / 3461 / 3.5%

660 / 2688 / 5.1% 880 / 2346 / 8.2% 1033 / 1882 / 8.3%

2003 / 282 / 14.7% 2120 / 559 / 14.4% 5583 / 809 / 14.2%

20362 / 134 / 14.5% 44969 / 2 / 100% 334034 / 4 / 14.3%
Figure 9. Sample image pairs retrieved from the Oxford 105k dataset by min-Hash with r=512 sketches of size s=3. Three characteristics
are shown for each pair: the minimal k (out of 1M vocabulary) required to resolve a whole sketch / the average of the numbers of features in
the two images / similarity. Note that the pairs are not selected uniformly from the pairs with sketch collisions – the top two rows represent
98% of the colliding pairs, while the bottom two rows represent only 2%.

natures to be resolved. For values of k > 5000, the method
reduces the number of required min-Hashes to be resolved
to approximately one third.

4.2. Binary images

To show the applicability in other domains than a set of
visual words retrieval, the gain in performance of the pro-
posed method on binary image matching was measured .
A database of 70k binarized images of hand-written digits
MNIST [8] was used. Each image is 28×28 pixels, yielding
a 784 dimensional binary descriptor (compared with 1M di-
mensions used in the previous experiments). Each image is
represented by a set of pixels that are black. Images on av-
erage contain 103 elements, which corresponds to the spar-
sity of 13% of non-zero (compare with 2% in the the set
of visual words). Despite significantly different nature of
this dataset, the proposed method still brings a significant
15 fold speed-up, see fig. 12.

5. Conclusions

We have presented a method for efficient exact and par-
tial assignment of min-Hash signatures to a large collec-
tion of images that exploits the inverted file structure. A
fast min-Hash generation is important in applications since
a good recall and precision of this constant-time match-

ing methods requires a fairly large number of min-Hash
sketches and thus signatures.

We have shown that an approximately 50 times speed-
up was achieved on two datasets with 105 and 106 images
respectively for the fast exact min-Hash algorithm. An ap-
proximate min-Hash assignment process reached more than
200-fold speed-up at the cost of missing about 2-3% of
matches.

Experimentally, it was shown that the method general-
izes to other modalities with significantly different statis-
tics.
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be evaluated after the collision in the lazy min-Hash generation
scheme.
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Figure 12. Time complexity of the exact algorithm on binarized
MNIST 70k for a range of k values (green curve). The optimum
is reached for k∗ ≈ 75. A 15 fold speed-up was achieved over the
standard min-Hash.
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A. Efficiency of the partial min-Hash
The relative success rate of the partial variant w.r.t. to

the exact algorithm is given by the fraction of sketch colli-
sions that are missed, that is collision of sketches contain-
ing a min-Hash signature with value exceeding the maxi-
mal number k∗ of processed lists of the inverted file. The
probability that a min-Hash matches with the value k of the
signature is given by two factors. First, the probability that
a min-Hash will take the value k and that the min-Hash will
be matching given its value is k. The first probability is (up
to the normalizing factor) shown in Figure 5 (a).

Now we analyse the probability that a min-Hash is
matching given its value is k. Let the min-Hash of a set
A1 be k, that is

∀wi ∈ A1 : π(i) ≥ k. (8)

A set A2 will have identical value of the min-Hash iff wi ∈
A2 and

∀wi ∈ A2 : π(i) ≥ k.

From equation (8), the above condition is satisfied for wi ∈
A1 ∩A2, and the probability that it will be also satisfied by
the elements of A2 \ A1 is closely approximated by(

1− k − 1

N − |A1|

)|A2\A1|

. (9)

In other words, the expression (9) gives a probability that
none of the visual words in A2 that are not present in A1

will have smaller hash value than k, given the min-Hash of
A1 is π(wi) = k (in which case the sets A1 and A2 would
have different min-Hash signatures). The probability is a
polynomial of degree |A2 \ A1| in k. For larger values of
|A2 \ A1| approaches (9) zero fast.
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