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Abstract. In this paper we present a new efficient solution to the ab-
solute pose problem for a camera with unknown focal length and ra-
dial distortion from four 2D-to-3D point correspondences. We propose
to solve the problem separately for non-planar and for planar scenes.
By decomposing the problem into these two situations we obtain sim-
pler and more efficient solver than the previously known general solver.
We demonstrate in synthetic and real experiments significant speedup
as our new solvers are about 40× (non-planar) and 160× (planar) faster
than the general solver. Moreover, we show that our two solvers can be
joined into a new general solver, which gives comparable or better results
than the existing general solver for of most planar as well as non-planar
scenes 3.

1 Introduction

The Perspective-n-Point (PnP) problem, i.e. the problem of determining the
absolute position and orientation of a camera given its intrinsic parameters and
a set of n 2D-to-3D point correspondences, is one of the most important problems
in computer vision with a broad range of applications in structure from motion [1,
21] or recognition [16, 17]. One of the oldest papers considering this problem
dates back to 1841 [11]. Recently a huge number of solutions to the calibrated
PnP problems for three and more than three points have been published [9, 13,
18, 19, 4, 24, 25].

The minimal number of points needed to estimate the camera position and
orientation is three, resp. six, for a fully calibrated, resp. a fully uncalibrated,
camera. The linear solution to the problem of estimating absolute position and
orientation together with five inner calibration parameters of a fully uncalibrated
camera from six 2D-3D point correspondences is known as Direct Linear Trans-
form (DLT) [2, 20].

Modern digital cameras have square pixels and the principal point close to
the center of the image [12]. Therefore, for most of the applications this prior

3 This work has been supported by EC project FP7-SPACE-218814 PRoVisG and by
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knowledge can be used and four out of the five internal calibration parameters
can be safely set to some prior value (the skew to 0, the pixel aspect ratio to 1
and the principal point to the center of the image).

Adopting these calibration constraints has several advantages. First, the min-
imal number of points needed to solve the absolute pose of a camera is reduced.
Secondly, since fewer parameters are estimated, the results are more stable.

In this paper we use this prior calibration knowledge and provide efficient
solution to the minimal problem of estimating the absolute pose of a camera
with unknown focal length and radial distortion from images of four known 3D
points. This solution is non-iterative and based on Gröbner basis methods [8]
for solving systems of polynomial equations.

The problem of estimating absolute pose of a camera together with its focal
length for image points without radial distortion was firstly solved by Abidi
and Chandra [3]. In this paper authors formulated the problem using areas of
triangular subdivisions of a planar quadrangle and arrived to a closed form
solution which works only for planar scenes.

The first solution to this focal length problem, which works for non-planar
scenes, was presented by Triggs in [23]. This solution uses calibration constraints
arising from using dual image of the absolute quadric and solves resulting poly-
nomial equations using multivariate resultants [8]. The solution works for non-
planar scenes but fails for the planar ones. In this paper authors also proposed
a solution which handles both planar and non-planar points and is based on
eigendecomposition of multiplication matrices, however this solution is numeri-
cally unstable and not practical. The paper [23] also provided a solution to the
problem of estimating absolute pose of a camera with unknown focal length and
unknown principal point from five 2D-to-3D correspondences.

A solution working for both planar and non-planar scenes was proposed only
recently in [5]. This solution is based on Euclidean rigidity constraint and results
in a system of four polynomial equations in four unknowns which are solved using
the Gröbner basis method [8].

The problem of estimating absolute pose with unknown focal length from
four 2D-to-3D correspondences is not minimal and one additional calibration
parameter can be handled in this problem. In [14] authors included the radial
distortion to the problem and proposed a method for solving absolute pose prob-
lem for a camera with radial distortion and unknown focal length from four point
correspondences based on Gröbner bases. In this paper authors show that in
many real applications the consideration of radial distortion brings a significant
improvement. The presented solution uses quaternions to parametrize rotations
and one parameter division model for the radial distortion [10] and results in
five equations in five unknowns. These equations are quite complex and therefore
the Gröbner basis method results in relatively large solver (1134 x 720 matrix)
which runs about 70ms. Therefore, the proposed solver is not really practical in
real-time applications.

In this paper we propose two new solutions to this minimal problem of de-
termining absolute pose of a camera with unknown focal length and radial dis-
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tortion. One solver works for non-planar scenes and one for the planar ones.
By decomposing the general problem to the non-planar and the planar case we
obtain much simpler systems of polynomial equations and therefore also much
simpler and more practical solutions. The most significant improvement is in
speedup, since our new solvers are about 40× (non-planar) and 160× (planar)
faster than the general solver presented in [14].

Both our solutions are based on the Gröbner basis method for solving systems
of polynomial equations [8]. Our new solution to the non-planar case requires
to perform G-J elimination of significantly smaller matrix of size 136 × 152
than [14] and eigenvalue computation of a 16 × 16 matrix. The planar solver
is even simpler and requires G-J elimination of only 12× 18 matrix. Moreover,
the proposed solvers return less solutions, 16 and 6 compared to 24 in [14], and
their run-times are about 1ms which is important for real-time applications and
RANSAC.

We show in experiments that our two new specialized solvers can be joined to
a one general solver, which gives comparable or better results than the existing
general solver [14] for most scenes, including the near-planar ones.

Next we provide our formulation of the presented problem and its solutions
for both non-planar and planar scenes. We compare our new solutions with the
only existing general solution [14]. By evaluating our solutions on synthetic and
real data we show that our solutions are stable and efficient and that the joined
solver works well in real situations.

2 Problem Formulation

Let us assume the standard pinhole camera model [12]. In this model the image
projection ui of a 3D reference point Xi can be written as

λi ui = PXi, (1)

where P is a 3 × 4 projection matrix, λi is an unknown scalar value and points
ui = [ui, vi, 1]

⊤
and Xi [xi, yi, zi, 1]

⊤
are represented by their homogeneous co-

ordinates.
The projection matrix P can be written as

P = K [R | t], (2)

where R = [rij ]
3
i,j=1 is a 3 × 3 rotation matrix, t = [tx, ty, tz]

⊤
contains the

information about camera position and K is the calibration matrix of the camera.
As described in Introduction we assume that the only unknown parameter

from the calibration matrix K is the focal length. Therefore, the calibration ma-
trix K has the form diag [f, f, 1]. Since the projection matrix is given only up to
scale we can equivalently write K = diag [1, 1, w] for w = 1/f .

Using these assumptions the projection equation (1) can be written as

λi ui =

 r11 r12 r13 tx
r21 r22 r23 ty
wr31 wr32 wr33 wtz

Xi. (3)
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In our problem we assume that the image points are affected by some amount
of radial distortion. Here we model the radial distortion by the one-parameter
division model proposed by Fitzgibbon [10]. This model is given by formula

pu ∼ pd/
(
1 + kr2d

)
, (4)

where k is the distortion parameter, pu = [uu, vu, 1]
⊤
, resp. pd = [ud, vd, 1]

⊤
,

are the corresponding undistorted, resp. distorted, image points, and rd is the
radius of pd w.r.t. the distortion center. We assume that the distortion center is
in the center of the image. Therefore r2d = u2

d + v2d and we have

ui =
[
ui, vi, 1 + k

(
u2
i + v2i

)]⊤
. (5)

We can eliminate the scalar values λi from the projection equation (3) by
multiplying it with the skew symmetric matrix [ui]×. Since [ui]× ui = 0 we
obtain the matrix equation 0 −1− k r2i vi

1 + k r2i 0 −ui

−vi ui 0

 r11 r12 r13 tx
r21 r22 r23 ty
wr31 wr32 wr33 wtz



xi

yi
zi
1

 = 0 (6)

for Xi = [xi, yi, zi, 1]
⊤
.

This matrix equation results in three polynomial equations from which only
two are linearly independent. This is caused by the fact that the skew symmetric
matrix [ui]× has rank two.

In the case of the image points not affected by the radial distortion, i.e. when
k = 0, the projection equation (6) gives us for each point correspondence two
linear homogeneous equations in 12 elements of the projection matrix P. For N
2D-to-3D point correspondences these equations can be written as Mp = 0, where
M is a 2N × 12 coefficient matrix and p is the vector consisting of 12 elements
of the projection matrix P. Therefore, the projection matrix can be written as a
linear combination of the 12− 2N null space basis vectors Pi of the matrix M

P =
12−2N∑
i=1

αiPi, (7)

where αi are unknown parameters from which one can be set to 1. In this way
the projection matrix P can be parameterized using 11 − 2N unknowns. This
parameterization was for example used in [23] for solving absolute pose problem
for camera with unknown focal length and works only for non-planar scenes.

Unfortunately this parameterization cannot be used in the case of image
points affected by the radial distortion (5). Therefore, we will next provide two
different parameterizations of the projection matrix P which are applicable also
to image points affected by the radial distortion (5). Both parametrization are
very similar, the first one works for non-planar scenes and the second for the
planar ones.
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2.1 Absolute pose for a camera with unknown focal length and
radial distortion for non-planar scene

Let us denote the elements of the projection matrix P as pij , where pij is the
element from the ith row and jth column of the matrix P. The equation corre-
sponding to the third row of the matrix equation (6) can be then written as

−vi (p11 xi + p12 yi + p13 zi + p14) + ui (p21 xi + p22 yi + p23 zi + p24) = 0. (8)

This is a homogeneous linear equation in eight unknowns p11, p12, p13, p14, p21, p22,
p23 and p24. Since we have four 2D-to-3D point correspondences we have four
such equations. These four equations can be rewritten in the matrix form

Mv = 0, (9)

where M is a 4× 8 coefficient matrix and v = [p11, p12, p13, p14, p21, p22, p23, p24]
⊤

is a 8× 1 vector of unknowns. Therefore we can write our eight unknowns in v
as a linear combination of the four null space basis vectors ni of the matrix M

v =

4∑
i=1

αi ni, (10)

where αi are new unknowns from which one can be set to one, e.g. α4 = 1.
In this way we obtain parametrization of the first two rows of the projection

matrix P with three unknowns α1, α2 and α3.
To parametrize the third row of the projection matrix P we use one from the

remaining two equations from the projection equation (6). When ui = 0 we use
the equation corresponding to the first row of (6) and when vi = 0 the equation
corresponding to the second row. In all remaining situations, which are most
common, we can select arbitrarily from these two equations, e.q. the equation
corresponding to the second row. This equation has the form(

1 + k r2i
)
(p11 xi + p12 yi + p13 zi + p14)− ui (p31 xi + p32 yi + p33 zi + p34) = 0.(11)

Equation (11) contains elements p31, p32, p33 and p34 from the third row of the
projection matrix and elements p11, p12, p13 and p14 from the first row of P which
are already parametrized with α1, α2 and α3. We again have four equations of
the form (11). Using (10) we can rewrite these equations as

A [p31, p32, p33, p34]
⊤
= B [α1, α2, α3, k α1, k α2, k α3, k, 1]

⊤
, (12)

where A and B are coefficient matrices, A of size 4× 4 and B of size 4× 8.
If the matrix A has full rank, i.e. points X1, X2, X3 and X4 are not coplanar,

we can write

[p31, p32, p33, p34]
⊤
= A−1 B [α1, α2, α3, k α1, k α2, k α3, k, 1]

⊤
. (13)

This gives us a parametrization of the third row of the projection matrix P with
four unknowns, α1, α2, α3 and k. Together with the parametrization of the first
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two rows (10) we obtain a parametrization of the whole projection matrix P with
these four unknowns α1, α2, α3 and k.

With this parameterization of the projection matrix P in hand we can now
solve the absolute pose problem for the camera with unknown focal length and
radial distortion.

To solve this problem we use constraints that the three rows of the 3 × 3
submatrix of the projection matrix P are perpendicular and that the first two
rows of this submatrix have the same norm. These constraints results from the
fact that the 3× 3 submatrix of the projection matrix P has the form K R, where
R is a rotation matrix. In this way we obtain four equations in four unknowns
α1, α2, α3, k (two from them quadratic and two cubic)

p11p21 + p12p22 + p13p23 = 0, (14)

p31p11 + p32p12 + p33p13 = 0, (15)

p31p21 + p32p22 + p33p23 = 0, (16)

p211 + p212 + p213 − p221 − p222 − p223 = 0. (17)

To solve these four polynomial equations in four unknowns we use the Gröbner
basis method [8]. This method was recently used to solve several minimal com-
puter vision problems [14, 5, 22] and the automatic generator of the Gröbner
basis solvers is available online [15]. For more details about this Gröbner basis
method for solving systems of polynomial equations see for example [8, 6, 15].

Using this automatic generator we have obtained solver for our equations
consisting of one G-J elimination of a 136 × 152 matrix and the eigenvalue
computation of a 16× 16 matrix. This solver gives us 16 solutions for α1, α2, α3

and k from which we can create the projection matrix P using (10) and (13).
Finally we can use the constraint that the squared norm of the first row of

the 3× 3 submatrix of the projection matrix P multiplied by w2 is equal to the
squared norm of the third row of this submatrix

w2 p211 + w2 p212 + w2 p213 − p231 − p232 − p233 = 0, (18)

This is a quadratic equation in w = 1/f from which the positive root give us
a solution for the focal length f .

2.2 Absolute pose for a camera with unknown focal length and
radial distortion for planar scene

In the planar case, i.e. when all four 3D points are on the plane, we can not
directly use the parametrization presented in the Section 2.1. However, we can
use a similar parametrization.

Without loss of generality let us assume that all four 3D points Xi have the
fourth coordinate zi = 0. In this case the equation (8) corresponding to the third
row of the matrix equation (6) can be written as

−vi (p11 xi + p12 yi + p14) + ui (p21 xi + p22 yi + p24) = 0. (19)
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This is a homogeneous linear equation in only six unknowns p11, p12, p14, p21, p22
and p24. Since we have four 2D-to-3D point correspondences we have four such
equations which can be again rewritten in the matrix form Mv = 0, where M is
a 4 × 6 coefficient matrix and v = [p11, p12, p14, p21, p22, p24]

⊤
is a 6 × 1 vector

of unknowns. Therefore, in this case we can write our unknowns in v as a linear
combination of the two null space basis vectors n1 and n2 of the matrix M

v = β1 n1 + n2, (20)

where β1 is a new unknown. Using (20) we obtain a parametrization of the first
two rows of the matrix P (without the third column) with one unknown β1.

To parametrize the third row we again use one from the remaining two equa-
tions from the projection equation (6). Let’s again consider the equation corre-
sponding to the second row of the projection equation (6). In this planar case
has this equation the form(

1 + k r2i
)
(p11 xi + p12 yi + p14)− ui (p31 xi + p32 yi + p34) = 0. (21)

This equation contains elements from the first row of P which are already para-
metrized with β1 and three elements p31, p32 and p33 from the third row which we
want to parametrize. We again have four equations of the form (11). However,
we will now use only three of them, e.q. equations corresponding to the first
three 2D-to-3D point correspondences. Using (20) we can rewrite these three
equations as

C [p31, p32, p34]
⊤
= D [β1, k β1, k, 1]

⊤
, (22)

where C and D are coefficient matrices, C of size 3× 3 and B of size 3× 4.
If the matrix C has full rank, i.e. points X1, X2 and X3 are not collinear, we

can write

[p31, p32, p34]
⊤
= C−1 D [β1, k β1, k, 1]

⊤
. (23)

In this way we obtain parametrization of the third row (without the third col-
umn) of the projection matrix P with two unknowns, β1 and k. Together with (20)
we have parametrized the first, second and fourth column of the projection ma-
trix P with β1 and k.

In this case we can not use constraints (14)-(17) on the rows of the projection
matrix. It is because we do not have information about the third column of P.

However, we can use constraints that the columns of the rotation matrix are
perpendicular and of the same norm. These constraints in this case gives us two
equations of degree four in three unknowns β1, k and w = 1/f

w p11 w p12 + w p21 w p22 + p31 w p32 = 0, (24)

w2 p211 + w2 p221 + p231 − w2 p212 − w2 p222 − p232 = 0. (25)

Moreover, we have one more equation of the form (21), for the fourth 2D-3D
point correspondence, which was not used in (22). This equation has the form(

1 + k r24
)
(p11 x4 + p12 y4 + p14)− u4 (p31 x4 + p32 y4 + p34) = 0 (26)
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and after using parametrization (20) and (23) of the unknowns p11, p12, p14, p31,
p32 and p34 it results in one quadratic equation in two unknowns β1 and k.

Equation (26) together with equations (24) and (25) give us three equations
in three unknowns β1, k and w = 1/f which can be again solved using Gröbner
basis method [8] and automatic generator [15]. In this case the resulting solver
results in one G-J elimination of relatively small 12× 18 matrix and gives up to
6 real solutions to β1, k and f .

The third column of the projection matrix P can be finally easily obtained
from its structure and the properties that the columns of the rotation matrix
are perpendicular and of the same norm.

3 Experiments

In this section we compare our two new solutions (non-planar and planar) to
the absolute pose problem of a camera with unknown focal length and radial
distortion presented in Sections 2.1 and 2.2 with the general solution to this
problem proposed in [14]. We compare these solutions on synthetically generated
scenes and show that all solvers return comparable results.

Then we study the performance of our two specialized solvers on near-planar
scenes and show that these solvers can be joined into a new general solver, which
gives comparable or better results then the existing general solver [14] for most
scenes, including these near-planar ones.

Finally we show the performance of this new joined general solver on real
datasets and compare it with the general solver from [14].

3.1 Synthetic datasets

In the following synthetic experiments we use synthetically generated ground-
truth 3D scenes. These scenes were generated using 3D points randomly dis-
tributed on a plane or in a 3D cube depending on the testing configuration.
Each 3D point was projected by a camera with random feasible orientation and
position and random or fixed focal length. Then the radial distortion using the
division model [10] was added to all image points to generate noiseless distorted
points. Finally, Gaussian noise with standard deviation σ was added to the dis-
torted image points assuming a 1000× 1000 pixel image.

Numerical stability In the first experiment we have studied the behavior of
both presented solvers on noise free data to check their numerical stability.

In this experiment 1500 random scenes and feasible camera poses were gen-
erated. The radial distortion parameter was randomly drawn from the interval
k ∈ [−0.45, 0] and the focal length from the interval f ∈ [0.5, 2.5].

Figure 1 shows results of our new non-planar solver on non-planar scenes
(Top) and of the planar solver on planar ones (Bottom). In both cases we com-
pare our solvers (Red) with the general solver from [14] (Blue). The log10 rel-
ative error of the focal length f obtained by selecting the real root closest to
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Fig. 1. Log10 relative error of the focal length f (Left) and Log10 absolute error of the
radial distortion parameter k obtained by selecting the real root closest to the ground
truth value for the non-planar solver (Top) and the planar solver (Bottom).

the ground truth value is on the left and the log10 absolute error of the radial
distortion parameter on the right.

As it can be seen both our new algorithms give similar results to the general
algorithm from [14]. The small difference is in the number of results with error
greater than 10−5. In our new solutions such results occur in about 1% of cases
while in the general solver from [14] in about 4.5%. This “failure” will be also
visible in the near-planar and real experiments.

Note that the general solution from [14] uses techniques for improving numer-
ical stability of Gröbner basis solvers based on changing basis and QR decom-
position [6] while our solutions use standard Gröbner basis method [8] without
these improvements. We therefore believe that such techniques can further im-
prove numerical stability of our solvers. It is partially visible also from Figure 1
where the results denoted as non-planar-best and planar-best (Dashed black)
correspond to the most precise results obtained by our solvers by permuting
the input points. This permutation of input data is in some sense similar to
the permutation of columns of a coefficient matrix in Gröbner basis solver and
therefore it is also similar to the changing of basis used in [14]. However, these
techniques for improving numerical stability [6] are little bit expensive and as it
will be shown in real experiments in the case of our solvers also unnecessary.

Noise test In the next experiment we have tested behavior of our non-planar
and planar solvers in the presence of noise added to image points. We again
compare both presented specialized solvers with the general solver from [14].
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Fig. 2. Error of rotation (Top left), translation (Top right), focal length estimates
(Bottom left) and radial distortion estimates (Bottom right) in the presence of noise
for our non-planar solver (Red) and the general solver from [14] (Blue)

Since both our specialized solvers have similar numerical stability as the
general solver from [14], these solvers should behave similarly also in the presence
of noise. This is visible also from Figure 2 which shows results for our non-planar
solver (Red) and the general solver from [14] (Blue).

In this experiment for each noise level, from 0.0 to 2 pixels, 2000 estimates for
random scenes and camera positions, focal length fgt = 1.5 and radial distortion
kgt = −0.2, were made.

Results in Figure 2 are represented by the Matlab boxplot function which
shows values 25% to 75% quantile as a box with horizontal line at median.
The crosses show data beyond 1.5 times the interquartile range. In this case
the rotation error (Top left) was measured as the rotation angle in the angle-
axis representation of the relative rotation RR−1

gt and the translation error (Top
right) as the angle between ground-truth and estimated translation vector.

It can be seen that our new non-planar solver provides quite precise results
even for larger noise levels. Similar results were obtained also for our planar
solver and therefore we are not showing them here.

Computational complexity The most significant improvement of our new
specialized solvers over the general solver from [14] is in speedup, since our
solvers are about 40× (non-planar) and 160× (planar) faster than the general
solver [14].

This is caused by the fact that our new solvers results in much simpler systems
of polynomial equations and therefore also in much simpler and practical solvers.
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Fig. 3. Results of experiment on the near-planar scene.

While the general solver [14] requires to perform LU decomposition of a 1134×
720 matrix, QR decomposition of a 56× 56 matrix and eigenvalue computations
of a 24×24 matrix, our non-planar solver requires only one G-J elimination of a
136× 152 matrix and eigenvalue computations of a 16× 16 matrix. The planar
solver is even simpler and requires one G-J elimination of only 12× 18 matrix.
Moreover, our two solvers return less solutions, 16 and 6 compared to 24 in [14].

All these facts are important in RANSAC and real applications in which the
general solver from [14] was due to its speed impractical.

Near planar test In this experiment we have studied the behavior of our non-
planar and planar solvers and the general solver from [14] on planar, general and
non-planar scenes. We have focused primarily to near-planar scenes in order to
show how to build fast joined general solver by composing our two new special-
ized solvers. For this purpose we created a synthetic scene where we could control
scene planarity by a scalar value a. Given planarity a we have constructed the
scene as follows: Assume that we have a synthetic scene generated as described
above in Subsection 3.1. Now let’s denote by ρ a plane created from the first
three non-collinear 3D points and by s a normalizing scale. We calculate the
scale s as the distance of the furthest point from these three points from their
center of gravity CG. Then, we randomly generate the fourth point at the dis-
tance s a from the plane ρ and such that it is not further than s from the center
of gravity CG. Note that for planarity a = 0 we get four points on the plane and
for a = 1 we obtain a well defined non-planar four-tuple of 3D points.

In this experiment we did not contaminate the image points corresponding
to these four 3D points by a noise. We added noise with deviation of 0.5 pixels
only to the remaining image points. In this way we created a scene with one
uncontaminated four-tuple of 2D-to-3D point correspondences for which we can
control planarity by a scalar value a.

Next, for each given planarity value a we created a scene and calculated
camera pose from the four-tuple of correspondences using the planar, the non-
planar and the general solver [14]. Note that this four-tuple is not affected by
a noise and hence the only deviation from the ground truth solutions comes
from the numerical instability of the solvers itself. To evaluate the impact of the
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Fig. 4. Real experiment: Comparison of estimated results. The new joined planar-non-
planar solver (new) behaves similar to the general solver from [14] (p4pf+k). Radial
distortion boxplots are almost equal for both of these solvers and therefore are omitted.
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Fig. 5. Example of an input image (left), RANSAC sampling history for image without
(middle) and with (right) strong radial distortion.

instability on the solution we used the estimated camera, focal length and radial
distortion to project all 3D points to the image plane. Then we measured how
many points were projected closer than one pixel to its corresponding 2D image
- we call them inliers.

Figure 3 shows results for all three examined solvers i.e. the planar (Red), the
non-planar (Cyan) and the general (Blue) together with the results obtained from
the non-planar solver by permuting the input points (Magenta). Here, for each
given planarity value a we created 100 random scenes and evaluated algorithms.
Interesting points in this Figure 3 are the intersections of the planar and the
general solvers and also the general and the non-planar solvers. Ideally one would
combine planar, general and non-planar solvers to gain maximal precision at
maximal speed. Reasonable thresholds for our planar solver is planarity less
than 10−4.2 and for the non-planar solver greater than 10−2.8. General solver
from [14] should be used in-between. However, our further experiments show
that using only our new planar and non-planar solvers with splitting threshold
a = 10−3.2 is sufficient in practice.

3.2 Real data

For the real data experiment we created a simple scene with two dominant planar
structures (Figure 5 left). Our intention was to show behavior of our new joined
planar-non-planar solver in a real scene with sampling on the plane, near the
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plane and off the plane points. We used new joined planar and non-planar solver
with spitting planarity threshold a = 10−3.2.

First, we captured around 20 photos with the cell phone and the digital cam-
era to get images with different distortions. Then we used Phototurism-like [21]
pipeline to create the 3D reconstruction, 2D-3D correspondences and to get the
ground truth reference for the camera poses. Note that 2D correspondences are
positions of detected feature points and not ideal projections of 3D points and
hence there is a natural noise. Since all our 2D-3D correspondences coming from
the reconstruction pipeline are inliers we randomly modify 50% of 2D measure-
ments to get 50% of outliers.

We plugged all examined solvers, the calibrated P3P solver [9] (Cyan), the
P4P+f solver for camera with unknown focal length [5] (Magenta), the general
P4P+f+k solver from [14] (Blue) and our new joined general solver (Red) to
locally optimized RANSAC estimator [7]. Then, we calculated the camera pose
of each camera using given 2D-3D correspondences.

Figure 4 shows boxplots obtained by collecting results from 1000 executions
of RANSAC for each camera. Boxplot shows that joined planar-non-planar solver
returns very competitive results comparing to the general solver from [14].

Note, that we did not calibrate radial distortion before calling P3P and
P4P+f. Since many of images have strong radial distortion one cannot expect
good results without correcting the distortion. On the other hand these results
show that radial distortion solvers are useful in practice. Figure 5 (Right) shows
difference in RANSAC convergence when using solvers with and without radial
distortion estimation and Figure 5 (Middle) results for not so distorted image.

4 Conclusion

In this paper we have proposed a new efficient solver to the absolute pose problem
for camera with unknown focal length and radial distortion from four 2D-to-3D
point correspondences. The presented solver is obtained by joining two special-
ized solvers, one for non-planar scenes and one for planar ones. By decomposing
the problem into these two cases we obtain a simpler and more efficient solver
than previously known general solver [14].

We have demonstrated in synthetic and real experiments significant speedup
of our solvers over the general solver from [14] . Moreover, we have shown that
our new joined general solver gives comparable or better results than the existing
general solver for of most planar as well as non-planar scenes.

Matlab source codes of the presented solvers are available online at
http://cmp.felk.cvut.cz/minimal/.
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