
Planar Affine Rectification from Change of Scale
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Abstract. A method for affine rectification of a plane exploiting knowledge of
relative scale changes is presented. The rectifying transformation is fully speci-
fied by the relative scale change at three non-collinear points or by two pairs of
points where the relative scale change is known; the relative scale change between
the pairs is not required. The method also allows homography estimation between
two views of a planar scene from three point-with-scale correspondences.
The proposed method is simple to implement and without parameters; linear and
thus supporting (algebraic) least squares solutions; and general, without restric-
tions on either the shape of the corresponding features or their mutual position.
The wide applicability of the method is demonstrated on text rectification, detec-
tion of repetitive patterns, texture normalization and estimation of homography
from three point-with-scale correspondences.

1 Introduction

The problem1 of affine rectification of a plane, i.e. the problem of transforming an im-
age by a homography so that the vanishing line of the plane becomes the line at infinity,
arises in many applications, e.g. in document processing [1, 2], detection of repetitive
structures [3] and texture analysis [4, 5]. The plane of interest appears in the rectified
images as if viewed by an affine camera, i.e. projected by a set of parallel rays and
scaled. The restoration of affine properties like parallelism and global scale simplifies
subsequent application-dependent processing steps like geometric normalization, de-
tection and recognition.

In the paper, a general yet simple method for affine rectification of a plane is intro-
duced. The algorithm exploits knowledge of relative scale changes in the local neigh-
bourhood of image points lying in the plane. The rectifying transformation is fully spec-
ified by the relative scale change at three non-collinear points. Another minimal case
covered by the method applies in the situation were for two pairs of points the relative
scale change is known; the relative scale change between the pairs is not required.

A situation in which the relative scale change is known at different points arises
often in practice. Consider, e.g. the problem of affine rectification of a repeated pattern
on a planar surface, say a facade, Fig. 1. In a perspective image of the facade, the
features detected on the windows in general vary in size (area). In reality, it is common
that (at least some of) the windows are of the same size. The task addressed in the paper
is to find a planar homography H that transforms the image of the facade so that all

1 The authors were supported by GAČR project 102/09/P423, by EC project ICT-215078
DIPLECS and by ČVUT SGS10/069/OHK3/1T/13.
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Fig. 1. Affine rectification. Original image (a) - the area of the triangular patches differs from 1991
to 4307 pixels due to the perspective projection. Rectified image (b) - the areas are approximately
the same, as in reality. Parallel lines on the facade are not parallel in the original image (c), and
are parallel after the normalization (d). The cut-outs (c) and (d) are parallelograms defined by two
red line segments in (a).

the window features cover the same area. We show in the experimental section that the
method is applicable in many situations.

The proposed method has the following advantages: (generality) no assumptions are
made about either the shape of the features or their mutual position; features need not lie
on a regular grid nor on lines and may be arbitrarily rotated; (stability) the rectification is
computed from ratios of areas, a very stable property insensitive to many image degra-
dations such as discretization; (simplicity) the rectification algorithm is simple, easy to
implement and without parameters; (linearity) the constraints on the scale change are
expressed as linear constraints on the entries of the homography matrix H that represents
the transformation. Linear constraints are very convenient as they can be used with min-
imal sets (in RANSAC-like [6] robust estimators) as well as in (algebraic) least squares
solutions from all available data.

The derivation of the algorithm assumes that the features are sufficiently small so
that their scale change reasonably approximates the scale change (of an infinitesimal
patch) at corresponding points. Such an assumption is made by wide-baseline matching
approaches using affine covariant feature points and/or affine invariant feature descrip-
tors. We show experimentally in Sec. 3 that the assumption holds in practice.

Previous work. Affine rectification algorithms proposed in the literature differ by the
assumptions about the structures present in the image that are exploited in the process.
The most straightforward approaches detect two distinct vanishing points [7].
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The problem of vanishing line detection has been addressed for elements repeated
by translation on a plane. The geometric relation of the elements after projective trans-
formation is called elation [7]. A comprehensive study of vanishing line (and points)
detection based on the elation assumption is given in [3]. Another approach exploiting
elations for detection of vanishing line in a projective image of a texture was proposed
in [8]. Other approaches, specially in the text analysis, assume, that parallel lines with
equal spacing can be detected in the image. The normalization (vanishing line) is then
estimated from the intersection of the parallel lines and a cross-ratio of collinear set of
points on those lines [1].

Publications on affine rectification have appeared in the field of shape-from-texture
[9]. In general, assuming homogeneity of the texture, more complex structure than ori-
entation of a plane can be estimated [10]. However, a fairly complex optimization ap-
proach is necessary in this case. There are many approaches to vanishing point and/or
line detection from the texture. Voting schemes based on dominant direction of the tex-
ture can be used to determine a vanishing point [11]. In [12], another voting scheme
based on distortion of the power spectrum under projective transformation is used de-
tect the vanishing line.

Similar idea to ours has appeared in Ohta’s 1981 paper [13] on shape from texture.
Despite the different derivations the results are closely related. In fact the formulation in
[13] is a special case of ours. Our formulation allows to extend the applicability of the
idea beyond a planar rectification, for example to multi-view geometry. Our derivation
yields a single linear constraint per feature while Ohta’s approach produces one linear
constraint per a pair of textured regions. Finally, we show significantly higher applica-
bility than [13] or its extension [14], for example the features of interest (or texture)
does not have to cover the whole image.

The rest of the paper is organized as follows. First, the method is derived in sec-
tions 2 and 2.1. Extension to multiple independent feature sets is introduced in sec-
tion 2.2. Experiments and applications of the proposed method to various tasks are
presented in section 3: simple examples of the minimal cases 3.1, text rectification 3.2,
non-linear repeated structures 3.3, segmentation of multiple planes with repeated pat-
tern 3.4, texture rectification 3.5, and experiments on synthetic data 3.6 and 3.7. The
applicability of the approach to image to image homography estimation from point-
with-scale correspondences is discussed in section 3.8. Conclusions are drawn in sec-
tion 4. A proof of degenerate case of collinear points can be found in appendix A.

2 The Method

First, the concept of local scale change under planar homography is introduced and
its properties are discussed. Next, a decomposition of a homography simplifying the
algebra is presented. Finally, it is shown that constraints on the local scale change under
planar homography (i.e. perspective transformation of a plane) lead to linear constraints
on the entries of the homography matrix.

Homography is a mapping from a projective plane P 2 to P 2 and it is commonly
represented by a (homogeneous) matrix H, or equivalently, by inhomogeneous pair of
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functions (hx, hy) [7]. In this section, we restrict the homographies to be in the follow-
ing form

H =

h1 h2 h3
h4 h5 h6
h7 h8 1

 or
hx(x, y) =

h1x+ h2y + h3
h7x+ h8y + 1

,

hy(x, y) =
h4x+ h5y + h6
h7x+ h8y + 1

.
(1)

The sufficiency of the H3,3 = 1 parametrization is discussed and justified in section 2.1.
The first order Taylor expansion at point (x, y) and the Jacobian JH locally approximat-
ing the homography

h(x+ δx, y + δy) ≈
(
hx(x, y)
hy(x, y)

)
+ JH(x, y)

(
δx
δy

)
(2)

is an affine transformation for which the concept of scale change is well defined. The
local scale change at point (x, y) under the perspective transformation is thus defined
as the scale change of the first order, i.e. affine, approximation at point (x, y)

s(H, x, y) = det(JH(x, y)). (3)

Any homography H in the form of (1) can be decomposed into a product AĤ of an
affine transformation A and a homography Ĥ as followsh1 h2 h3

h4 h5 h6
h7 h8 1

 =

h1 − h3h7 h2 − h3h8 h3
h4 − h6h7 h5 − h6h8 h6

0 0 1

 1 0 0
0 1 0
h7 h8 1

 (4)

It can be shown that the scale change of homography H expressed in terms of A and Ĥ is

s(AĤ, x, y) = det(A)s(Ĥ, x, y).

The advantage of the decomposition (4) is that the influence of parameters h1 . . . h6 on
the local scale change is reduced to a single global (i.e. position-independent) parameter
det A in the expression

s(H, x, y) = det(A)s(Ĥ, x, y) = det(A) det(JĤ(x, y)). (5)

The determinant of the Jacobian of the matrix Ĥ at (x, y) is

det(JĤ(x, y)) = det

(
(h7x+ h8y + 1)−2

(
h8y + 1 −xh8
−yh7 h7x+ 1

))
= (h7x+h8y+1)−3.

Setting det(A) = α3 and substituting into equation (5), we get

s(H, x, y) = α3(h7x+ h8y + 1)−3. (6)

After re-arranging the equation, a constraint linear in h7, h8, and α is obtained:(
x y −s(H, x, y)−1/3

) (
h7 h8 α

)>
= −1. (7)
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(a) (b) (c)

Fig. 2. Star Wars credits: (a) original image, (b) estimated (up to an affine transformation) nor-
malized image, (c) original image with the estimated vanishing line (red) and manually drawn
the parallel margin lines (yellow).

Three point locations (xi, yi) and the corresponding local scale changes s(H, xi, yi)
are required to estimate the homography Ĥ. Any composition of affine transformation
A, det(A) = α3 and the homography Ĥ, i.e. H = AĤ will satisfy the constraints on the
local scale change. The vanishing line l in the source image is the pre-image of the line
at infinity (0 0 1)>

l = H>(0 0 1)> = Ĥ>A>(0 0 1)> = Ĥ>(0 0 1)> = (h7 h8 1)
>. (8)

If p, p > 3, points with the local scale change are available, the least squares method
is applicable. The data matrix Z ∈ Rp×3 is composed of rows

Z =

(
xi yi −s(H, xi, yi)−1/3)
...

...
...

)
, (9)

one per each point (xi, yi). The solution is then obtained as

(h7 h8 α)> = −Z†11×p, (10)

where Z† is pseudo-inverse of Z and 11×p is a column vector of p ones.
In many applications, the scale change is not interesting or not known and only

relative scale changes at different points are known. Here, the estimated parameter α
can be simply ignored. This is e.g. the case for the facade example Fig. 1, where the
windows are assumed to have the same, but unknown, real size. In such cases, the
s(H, x, y) is multiplied by an unknown scalar.

2.1 The choice of parametrization

The chosen parametrization of matrix H in section 2 does not cover all possible homo-
graphies. Namely, it does not include the set of homographiesH0 with H(3, 3) = 0, i.e.
homographies that map the origin of the image coordinate system (0 0 1)> to a point
at infinity. Hence, if it is possible to choose the origin so that it is guaranteed that the
required solution does not map the origin to infinity, the H(3, 3) = 1 parametrization is
correct.

A frequent choice of the origin of the image coordinate system – the (top left) corner
of the image – does not always guarantee the above described property. In particular, in
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Fig. 3. An example of multiple features on an element of repeated pattern.

Fig. 2, the top left corner lies on the vanishing line mapped to a line at infinity by the
affine rectifying homography.

The origin must not lie on the vanishing line, as the estimated transformation sends
the vanishing line to infinity. Since the algorithm is used for affine rectification which
is equivalent to detection of the vanishing line, based on scale change of measured
features, good candidates for the origin are the measured points. This stems from the
fact, that the point and its relative finite scale change could not have been measured at
the line at infinity.

More generally, since the traditional (directional) camera sees only points in front of
the camera [15], the vanishing line cannot ‘cut through’ the observed points. Therefore,
any point inside the convex hull of the observed points will serve well as the origin
of the coordinate system. The centre of gravity of the observed points was used in our
implementation.

Note on the data normalization. In the least squares problem, some algebraic error
(with no direct geometric meaning) is minimized. It has been shown that in such prob-
lems, it is advantageous to normalize the data points so that the elements of the mea-
surement matrix Z have similar magnitudes [16]. Choosing the origin at the centroid of
the data, re-scaling the data and suitable selection of the relative scale change prior to
evaluation eqn. (10) can be used to stabilize the least squares solution.

2.2 Extension to multiple independent sets

As mentioned above, often only the relative scale change between a set of points is
known. This section addresses the situation where multiple such sets are available. The
relative scale change is known within each set, the relations between different sets is
unknown.

As an example, let us have a look at the repetitive structures again. In general, the
features detected in the image do not correspond one to one to the repeated elements.
Typically, each element is covered by a number of features, as in Fig. 3. This number is
also varying, as the repeatability of the features (as well as the stability of the descrip-
tors) is not perfect. For each individual set of matching features, one can hypothesize
that these are of the same size in reality, since else it is unlikely for the appearance
of two patches to match. However, the area ratio of different features is not known in
general.

For the sake of clarity, the derivation is demonstrated for two sets only. The exten-
sion to a general number of such sets is straightforward. There are two unknowns h7
and h8 shared between all the sets. Each set introduces an additional variable αk. The
variable represents the relative scale change of the whole set with respect to other sets.
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(a) (b) (c) (d)

Fig. 4. Toy examples for the minimal cases of three points (a-b) and two plus two points (c-d).

The equations are then arranged in the same way as in equation (7):(
xi yi −s(H, xi, yi)−1/3 0
xj yj 0 −s(H, xj , yj)−1/3

)(
h7 h8 α1 α2

)>
=

(
−1
−1

)
. (11)

Each feature in a set adds one constraint, at least two features have to be available for
each set to add more constraints than unknowns. In general, if there are p points in q
sets, there are 2 + q unknowns and p constraints. For two sets, two points per set are
sufficient to estimate the rectifying transformation. For an example, see section 3.1.

3 Experiments

In this section a variety of experiments with different settings are presented.

3.1 Toy example

Two images of coplanar patches – Fig. 4(a) and (c) – are used to demonstrate the min-
imal cases described in sections 2 and 2.2. Very simple colour segmentation was used
to locate the pink and green patches. The patches were represented by their location
(the centre of gravity) and the scale (the number of pixels occupied by the patches). To
simulate the two cases of minimal sets, the experiments was designed as follows: 1. the
pink patches are of the same size, 2. the green patches are of the same size, and 3. the
relative sizes of the pink and green patches are unknown.

The rectified images – Fig. 4(b) and (d) – show that the part of the scene that has
been reduced by the projective transformation (further away from the camera) is ex-
panded by the normalization. Also note that after the normalization, the parallel lines
on the sheet of paper are again (very close to) parallel.

3.2 Text Rectification

In text localization and recognition in photographs taken in unconstrained conditions,
geometric rectification is performed before classification of characters. The algorithm
proposed in the paper is significantly simpler and more general than the approaches
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Fig. 5. Text rectification. (a) original image, (b) manual rectification using an affine transforma-
tion, (c) automatic affine rectification (d) manual rectification using an affine transformation after
removing the perspectivity.

commonly used in document processing for affine rectification, e.g. [2] who requires a
reliable procedure for fitting a baseline and topline of the text.

Applicability of the proposed procedure to the text rectification problem is demon-
strated in Fig. 5. The top-left image (b) shows that affine normalization, is insufficient,
non-parallel lines in the original image (a) say non-parallel. Fig. 5(c) shows the results
of the proposed algorithm. The correspondences necessary for estimation of the rela-
tive scale are obtained fully automatically on identical characters by the MSER+LAF
method [17]. Outliers and out-of-plane pairs are removed by RANSAC. The rectification
based on tens of scale ratios is quite precise, see Fig. 5(d) which is an affine transfor-
mation of the rectified of image (c). The final affine rectification was done manually as
it is not the topic of the paper - the proposed algorithm has no concept of a line of text
or left margin; an example of an automatic method is in [2].

3.3 Darts

The ”Darts” image, Fig. 6, is an example where direct detection of vanishing points
and hence the vanishing line is difficult. The dominant linear features on the board that
intersect in the bull’s eye have different orientations and intersect the vanishing line in
different ideal points.

The proposed method estimates the rectifying transformation from multiple sets of
corresponding features, Fig. 6(e). Notice that the correspondences are between features
with different orientations and not lying on straight lines. After (manually) mapping the
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(e)

Fig. 6. Darts: (a) the original image; (b) automatic rectification; (c) manual rectification to a circle
(dashed, centre labelled with ’+’) by an affine transformation from the original image, (d) the
rectified image; (e) some of the matching feature groups superimposed.

the ellipse corresponding to the inner rim of the double scoring area, a fronto-parallel
view of the board is obtained. The centre of the dotted yellow circle is very close to the
centre of the bulls eye.

A direct affine mapping of ellipse corresponding to the inner rim in (a) to a circle
results in image (c), but this view does not correspond to a fronto-parallel view of the
board.

3.4 Segmentation of multiple planes with repeated pattern

The proposed method is not restricted to a single planar rectification. With RANSAC, a
robust estimator, it is possible to separate features on a single plane from outliers. In
the presence of multiple models (in our case multiple planes), consecutive execution
of RANSAC with removal of features consistent with detected model [18] provides an
efficient strategy.

In the simplest case, the two (or multiple) planes would not share features (differ-
ent buildings, etc.). The example in Fig. 7 is more challenging, it shows that even if
the planes share a common repetitive pattern and therefore the MSER+LAF method
establishes correspondences between the two planes, the geometric constraints on the
relative scale change are sufficiently discriminative to segment the planes.

3.5 Textures

The proposed method is also applicable to irregular statistical textures. In Fig. 8, an
example of affine texture rectification is shown. For statistical textures, the MSER and
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Fig. 7. Two planar surfaces with a repetitive pattern segmented by RANSAC. Left: one group of
matching features, inliers to one model in red, the other in green, outliers to both models in
yellow. Right: the convex hull of consistent features.

Fig. 8. Texture rectification: the original image (left), affine rectification (middle), and the recti-
fied texture (right).

LAF method is not suitable since it requires that corresponding regions are geometri-
cally close to identical. In the example, an affine covariant elliptical region detector [19]
together with the SIFT descriptor [20] was used.

3.6 Scale change from local patches

One of the inputs of the proposed method is a scale change of an infinitesimal patch.
However, it is typically only possible to measure the scale (change) at image patches
that are of area of tens of pixels. In the first experiment, we measure how the estimate
of the scale change affects the results.

First, A pattern of 5 × 5 local affine patches is generated. It is transformed by a
homography with varying values of h7 and h8. The pattern is then resized and translated
to fit a 800 × 600 image. Examples of four patterns are shown in Fig. 9. All situations
in the experiment from the ‘convex hull’ of these four examples.

Each synthetic image was processed as follows. Each local affine patch was repre-
sented by the centre of gravity of the triangle and by the scale (area) of the triangle.
A normalizing homography that transforms all patches to equal scale was estimated
using the proposed method. In an ideal case, when the infinitesimal scale change is esti-
mated exactly, all transformed patches would have exactly the same scale. The ratio of
maximal resulting scale to the minimal resulting scale was recorded for each parameter
setting. The results are visualized in Fig. 10.
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Fig. 9. Four examples of different levels of perspective deformations used in the synthetic exper-
iments. All images are 800× 600 pixels.
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Fig. 10. Scale error after affine rectification. Ratio of the largest and the smallest feature after
rectification to equal size.

It can be seen that even for extreme perspective deformations, the local scale is
estimates sufficiently precisely and the ratio of areas of the largest and the smallest nor-
malized patches is close to one. If necessary, the procedure can be iterated to eliminate
the effect of the inaccurate estimation of the scale change. In the above experiment,
after first iteration, the scale ratio of the areas of the largest to the smallest normalized
patches was one up to numerical precision.

3.7 Sensitivity to noise

This experiment also uses the settings from Fig. 9. Here, the transformed patches (the
coordinates of the triangle corner points) were corrupted by additive Gaussian noise
with σ = 1.5 pixels. Robust rectifying homography estimation via RANSAC was applied
and three quantities were measured. First, how well the estimated homography rectifies
the noise-less patches. The number of correctly rectified noise-less patches (the scale
change error below 1.1) is shown in Fig. 11 (a). Second, the number of RANSAC inliers
is shown in Fig. 11 (b). The number of inliers is well correlated with the number of cor-
rectly rectified noiseless patches. Third, the average scale error on all noiseless patches
(not only inliers) is depicted in Fig. 11 (c). All plots are averages over 50 executions of
RANSAC.
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Fig. 11. Affine rectification estimated from regions corrupted by noise. Each plot shows 225
different settings of the parameters projective deformation h7 and h8: (a) noiseless features with
scale error below 1.1, (b) number of RANSAC inliers, (c) average scale error on noiseless features;
results averaged over 50 executions.

3.8 Image to image homography

Another straightforward application of the proposed method is the estimation of image
to image planar homography form scale-covariant features, such as the DoG [20]. Only
three correspondences are required to estimate the full projective homography. First,
the projective part Ĥ is estimated from the scale change between the tree corresponding
features. The affine part A is then given by the coordinates of the corresponding features
in the two images. Sampling three instead of four points in RANSAC speeds up the robust
estimation process, if scale information is available which is the case for scale and affine
covariant features.

Furthermore, one non-linear constraint is available. It is not used in the estimation
and can be used to verify that a homography matching the three point-with-scale cor-
respondences induces the correct scale change. This constraint is the scale of the affine
transformation A. The scale of the affine part, given by det(A), is obtained during the
estimation of the projective part as α3 in eqn. (7). Using the constraint in RANSAC, a
number of contaminated samples can be rejected without the necessity of calculating
consensus set size.

Images used in the experiment are a subset of a standard dataset [19], see Fig. 12.
A combination of DoG features with the SIFT descriptor [20] was used, followed by a
RANSAC with a local optimization step [21]. The comparison of the number of RANSAC
samples in the homography estimation is shown in Table 1; results were averaged over
50 executions. The results show that using three point-with-scale correspondences al-
lows to estimate the homography in significantly lower number of samples. If the scale
consistency check is applied (the threshold was set to 1.1 in the experiments), the con-
sensus is computed for only a small fraction of the samples – the last column of Ta-
ble 1. On the other hand, the three point-with-scale samples provide a little less stable
performance (slightly lower average of estimated inlier ratios) than four point corre-
spondences.

4 Conclusions

A simple yet generally applicable method for affine rectification of a plane exploiting
knowledge of relative scale changes was presented. The method also allows estimat-
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(1) (2) (3) (4)

Fig. 12. Graffiti images.

image pair tentative % 4-inliers % 3-inliers 4-samples 3-samples 3-valid
1–2 877 61.09 61.13 31.4 18.3 6.3
1–3 694 33.81 32.55 356.7 151.3 19.8
1–4 493 12.48 10.99 20861.0 4207.8 148.9
2–3 988 52.98 52.42 57.0 30.5 8.8
2–4 732 30.17 28.57 565.0 209.9 22.2
3–4 1043 61.74 61.27 30.1 18.2 5.2

Table 1. Comparison of the image to image homography estimation from samples of four point
correspondences and three point-with-scale correspondences. The number of tentative corre-
spondences (‘tentative’), percentage of inliers detected by the methods (‘% 4-inliers’ and ‘%
3-inliers’), the number of samples required in RANSAC (‘4-samples’ and ‘3-samples’), and the
number of scale consistent samples in the point-with-scale method (‘3-valid’). Results averaged
over 50 executions.

ing the homography between two views of a planar scene from three point-with-scale
correspondences. A significant speed-up was achieved w.r.t. the standard four point pro-
cedure.

The utility of the method was demonstrated on text rectification, detection of repet-
itive patterns, texture normalization and estimation of homography from three points-
with-scale correspondences.
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A Degenerate case

Assume three collinear points (x, y), (x+αdx, x+αdy), and (x+ βdx, y+ βdy). Let
the h7 and h8 be the parameters of the decomposition of the normalizing homography
by eqn. 1. Then, the 3× 3 data matrix Z from eqn. (9) has the following form

Z =

 x y h7x+ h8y + 1
x+ αdx y + αdy h7(x+ αdx) + h8(y + αdy) + 1
x+ βdx y + βdy h7(x+ βdx) + h8(y + βdy) + 1


The matrix Z is singular with vector n

n = (−h7xdy + h7dxy − dy, h8ydx − xh8dy + dx, xdy − dxy)>

spanning the null space of Z. The vector h = (h7, h8, 1)
> solves the equation Zh =

−1. Hence, there is a one-dimensional family of solutions h + λn. It corresponds to a
pencil of lines h+ λn0, where

n0 = (−h7xdy + h7dxy − dy, h8ydx − xh8dy + dx, 0)
>.

All lines in the pencil pass through a point h × n0, which is the vanishing point lying
on a line given by the collinear points.


