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Abstract—A randomized model verification strategy for RANSAC is presented. The proposed method finds, like RANSAC, a solution
that is optimal with user-specified probability. The solution is found in time that is close to the shortest possible and superior to any
deterministic verification strategy. A provably fastest model verification strategy is designed for the (theoretical) situation when the
contamination of data by outliers is known. In this case, the algorithm is the fastest possible (on the average) of all randomized RANSAC

algorithms guaranteeing a confidence in the solution. The derivation of the optimality property is based on Wald’s theory of sequential
decision making, in particular, a modified sequential probability ratio test (SPRT). Next, the R-RANSAC with SPRT algorithm is
introduced. The algorithm removes the requirement for a priori knowledge of the fraction of outliers and estimates the quantity online.
We show experimentally that on standard test data, the method has performance close to the theoretically optimal and is 2 to 10 times
faster than standard RANSAC and is up to four times faster than previously published methods.

Index Terms—RANSAC, randomized RANSAC.
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1 INTRODUCTION

THE RANdom SAmple Consensus (RANSAC) algorithm
introduced by Fishler and Bolles in 1981 [6] is a widely

used robust estimator that has become a standard in the
field of computer vision [1]. RANSAC and related hypothe-
size-and-verify methods [4], [11], [12], [13], [14], [15] have
been applied to many vision problems.

The RANSAC algorithm proceeds as follows: Repeatedly,
subsets of the input data (for example, a set of tentative
correspondences) are randomly selected (with replace-
ment), and model parameters fitting these subsets are
computed. In the second step, the quality of the parameters
is evaluated on the input data. Different cost functions have
been proposed [15], the standard being the number of data
points (inliers) consistent with the model. The process is
terminated when the probability of finding a better model
becomes lower than a user-specified probability �0. The 1�
�0 confidence in the solution holds for all levels of
contamination of the input data, that is, for any number
of outliers within the input data.

The speed of standard RANSAC depends on two factors:
The number of random samples and the number N of the
input data points. In all common settings where RANSAC is
applied, almost all models whose quality is verified are
incorrect with arbitrary parameters originating from con-
taminated samples. Such models are consistent with only a
small number of the data points. In [9], Matas and Chum
showed how this property could be exploited to increase
the speed of RANSAC. The algorithm, called R-RANSAC,

reduces the time needed for the model evaluation step by
introducing a two-stage procedure. First, a statistical test is
performed on d randomly selected data points ðd� NÞ.
Evaluation of the remaining N � d data points is carried out
only if the first d data points are inliers. The speed up of R-

RANSAC depends on the probabilities of the two types of
errors committed in the pretest, the rejection of an
uncontaminated model and the acceptance of a contami-
nated model.

This idea was modified by Nistér to include competitive
verification of models. The algorithm performed impress-
ively in a real-time structure from motion system [12]. The
main limitation of Nistér’s preemptive RANSAC is that a
fixed number of models are evaluated, which is equivalent
to an a priori assumption that a lower bound on the fraction
of inliers is known. This limits the applicability of
preemptive RANSAC in problems where the fraction of
inliers varies widely, such as wide baseline stereo.

As noted in [9], the two-stage procedure of R-RANSAC is
not optimal. As a main contribution of this paper, we define an
optimal hypothesis evaluation procedure, that is, a method for
randomized model quality evaluation that returns, in the
fastest average time possible, a solution with the confidence
1� �0. The derivation of the optimality property is based on
Wald’s theory of sequential decision making [16].

In Section 2, the concept of randomization of the
verification step is described in detail. Section 3 reviews
previous work relevant to the topic. In Section 4, we
introduce the relevant parts of Wald’s decision theory and
show how its results can be brought to bear on the problem
of minimizing RANSAC runtime. The RANSAC with SPRT
algorithm [10] is described in detail in Section 5. In Section 6,
the theoretical results are experimentally verified on
standard stereo matching problems. The paper is concluded
in Section 8.

2 RANDOMIZED CONSENSUS

The speed of RANSAC depends on two factors. First, the
percentage of outliers determines the number of random
samples needed to guarantee a given confidence in the
optimality of the solution. Second, the time needed to assess
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the quality of a hypothesized model parameters is propor-
tional to the number N of input data points. The total
runtime t of RANSAC can be expressed as

t ¼ kðtM þmS tV Þ; ð1Þ

where k is the number of samples drawn, tM is time needed
to instantiate a model hypotheses given a sample, mS is the

average number of models per sample, and tV is the
average time needed to evaluate the quality of the sample.
We choose the time needed to verify a single correspon-
dence as the unit of time for tM , tV , and t. Note that in
standard RANSAC, tV ¼ N .

The core idea of the Randomized (hypothesis evaluation)
RANSAC is that most evaluated model hypotheses are
influenced by outliers. To reject such erroneous models, it is
sufficient to perform a statistical test on only a small
number of data points. The test can be formulated as

follows: The hypothesis generation step proposes a model.
It is either “good,” that is, it is uncontaminated by outliers
and leads to the optimal solution (the solution with
maximal support), or it is “bad” (or contaminated) with at

least one of the data points in the sample is an outlier.1 The
property “good” is a hidden state that is not directly
observable but is statistically linked to observable events.
The observable events are “data point (correspondence) is

or is-not consistent with the model.”
The statistical test has two effects on RANSAC behavior:

It 1) reduces the number of verified data points (and thus
time complexity of the verification step) and 2) introduces
the possibility of rejecting (overlooking) a good sample. The

probability � of rejecting a good sample is the significance
of the test, and it increases the number of samples drawn
before the 1� �0 confidence is ensured. The correct model
parameters are recovered if an uncontaminated sample is
drawn and passes the test. This happens with probability

P ¼ Pgð1� �Þ;

where Pg is a probability of a “good” sample being drawn.
The problem is to find a test that balances the number of

correspondences needed for model verification and the

increase in the number of samples induced by false
rejections so that the total runtime t in (1) is minimized. It
was shown in [9] that k�0

� � ln �0
�k, where �k is the average

number of samples before a first uncontaminated sample is

drawn and k�0
the minimum number of steps needed to

guarantee 1� �0 confidence in the solution. Hence, the
average time to find an all-inlier sample and the time to
stop with the confidence differ only by a multiplicative
factor; minimizing either leads to identical results. The

formulas below are derived for k ¼ �k. Since the average
time to draw an uncontaminated model that passes the test
is �k ¼ 1=ðPgð1� �ÞÞ, we have

t ¼ 1

Pgð1� �Þ
ðtM þmS tV Þ: ð2Þ

The design of a statistical verification test depends on

two probabilities " and �, where " denotes the fraction of

inliers within the set of data points, and � is a probability
that a data point is consistent with a model with arbitrary

parameters. These probabilities are typically unknown

beforehand and have to be either estimated during the

course of the algorithm, or the test must be efficient for a
very large range of their values.

3 PREVIOUS WORK

The idea of randomized verification of hypotheses in

RANSAC appeared only recently [3], and the related
literature is thus limited. We review the original R-RANSAC

that relied on the Tðd;dÞ test [3], [9] and the two algorithms it

inspired: the preemtive RANSAC [12] and the RANSAC with
a bail-out test [2].

3.1 The TTdd;dd Test

R-RANSAC with the Td;d test [3], [9] employs a simple and
thus mathematically tractable class of preverification tests,

which were defined as follows: The Td;d is passed if all d

data points out of d randomly selected are consistent with

the hypothesized model.
In the Td;d test, the number of verified correspondences

per a test depends on d and is equal to that in [3]:

tV ðdÞ ¼ Pg ð1� �ÞN þ ��t�ð Þ þ ð1� PgÞ �N þ ð1� �Þ�t�
� �

:

ð3Þ

Here, � stands for the probability that a bad sample passes

the preverification test. Note that it is important that

� � 1� �, so that a bad (contaminated) sample is consis-

tent with a smaller number of data points than a good
sample. In [3], the optimal value for d is derived in detail.

The constants introduced in the previous section are

expressed as

� ¼ 1� "d and � ¼ �d;

where � is the probability that a data point is consistent with

an arbitrary model.
For a broad range of values of " and �, the optimal value

of d is d ¼ 1. Therefore, without any prior knowledge of "

and �, the suggested test (from the Td;d class of tests) is T1;1.
Note that instead of drawing m data points and verifying

only d data points in the test, the following approach can be
adopted in the Td;d test. Draw mþ d data points randomly,
and fit model parameters to the sample. Measure the error
on the mþ d data points in the sample. If the error is
smaller than a predefined threshold �, that is, there is a
model that fits all the data well, proceed with the
verification step; otherwise, generate a new hypothesis.
The advantage of such an approach is that a single model
can be obtained from mþ d data points (in contrary to mS

models from m data points only), and also a model of
higher accuracy is typically obtained if more points are
used. This is specific to the Td;d class of tests, where the
consistency of all d data points is required.
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1. In the definition of “good” and “bad” models, we ignored the fact that
for certain models, for example, the fundamental matrix, the optimal model
can be obtained from a sample contaminated by an outlier that is by
coincidence consistent with the correct epipolar geometry. We also ignored
the fact that an uncontaminated, all-inlier sample may not lead to a “good”
model due to noise and poor conditioning of the estimation process. The
problem can be overcome with so-called local optimization, for details, see
[4]. Neither simplification has an impact on the derivations below.



Despite the simplicity of T1;1 test, experiments have
shown that preverification can reduce RANSAC runtime
significantly [9].

3.2 The Bail-Out Test

The bail-out test (Algorithm 1) introduced by Capel [2]
exploits the following idea. Whenever the probability of the
event “the currently evaluated hypothesis contains as many
inliers as the so-far-the-best hypothesis” falls under a fixed
threshold Pcf (1 percent), the evaluation is terminated, and
the hypothesis is discarded as incorrect. Since the exact
probability

Pcf ¼ P ðI > I�Þ ¼
XN
I¼I�

P ðIjIn; n;NÞ

is computationally expensive to evaluate, an approximation
is suggested. The number In of data points consistent with a
hypothesis within n tested data points follows a hypergeo-
metric distribution

In � HypGðÞ:

The binomial distribution gives a lower bound on the
hypergeometric distribution and can be approximated by a
normal distribution:

In � Nð�; �2Þ ¼ N n"i; n"ið1� "iÞ
N � n
N � 1

� �� �
: ð4Þ

The size of minimal support Imin
n out of n verified

correspondences for a hypothesis to proceed to further
verification is expressed as Imin

n ¼ bn"i � zc�c, where zc is
the quantile associated with the confidence Pcf for a zero
mean unit variance normal distribution.

How often is a “good” hypothesis rejected using such a
test? In [2], this possibility is ignored, and the probability �
of this event is neglected. If the test on Imin

n was applied only
once as in the Td;d, then � ¼ Pcf . However, the test is applied
after each verified data point, so Pcf is clearly only a lower
bound on �. The exact evaluation of � for this type of test is
intractable, since the results of the individual tests are not
independent, which means that it is not possible to devise
an optimal test based on Imin

n .2

Algorithm 1: The bail-out test.
Set n ¼ 1 and In ¼ 0.

Although n � N
if xn is inlier In þþ
if In < Imin

n abort evaluation

nþþ
end

Return IN

3.3 Preemptive RANSAC

The aim of preemptive RANSAC by Nistér [12] is to
efficiently select the best hypothesis from a fixed number
of generated hypotheses. The algorithm was designed for a
real-time structure from motion applications, where it is
necessary to find a result within a scheduled time. The fixed

number of hypotheses restricts the level of outlier contam-
ination, since there is a one-to-one relationship between the
number of necessary steps (sample draws) and the level of
data contamination. When the fraction of inliers is too low
for the prespecified number of hypothesis, the method
simply fails.

Preemptive RANSAC is based on comparing hypotheses
after evaluating just a fraction of the data points and rejecting
those with worse scores. The algorithm uses a nonincreasing
function tðiÞ, i 2 0 . . .N , that determines how many top
ranked hypotheses are further considered (whereas the other
are rejected) after the cost function was evaluated on i data
points. The data points to be verified are selected at random
with replacement. The algorithm proceeds as follows: First,
k ¼ tð0Þ hypotheses are generated. Then, one data point is
chosen for each active hypothesis, and the cost function is
updated using that data point. After i data points have been
verified for each hypothesis, the tðiÞ best hypotheses are kept,
and the others are rejected. The procedure stops when only a
single hypothesis is kept, that is, tðiÞ ¼ 1, or after verifying all
N data points for each surviving hypothesis.

Algorithm 2: The structure of preemptive RANSAC.

1 Generate all k ¼ tð0Þ hypotheses
2 For i ¼ 1 to N

- evaluate the cost function for randomly chosen (with

replacement) data point for all tði� 1Þ hypotheses left

- keep tðiÞ hypotheses with the highest value of the cost

function over i data points.

Note, there is a significant difference between the
objectives of standard (randomized) RANSAC and preemp-
tive RANSAC. The former attempts to find, with predefined
confidence, the best of all model parameters in the shortest
possible time; the latter seeks the best model within a set of
hypotheses of fixed size. The preemptive RANSAC formula-
tion is natural in a time-constrained setting. If a good
solution is not among the fixed number of models that can
be evaluated in the time available, it is simply out of reach.
For low-contamination problems where only a few samples
are needed to find a solution, preemptive RANSAC can be
much slower than standard RANSAC. However, it is well
known that not all inlier solutions are equally precise.
Preemptive RANSAC in this case spends remaining avail-
able time finding the best model in the maximum likelihood
sense performing effectively preemptive MLESAC [15].
Preemptive RANSAC has an almost constant runtime, a
desirable property in online systems, and it puts fewer
constraints on the selection of the cost function at the price
of not being able to handle problems with different
proportion of inliers. In short, standard and preemptive
RANSAC solve different but related problems and are thus
applicable in different contexts.

4 THE OPTIMAL SEQUENTIAL TEST

In many applications, such as industrial inspection, the
problem of sequential testing is to decide whether a
model—typically a batch of products—is “good” or “bad”
by making the smallest possible number of observations
while satisfying the predefined bounds on the probabilities
of the two possible errors—accepting a “bad” model as
“good,” and vice versa. Wald proposed the sequential
probability ratio test (SPRT) and showed [16] that, given
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2. In our simulations, � � 0:014 for Pcf ¼ 0:01:



bounds on the errors of the first and second kind, it
minimizes the number of observations (time to decision).3

Wald’s SPRT test is a solution of a constrained optimization

problem. The user supplies the acceptable probabilities of

the errors of the first and the second kind, and the resulting

optimal test is a trade-off between the time to decision (or

cost of observations) and the errors committed.
However, when evaluating RANSAC, the situation is

different. First of all, a “good” model is always evaluated

for all data points (correspondences) since the number of

inliers is one of the outputs of the algorithms. Therefore, the

only error that can be committed is an early rejection of a

“good” model (error of the first kind). However, this only

means that more samples have to be drawn to achieve the

required confidence 1� �0 of finding the optimal solution.

Therefore, unlike in the classical setting, we are solving a

global optimization problem, minimizing a single real

number—the time to decision—since the consequence of

an error is also a loss of time.
The model evaluation step of the optimal R-RANSAC

proceeds as Wald’s SPRT with the probability � of rejecting

a “good” sample set to achieve maximum speed of the

whole RANSAC process. To understand the operation of R-

RANSAC with SPRT, some familiarity with Wald’s decision

theory is required. We therefore introduce its relevant parts.

Some of the results are presented in a form that is not fully

general but sufficient for the derivation of the R-RANSAC

with SPRT algorithm. Some of Wald’s terminology is

modified in order to make the exposition more accessible.
In the model evaluation step, our objective is to decide

between the hypothesis Hg that the model is “good,” and

the alternative hypothesis Hb that the model is “bad.” A

“good” model is computed from an all-inlier sample. The

Wald’s SPRT is based on the likelihood ratio [16]

�j ¼
Yj
r¼1

pðxrjHbÞ
pðxrjHgÞ

¼ �j�1 �
pðxjjHbÞ
pðxjjHgÞ

; ð5Þ

a ratio of two conditional probabilities of the observation xr
under the assumptions of Hg and Hb, respectively. In

RANSAC, xr is equal to 1 if the rth data point is consistent

with a model with parameters 	 and 0 otherwise. For

example, a correspondence is consistent with (that is,

supporting) an epipolar geometry represented by a funda-

mental matrix F if its Sampson’s error is smaller than some

predefined threshold [7]. The probability pð1jHgÞ that any

randomly chosen data point is consistent with a “good”

model is approximated by the fraction of inliers " among

the data points.4 The probability of a data point being

consistent with a “bad” model is modeled as a probability

of a random event with Bernoulli distribution with

parameter � : pð1jHbÞ ¼ �. The process of estimation of �

and " is discussed in Section 5.

Algorithm 3: The adapted SPRT.
Output: model accepted/rejected, number of tested data

points j, a fraction of data points consistent with the

model

Set j ¼ 1

1 Check whether jth data point is consistent with the

model

2 Compute the likelihood ratio �j (5)

3 If �j > A, decide the model is “bad” (model “rejected”),
else increment j

4 If j > N , where N is the number of correspondences,

decide model “accepted” else go to Step 1.

After each observation the standard Wald’s SPRT makes
one of three decisions: Accept a “good” model, reject a
“bad” model, or continue testing. Since in RANSAC, the total
number of inliers is needed to decide on termination,
nothing is gained by an early decision in favor of a “good”
model. Therefore, the option of an early acceptance of the
model has been removed in the Adapted SPRT (Algorithm
3). The full SPRT is described by Wald [16] and, in a more
accessible form, by Lee [8].

4.1 The Optimal Value of the Decision Threshold

The decision threshold A is the only parameter of the
Adapted SPRT. We show that it can be set to achieve
optimal performance with minimal average RANSAC

runtime given the probabilities � and ". We use the
following theorems (for proofs, see [16]).

Theorem 1. The probability � of rejecting a “good” model in
SPRT � � 1=A.

Proof. Wald’s theorem [16, p. 41] states � � ð1� �Þ=A,
where � stands for the probability that a “bad” model is
incorrectly accepted as “good.” In the adapted SPRT,
since the only decision of the test can be “reject,” � ¼ 0,
and thus, � � 1=A. tu

The approximation � � 1=A is close and is often used.

Theorem 2 (Wald’s lemma). The average number of observa-
tions (checked data points) carried out while testing a “bad”
model is C�1 logA, where

C ¼ pð0jHbÞ log
pð0jHbÞ
pð0jHgÞ

þ pð1jHbÞ log
pð1jHbÞ
pð1jHgÞ

: ð6Þ

Proof. According to [16, p. 53]

C ¼ IE log
pðxjHbÞ
pðxjHgÞ

� �
: ð7Þ

The value of x is from {0, 1}. The expectation IE is a sum
of two terms weighted by probability pðxjHbÞ. Equation
(6) follows. tu
In the particular case of RANSAC, pð1jHbÞ ¼ �,

pð0jHbÞ ¼ 1� �, pð0jHgÞ ¼ 1� ", and pð1jHgÞ ¼ ". Therefore,
the average number of verified correspondences per “bad”
model is

C�1 logA ¼ ð1� �Þ log
1� �
1� "þ � log

�

"

� ��1

logA: ð8Þ
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3. Precisely speaking, the SPRT is only approximately optimal. However,
the approximation has been shown by Wald to be so close to the optimum
that, for practical purposes, it is considered the optimal test.

4. The probability " would be exact if the data points were selected with
replacement. Since the objective of the verification is to count the size of the
support of the model, the correspondences are drawn without replacement.
However, the approximation is close.



The value of A influences the total runtime in two
opposing ways. The larger the value of A, the smaller the
probability of rejection of a “good” model. On the other
hand, the number of correspondences verified per model
increases with logA (8). We wish to set A to achieve the
minimal average time needed to find the solution.

The average time-to-solution in R-RANSAC is t ¼ �k�ts,
where �k is the average number of samples drawn until a
“good” model, and �ts is the average testing time per sample.
In the following, the time unit will be the time needed to
check one data point. The probability Pg of drawing a
“good” model is Pg ¼ "m, where m is the number of data
points in the RANSAC sample. The number of tested
samples before a “good” one is drawn and not rejected is
a random variable with geometric distribution and mean
�k ¼ 1=ðPgð1� �ÞÞ � 1=ðPgð1� 1=AÞÞ. The average time �ts of
processing a sample consists of two components: time tM
needed to instantiate a model hypotheses given a sample,5

and the average time of testing each hypothesis. Let mS be
the number of models that are verified per sample6 and
C�1 logA be the average number of tests in the SPRT
(Theorem 2). The average time to the solution expressed as
a function of A is

tðAÞ ¼ 1

Pgð1� 1=AÞ tM þmS
logA

C

� �
: ð9Þ

Formula (9) can be simplified to

tðAÞ ¼ K1 þK2 logA

1� 1=A
;

where K1 ¼ tM=Pg and K2 ¼ mS=ðPgCÞ. We are interested
in the optimal value of A,

A� ¼ arg min
A
tðAÞ:

The minimum is found by solving

dt

dA
¼ �K1 þK2 �K2AþK2 logA

ðA� 1Þ2
¼ 0:

After rearrangement, we have

A� ¼ K1

K2
þ 1þ logA� ¼ tMC

mS
þ 1þ logA�: ð10Þ

Equation (10) has two real solutions for positive K1=K2,
A�1 < 1 < A�2. Since � < ", the contribution to the likelihood
ratio (5) of a correspondence that is not consistent with the
model is greater than 1, therefore, the solution of interest is
A� > 1. This solution can be obtained as A� ¼ limn!1An,
where A0 ¼ K1=K2 þ 1 and Anþ1 ¼ K1=K2 þ 1þ logðAnÞ.
The series converges rapidly, typically within four itera-
tions.

4.2 Extension to MLE Framework

In RANSAC, we directly observe whether or not a data point
supports the model. In practice, an error function 
 is
evaluated, and data points with the error function under a

threshold are thought to support the model. In MLESAC [13],
[15], it is assumed that the error x ¼ 
ð	;xÞ of a data point x
with respect to a model with parameters 	 is distributed as a
mixture of Gaussian error distribution for inliers and uniform
error distribution for outliers for a “good” model and as a
uniform distribution for a “bad” model:

pðxjHgÞ ¼ "
1

�
ffiffiffiffiffiffi
2�
p

e
x2

2�2

 !
þ ð1� "Þ 1

Z
;

pðxjHbÞ ¼
1

Z

:

Then, the likelihood ratio �j is expressed as

�j ¼ �j�1 Z"
1

�
ffiffiffiffiffiffi
2�
p e

x2
j

2�2 þ ð1� "Þ
 !�1

; ð11Þ

where xj is an error of jth data point.
The term C defining the average number C�1 logA of

observations carried out while testing a “bad” model is
derived, following (7), as follows:

C ¼
Z Z

0

pðxjHbÞ log
pðxjHbÞ
pðxjHgÞ

dx;

and finally

C ¼ 1

Z

Z Z

0

� log Z"
1

�
ffiffiffiffiffiffi
2�
p e

x2

2�2 þ ð1� "Þ
� �

dx: ð12Þ

The integral in (12) has to be either approximated or
evaluated numerically. The rest of the derivation is identical
with RANSAC.

5 R-RANSAC WITH SPRT

The R-RANSAC with SPRT algorithm is outlined in Algo-
rithm 4. To fully the specify details of the algorithm, two
issues have to be addressed. First, the estimation of
parameters � and "; second, the termination criterion
guaranteeing 1� �0 confidence in the solution has to be
derived.

Algorithm 4: The structure of R-RANSAC with SPRT.

Initialize "0, �0, calculate A0, and set i ¼ 0.

Repeat until the probability � (15) of finding a model with

support larger than "̂ falls under a user defined value �0:

1. Hypothesis generation

	 Select a random sample of minimum size m from the

set of data points.

	 Estimate model parameters 	 fitting the sample.

2. Verification

Execute the SPRT (Algorithm 3) and update the

estimates if

a Model rejected: re-estimate �. If the estimate �̂ differs

from �i by more than 5 percent design ðiþ 1Þth test
ð"iþ1 ¼ "i; �iþ1 ¼ �̂; i ¼ iþ 1Þ

b Model accepted and the largest support so far:

design

ðiþ 1Þth test ð"iþ1 ¼ "̂; �iþ1 ¼ �̂; i ¼ iþ 1Þ. Store the

current model parameters 	.
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5. Computing model parameters from a sample takes the same time as
verification of tM data points.

6. In the 7-point algorithm for epipolar geometry estimation, 1 to 3
models have to be verified.



Algorithm 4 is similar to the standard RANSAC algorithm,
with the modification that with standard RANSAC, all data
points are checked in the model verification step, whereas in
R-RANSAC, data points are evaluated sequentially so that
hypotheses with low support can be rejected before all points
are considered. After a hypothesis is rejected, � is reestimated
(Algorithm 4, Step 2a). Accepted hypotheses are candidates
for the RANSAC outcome (see below). The overhead of the
evaluation of the likelihood ratio�j derived in (5) is negligible
compared to the evaluation of the model versus the data point
error function.

The optimal test derived in Section 4 requires the
knowledge of two parameters, " and �. These probabilities
are different for different data sets, and we assume they are
unknown. The proposed algorithm uses values of " and �

that are estimated during the sampling process, and the test
is adjusted to reflect the current estimates.

If the probabilities " and � are available a priori in some
standard setting where the algorithm is run repeatedly, they
can be used in the initialization of the algorithm.

Estimation of �. Since almost all tested models are
“bad,”7 the probability � can be estimated as the average
fraction of consistent data points in rejected models. When
current estimate � differs from the estimate used to design
the SPRT (by more than 5 percent, for example), new ðiþ
1Þth test is designed. The initial estimate �0 is obtained by
geometric considerations, that is, as a fraction of the area
that supports a hypothesized model (a strip around an
epipolar line in case of epipolar geometry) to the area of
possible appearance of outlier data (the area of the search
window). Alternatively, a few models can be evaluated
without applying SPRT in order to obtain an initial estimate
of �.

Estimation of ". In general, it is not possible to obtain an
unbiased estimate of ", since this would require the
knowledge of the solution to the optimization problem we
are solving. The tightest lower bound on " is provided by
the size of the largest support so far. It was shown in [9] that
a sample with the largest support so far appears log k times,
where k is the number of samples drawn. When such a
sample (with support of size Iiþ1) appears, a new test is
designed for "iþ1 ¼ Iiþ1=N . Throughout the course of the
algorithm, a series of different tests with

"0 < . . . < "i < . . . < "

are performed. The initial value of "0 can be derived from
the maximum time the user is willing to wait for the
algorithm to terminate.

The termination criterion. The algorithm is terminated
when the probability � of missing a set of inliers larger than
the largest support found so far falls under a predefined
threshold �0. In standard RANSAC, where the probability of
rejection of a “good” model is zero, the probability is equal
to

�R ¼ 1� Pg
� �k

:

In R-RANSAC, the probability of hypothesizing and not

rejecting a “good” model is Pgð1� �Þ, and the probability �

becomes as

� ¼ 1� Pgð1� �Þ
� �k

:

In R-RANSAC with SPRT, the SPRT is adjusted to the current

estimates of �i and "i, so � is no more constant. Theorem 1,

which gives the probability � of rejecting a “good” model

for the test designed for optimal value of ", does not cover this

situation. The following theorem is needed:

Theorem 3. The probability of rejecting a “good” model with

fraction of inliers " in a SPRT designed for "i and �i with

threshold Ai is

�i ¼ A�hii ; ð13Þ

where hi is given by

"
�i
"i

� �hi
þð1� "Þ 1� �i

1� "i

� �hi
¼ 1: ð14Þ

Proof. For proof, see [16, p. 50]. tu

Equation (14) has two solutions, one being hi ¼ 0. Since

"i < ", hi > 1, holds for the other solution. This solution is

found numerically.
For each of l tests, the following values are stored: the

expected fraction of inliers "i, the SPRT threshold Ai, the

number of samples ki processed by the test, and hi
satisfying (14). Then, the probability � is

�ðlÞ ¼
Yl
i¼0

1� Pgð1�A�hii Þ
� �ki

: ð15Þ

The number kl of samples that are needed to be drawn for

the current (that is, lth) SPRT follows from (15) as

kl ¼
log �0 � log �ðl� 1Þð Þ

logð1� PgA�1
l Þ

: ð16Þ

Implementation note: since � > �R, (16) does not have to

be evaluated before �R < �0 is satisfied.

6 EXPERIMENTS

Several experiments were performed comparing the pro-

posed R-RANSAC with SPRT to three other RANSAC

algorithms:

1. standard RANSAC that verifies all correspondences
for every model,

2. R-RANSAC with the Td;d test [9] that rejects the model
after the first checked correspondence is inconsistent
with it ðd ¼ 1Þ,

3. R-RANSAC with the a priori SPRT, that is, the R-

RANSAC with SPRT designed for the true values of "
and � (labeled SPRT�), and

4. RANSAC with the bail-out test proposed by Capel
[2].

The results achieved with an a priori SPRT show the best

achievable performance of RANSAC with a randomized
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7. RANSAC verifies, on the average, � logð�0Þ “good” models. For the
typical �0 ¼ 0:05, a “good” model is hypothesized three times prior to the
termination of the algorithm.



verification step for a problem characterized by a given �

and ".
For epipolar geometry estimation, the time needed to

compute model parameters tM ¼ 200 was set within the
range observed in a large number of experiments (that is, in
our implementation, checking whether a correspondence is
consistent with a fundamental matrix is 200 times faster
than estimating the matrix). The exact value depends on
many factors including the CPU speed and type. The
constant mS ¼ 2:38 was set to the experimentally observed
average of the number of models generated by the 7-point
algorithm per sample [5].8 The initial values of � and " were
set to �0 ¼ 0:05 and " ¼ 0:2, respectively.

For homography estimation, the values were set as
follows: tM ¼ 200, mS ¼ 1, �0 ¼ 0:01, and "0 ¼ 0:1.

6.1 Synthetic Data

An experiment with a fixed fraction of inliers " ¼ 30
percent, and a varying number N of correspondences was
undertaken. The average number of samples drawn (Fig. 2),
correspondences verified (Fig. 3), and the average runtime
(Fig. 1) was recorded over 50 executions. The following
observations can be made: 1) The performance of RANSAC

with SPRT is close to optimal (see Fig. 1), outperforming the
Bail-out test. 2) For the values of " and N in this test, neither
standard RANSAC nor the Td;d test are competitive (see
Figs. 2 and 3).

6.2 Real Data

The experimental image pairs are displayed in Fig. 4. The

number N of correspondences and the true values of " and �

estimated by evaluating 100,000 verifications of random

models are summarized in Table 1. The results of compared

algorithms are shown in Table 2.
As a consequence of the randomization of model

verification that erroneously rejects some “good” models,

on the average, the randomized algorithms must draw a

larger number of samples than standard RANSAC. This is

confirmed in the first column in Table 2. This small increase

is more than compensated by the reduction in the number

of data points (correspondences) checked on the average

per model. The runtime of RANSAC is reduced by factors

ranging between 1.9 and 9.5. In all experiments, the SPRT

outperforms the Td;d test. In all but one of the tests, SPRT

outperformed the Bail-out test; the difference was more

prominent for demanding problems with lower fraction of

inliers. The one scene, CORRIDOR, where the Bail-out test

outperformed SPRT is the simplest one, where only about

100 models had to be tested. The a priori setting of the Bail-

out test was suitable (by coincidence) for this problem.

SPRT estimates " and � on the fly starting from conservative

estimates, initially verifying needlessly many data points.

Note that the time needed to solve the problem was

negligible for all algorithms, ranging between 0.1 and 0.2

milliseconds.9

CHUM AND MATAS: OPTIMAL RANDOMIZED RANSAC 7

Fig. 1. Dependence of the runtime on the number N of correspondences for the fraction of inliers " ¼ 0:3. All three rows show differently scaled

results of the same experiment.

8. It is known that the 7-point algorithm produces 1 to 3 potential
models. In experiments, the average number of models per sample equal to
2.38 has been observed consistently in a number of scenes. No theoretical
justification on the stability of this average is known to the authors. 9. At this speed, the timer precision might have influenced the result.



7 NOTES AND DISCUSSION

The Bail-out test. The optimal R-RANSAC strategy, based
on SPRT [16] derived in this paper, attempts to find the
threshold for hypothesis rejection such that the overall
runtime is minimized. Note that the bail-out test [2] can be
thought of as a special case, when the threshold (the
probability that the score of current model exceeds the best
score so far) is fixed at 1 percent.

Number of samples. Table 1 shows the predicted
number of samples for standard RANSAC, according to

k� ¼ log �0

logð1� PgÞ
;

for �0 ¼ 0:05. Note that the predicted number of samples is
two to three times lower than the actual number of samples
drawn. This is due to an error on inlier measurements,
which causes some all-inlier samples not to be consistent
with all inliers. The phenomenon is in agreement with

previous observations [4], [13]. Since the discrepancy is of a
multiplicative character in the number of samples and thus
the runtime, all parameters and thresholds derived to
minimize the runtime are valid. Note that the results of the
synthetic experiments are exact, since no inlier noise was
added.

Epipolar geometry for narrow baseline stereo. For
narrow baseline stereo matching, the tentative correspon-
dences are selected only from a small disparity window.
Therefore, even a mismatch is never too far from the correct
correspondence. When an EG is estimated from a “bad”
sample of 7 such correspondences, one of the up to three
EGs is likely to be close to the correct EG. Hence, such a
model will have a different distribution of errors, leading to
imprecise estimates of �. However, the problem is specific to
a narrow baseline stereo and epipolar geometry estimation.
This is beyond the scope of this paper, covering general use
of Wald’s theory in randomizing the verification step of
RANSAC.

8 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 30, NO. 8, AUGUST 2008

Fig. 3. Dependence of the number of verified data points on the number N of correspondences for the fraction of inliers " ¼ 0:3.

Fig. 2. Dependence of the number of samples on the number N of correspondences for the fraction of inliers " ¼ 0:3. Both rows show differently

scaled results of the same experiment.



Predicted number of verifications per model. The

average number of models verified per “bad” model is

given by (8). However, some of the samples drawn in the

course of RANSAC are “good.” On the average, every 1=Pg

sample is “good.” Out of good samples, one of the mS

models is “good.” Therefore, the predicted number of

verifications per model is

vpn ¼ ð1� PgÞvb þ Pg
N þ ðmS � 1Þvb

mS

� �
; ð17Þ

where vb ¼ C�1 logA from (8). The prediction therefore
holds tight for difficult scenarios with low fractions of
inliers, see Table 3 for an example. There, the vast majority
of verified models are indeed “bad,” and the numbers are
statistically significant. The number of verifications per
model is underestimated for narrow baseline experiments,
since many “bad” models are considered further in the
verification, as discussed above.

8 CONCLUSIONS

An optimal sequential strategy for randomized evaluation
of model quality in RANSAC was derived. A method for the
estimation of two probabilities characterizing the problem
and critically influencing the design of the optimal strategy
was proposed and experimentally verified. A termination
criterion derived in the paper guarantees that the solution
found is correct with confidence 1� �0, as in standard
RANSAC.

The properties of R-RANSAC with SPRT were tested on a
diverse set of standard data. The test problems included
homography estimation and epipolar geometry estimation
in both wide and narrow baseline setting.

R-RANSAC with SPRT was 2 to 9 times faster than
standard RANSAC and up to 3.5 times faster than R-RANSAC

Fig. 4. The experimental image pairs with (a) inliers and (b) outliers superimposed. Two wide-baseline epipolar geometry experiments ROTUNDA and

the GREAT WALL; two narrow-baseline EG experiments LEUVEN and CORRIDOR; two homography experiments GRAFITTI and LEUVEN H.

TABLE 1
Number of Correspondences (Corr), Fraction of Inliers ð"Þ, the

Probability of a Correspondence Being Consistent with a
Bad Model ð�Þ, and Predicted Number of

Samples k� in Standard RANSAC



with Td;d test. The Bail-out test had a similar performance on

simple problems (where the solution of the optimization

problem was found almost immediately by all algorithms)

and was outperformed on more challenging tasks. Experi-

ments on a large set of synthetic problems confirms the

quasi-optimality of R-RANSAC with SPRT.
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