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Abstract

This paper presents a general solution to the determina-

tion of the pose of a perspective camera with unknown fo-

cal length from images of four 3D reference points. Our

problem is a generalization of the P3P and P4P problems

previously developed for fully calibrated cameras. Given

four 2D-to-3D correspondences, we estimate camera posi-

tion, orientation and recover the camera focal length. We

formulate the problem and provide a minimal solution from

four points by solving a system of algebraic equations. We

compare the Hidden variable resultant and Gröbner basis

techniques for solving the algebraic equations of our prob-

lem. By evaluating them on synthetic and on real-data, we

show that the Gröbner basis technique provides stable re-

sults. 1

1. Introduction

Determining the position and orientation of a camera given

its intrinsic parameters and a set of n correspondences be-

tween 3D points and their 2D projections is known as the

Perspective-n-Point (PnP) problem. The state of the art

recognition [14, 15] and structure from motion [1, 3, 16]

systems build on efficient solutions to various minimal

problems [10, 18, 22, 13, 6].

In this paper we provide an efficient and robust floating

point solution to the P4P problem for estimating the pose

of a camera with unknown focal length from a general 3D

scene. The solution to this problem has been previously

known for planar scenes only [2].

PnP problems for fully calibrated cameras for three and

more than three points have been extensively studied in

the literature. Haralick el al. [12], Quan and Lan [19],

Ameller et al. [4], Zhi and Tang [24], Reid et al. [21], Wu

and Hu [23], and Quan et al.[20] developed many variations
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005439 VISIONTRAIN, EU FP6-IST-027787 DIRAC, MSM6840770038

DMCM III, STINT Dur IG2003-2 062 and MSMT KONTAKT 9-06-17.

Figure 1. Camera pose and focal length are estimated automati-

cally using four 2D-to-3D point correspondences. The accuracy

of the estimate is demonstrated by predicting the projections of

the edges of known 3D model of the structure.

to the P4P problem from planar as well as non-planar points.

An accurate non-iterative solution with the complexity scal-

ing linearly with the number of points was presented in [11].

The most relevant previous work for this paper is the

technique for solving P4P problem for a perspective cam-

era with unknown focal length from four coplanar points by

Abidi and Chandra [2]. They formulated the problem using

areas of triangular subdivisions of a planar quadrangle and

arrived to a closed form solution. We generalize this solu-

tion to four arbitrary points in space. Our solution is more

complex but completely general.

One of the important applications of our solution is in

estimating the focal length, orientation, and position of a

zooming camera. Unlike with other internal camera param-

eters, which can safely be set for most of present digital

cameras a priory, the effective focal length can significantly

change when using a zoom camera and thus needs to be

estimated from images altogether with the camera position

and orientation, Figure 1.
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Figure 2. The camera and the world coordinate systems, image

measurements (x), ray direction vectors (K−1
x), and 3D points

in the world coordinate system (X) and in the camera coordinate

system (α K
−1

x1).

Next we provide our formulation of the problem, and de-

sign and compare two approaches to its solution.

2. Problem formulation

In this section we formulate the problem as a solution to

a system of polynomial equations in four variables. Let

{xi}
4

i=1
be image projections

αi xi = PXi, (1)

of four general 3D reference points, represented by their

homogeneous coordinates {Xi}
4

i=1
, by a projection matrix

P = K [R | t]. In our case the camera calibration matrix is

known up to a focal length. Thus, we can write

K =





f 0 0
0 f 0
0 0 1



 . (2)

Let X
C
i = [R | t]Xi be the affine coordinates of the set of

the reference 3D points in the camera coordinate system.

From Eq. 1, we get

αi K
−1

xi = X
C
i , (3)

and thus the direction vectors of the camera rays towards

the reference points become

x
C
i = K

−1
xi =





xi

yi

f



 , (4)

where xi and yi stand for the image coordinates.

Unlike in the most existing approaches for solving PnP

problems, we will not search for distances from camera cen-

ter to 3D point but we will solve for unknown αi. Scale

αi stretches the camera ray x
C
i until it reaches 3D point

X
C
i , Figure 2. We use the fact that the transformation [R | t],

transforming Xi into X
C
i , preserves distances between 3D

points. Hence, we can write

‖Xi − Xj‖
2 = ‖XC

i − X
C
j ‖

2 = ‖αi x
C
i − αj x

C
j ‖2, (5)

where ‖.‖ stands for the Euclidean norm.

Using Eq. 5 with different i and j, we can build a system

of six 4th degree polynomial equations in five unknowns,

four unknown αi and the unknown focal length f .

Since all αi are nonzero and positive, we can fix one of

them, e.g. α1, and express all αi as αi = α1λi. Note that

λ1 = 1. Then, Eqn. 5 can be rewritten as

‖Xi − Xj‖
2 = ‖α1 λi x

C
i − α1 λj x

C
j ‖

2

= α2

1
‖λi x

C
i − λj x

C
j ‖2,

for every i, j ∈ {1, . . . , 4}. If all 3D reference points are

distinct, then for each i 6= j we have both the left and the

right side of the equation Eq. 6 nonzero and positive. Hence

we can form the follwing ratios

rijkl =
‖Xi − Xj‖

2

‖Xk − Xl‖2
=

α2

1
‖λi x

C
i − λj x

C
j ‖

2

α2

1
‖λk xC

k − λl x
C
l ‖

2
. (6)

in which α2
1 on the right hand side cancels, thus yielding

rijkl ‖λk x
C
k − λl x

C
l ‖

2 = ‖λi x
C
i − λj x

C
j ‖

2. (7)

By exhausting all reasonable permutations of i, j, k, l ∈
{1, . . . , 4} in Eqn. 7, we get a system of 15 polynomial

equations in four unknowns (λ2, λ3, λ4, f). Note that each

xC
i contains one unknown parameter, which is the focal

length f . Unknown f appears in even powers only, and

thus the substitution ϕ = f2 reduces the total degree of

these equations to three. We observed that only five out of

these 15 equations are linearly independent. Thus we get

five equations in four unknowns and 20 monomials.

Once all solutions to this system of polynomial equa-

tions are found, we calculate the camera pose and orienta-

tion. For each solution of the system, we first calculate 3D

positions X
C
i of points Xi in the camera coordinate system

using Eqn. 3. Then we search for a rigid transformation

mapping all Xi to X
C
i . For this purpose we use the least-

squares fitting method [5].

Now we describe how such system of polynomial equa-

tions can be solved.

3. Solving systems of polynomial equations

Our goal is to solve a system of algebraic equations

f1 (x) = ... = fm (x) = 0 (8)

which are given by a set of m polynomials F =
{f1, ..., fm| fi ∈ C [x1, ..., xn]} in n variables x =
(x1, ..., xn) over the field of complex numbers.

Solving systems of algebraic polynomial equations is

very challenging problem. There doesn’t exist one robust,

numerically stable and efficient method for solving such



systems in general case. Therefore, special algorithms have

to be designed for specific problems.

Two important methods for solving systems of polyno-

mial equations are the Gröbner basis method and the Hid-

den variable resultant method. Now we describe these two

methods and propose solvers to our problem based on these

methods.

4. Hidden variable method

One of the best known resultant techniques for solving

systems of polynomial equations is the hidden variable

method [9]. The basic idea of this method is to consider

one of variables as a parameter and eliminate other vari-

ables from the system. To illustrate how this works, con-

sider the system (8) of m polynomial equations in n vari-

ables x = (x1, ..., xn). In this system we can regard one of

the variables (for example x1) as a parameter, i.e. hide this

variable. Then, the system of polynomial equations can be

rewritten in a matrix form

M (x1)X = 0, (9)

where M (x1) is a coefficient matrix depending on the hid-

den variable x1, and X is a vector of all monomials in-

cluding 1 in the remaining n − 1 variables (in this case

x2, x3, . . . , xn).

It is known that if the number of equations equals to

the number of monomials in X (i.e. the matrix M (x1) is

square), then the system of equations has non-trivial solu-

tions if and only if

det (M (x1)) = 0. (10)

The “resultant” equation (10) is a polynomial in single vari-

able x1 obtained by eliminating the other n − 1 variables.

This reduces the problem of solving a system of polyno-

mial equations to solving the resultant equation (10) in x1

and back-substituting solutions to M (x1).

It may happen that the matrix M (x1) is not square. Then

we can add new equations, monomial multiples of equations

(8), to this system. These new equations have same solu-

tions as the initial polynomial equations and if we are lucky

they may help us to obtain a square matrix. This method

can be extended to several hidden variables [9].

5. Hidden variable solver

One way how to solve our system of polynomial equations

(7) using the hidden variable method is to eliminate vari-

ables one by one. Unfortunately this often leads to a very

high degree polynomial in one variable. The degree of this

polynomial (defined by Equation 10) scales with the size

of the matrix M . Computation times as well as numerical

stability of the solver are to large extent determined by the

degree of this polynomial (10). First, finding coefficients of

this polynomial is equivalent to computing the determinant

of the matrix M . This in some cases, including our, re-

quires to multiply and sum numbers with different orders of

magnitude. Thus “double” precision arithmetic may not be

sufficient here. Second, finding the roots of a higher degree

polynomial involves finding the eigenvalues of big compan-

ion matrix. This has again impact both on solver speed and

numerical stability.

We therefore do not apply the resultant method directly

but we apply it to a preprocessed set of equations as follows.

First note that Equations 7 can be used to solve the P3P

problem. For P3P it is assumed that the calibration matrix

is known. So in this case the focal length variable becomes

known in all equations and the system (7) has only three

unknown depths (λ2, λ3, λ4). If we fix i = 1 and k = 1 in

these equations (7), then we remove one variable from each

equation (because λ1 = 1). Now each equation from (7)

contains only two unknown depths (λj , λl). Each of them

can be easily removed using hidden variable resultant (10).

This yields a polynomial which we denote as P3Pj,l. It is

a polynomial in single variable λl and j, l are indices of the

selected 2D-to-3D correspondences. By solving this poly-

nomial one obtain solutions to the associated P3P problem.

Now return back to our original problem. One may

look at this problem as on four parametric P3P prob-

lems, where the parameter is an unknown focal length

f . Then, polynomial P3Pj,l becomes a polynomial

P3Pj,l(f) in two variables, λl and f . Given four 2D-to-

3D point correspondences, we can build a system of 6

polynomial equations P3P2,3(f), P3P3,2(f), P3P2,4(f),
P3P4,2(f), P3P3,4(f), P3P4,3(f) in four unknowns

(λ2, λ3, λ4, f ), where each equation contains just two

unknowns. From this set of equations we can select two

equations in two unknowns, for instance, P3P2,3(f) and

P3P4,3(f) in unknown λ3 and f , and solve them using

the hidden variable technique. In our case we “hide” the

variable f . To obtain the square matrix M we need to add

6 equations (monomials multiples of equations P3P2,3(f)
and P3P4,3(f)), so getting a 8 × 8 resultant matrix (9)

for unknown focal length. Unfortunately, computing the

determinant of this matrix is numerically unstable in double

precision arithmetic. Therefore, we evaluate this determi-

nant in rational arithmetic and convert its coefficients to

double precision before computing the eigenvalues of M.

6. Gröbner basis method

The Gröbner basis method is another well known technique

for solving systems of polynomial equations (8). The poly-

nomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} define ideal

I , which is a set of all polynomials that can be generated as



polynomial combinations of initial polynomials F

I = {Σm
i=1fi pi | pi ∈ C [x1, ..., xn]} , (11)

where pi are arbitrary polynomials from C [x1, ..., xn].
We can define division by an ideal I in C [x1, ..., xn] as

the division by the set F of generators of I . It is known

that such multivariate polynomial division depends on the

ordering of the polynomials in F and also on the monomial

ordering used.

There is a special set of generators G, called a Gröbner

basis of the ideal I , for which this division by the ideal I
is well defined and doesn’t depend on the ordering of the

polynomials in G. This means that the remainder of an ar-

bitrary polynomial f ∈ C [x1, ..., xn] under the division by

G is uniquely determined. Furthermore, f ∈ I if and only if

the reminder of f under the division by G is zero (f
G

= 0).

This implies that f
G

+ gG = f + g
G

and f
G

.gG
G

= f.g
G

Thanks to these properties of the Gröbner basis G, we

can consider the space of all possible reminders under the

division by I . This space is know as a quotient ring and we

will denote it as A = C [x1, ..., xn] /I . It is known that if I
is a radical ideal [9] and the set of equations F has a finite

number of solutions N , then A is a finite dimensional space

with dim(A) = N . Now we can use nice properties of a

special matrix defined in this space, to find solutions to our

system of equations (8).

Consider the multiplication by some polynomial p ∈
C [x1, ..., xn] in the quotient ring A. This multiplication

defines a linear mapping Tp from A to itself. Since A is

a finite-dimensional vector space over C, we can represent

this mapping by its matrix mp with respect to some basis

B of A. This matrix is known as an action matrix and can

be viewed as a generalization of a companion matrix used

in solving one polynomial equation in one unknown. It is

because solutions to our system of polynomial equations (8)

can be easily obtained from the eigenvalues and eigenvec-

tors of this action matrix. The values of p on our solutions

are exactly the eigenvalues of this matrix [8].

Now we use an important observation made in [13]. This

observation tells, that we can construct the action matrix

without computing the complete Gröbner basis G. All we

need is to construct polynomials from the ideal I with lead-

ing monomials from the set p · B \ B and the remaining

monomials from B. For more details about the form of

these polynomials see [13].

Since these polynomials are from the ideal I , we can

generate them as algebraic combinations of the initial gen-

erators F . This can be done using several methods. One

possible way is to start with F and then systematically

generate new polynomials from I by multiplying already

generated polynomials by individual variables and reducing

them each time by the Gauss-Jordan (G-J) elimination. This

method was, for example, used in [13] and resulted in sev-

eral G-J eliminations. Another possible way is to generate

all new polynomials in one step by multiplying polynomi-

als from F with selected monomials and reducing all gen-

erated polynomials at once using one G-J elimination. This

method was used in [6] and proved to be numerically more

stable. Therefore, we use this method to construct the action

matrix for our problem and in this way solve the problem.

Here we extend this method by reducing the number of

generated polynomials. This is done in a simple and intu-

itive way. Imagine that we have a set of monomials which

should be used for multiplying initial polynomials F and in

this way generating new polynomials. In most cases, this

set of monomials contains all monomials up to some de-

gree. All generated polynomials including initial polyno-

mial equations F can be written in a matrix form

MX = 0, (12)

where M is the coefficient matrix and X is the vector of all

monomials. Consider that we know that after G-J elimi-

nation of this matrix M we obtain all polynomials that we

need for constructing the action matrix. Since we know

how these necessary polynomials should look (i.e. which

monomials they contain), we can systematically reduce the

number of generated polynomials in the following way:

1. For all rows from M starting with the last row r (with

the polynomial of highest degree) do

(a) Perform G-J elimination on the matrix M without

the row r

(b) If the eliminated matrix contains all necessary

polynomials M := M \ r

(c) Go to step 1

This elimination procedure is performed only once in the

offline process. The online solver works with the eliminated

set of polynomials which speeds up the process of creating

the action matrix and also improves the numerical stability.

7. Gröbner basis solver

The Gröbner basis solver starts with 15 equations (7) in four

unknowns λ2, λ3, λ4 and ϕ = f2. Only five from these

15 equations are linearly independent so in fact we have 5

equations in 4 unknowns. This is an overconstrained sys-

tem of polynomial equations which can be solved in several

ways. We have decided to use four from these five equa-

tions to find solutions to the four unknowns and use the

fifth equation to test for possible degeneracy and to select

the best root.

We use the last four equations which we obtain after G-J

elimination of the initial 15 equations. The reason for this



is that the system of the first four equations has 14 solu-

tions and results in more complicated computations of the

action matrix. On the other hand, the system of the last four

equations has only 10 solutions and the action matrix can

be obtained easier.

To create the action matrix, we use the method described

in Section 6. This method assume that the basis B of A is

known. This assumption can be made because this prob-

lem like many other in computer vision has the convenient

property that the monomials which appear in the initial sys-

tem of polynomial equations are always same irrespectively

from the concrete coefficients arising from non-degenerate

image measurements. Therefore, the leading monomials of

the corresponding Gröbner basis, and thus the monomials

in the basis B are generally the same. So they can be found

once in advance.

To compute B, we solve our problem in a random chosen

finite prime field Zp where exact arithmetic can be used and

numbers can be represented in a simple and efficient way. It

speeds up computations, minimizes memory requirements

and especially avoids numerical instability.

We use algebraic geometry software Macaulay 2, which

can compute in finite fields, to solve the polynomial equa-

tions for many random coefficients from Zp, to compute the

number of solutions, the Gröbner basis, and the basis B.

Using Macaulay2, we have found that our problem has

10 solutions and the basis B = (λ2

3
, ϕλ4, λ2λ4, λ3λ4, λ

2

4
,

ϕ, λ2, λ3, λ4, 1) w.r.t. the used graded reverse lexicographic

ordering ϕ > λ2 > λ3 > λ4. Once this is known, the action

matrix for floating point coefficients can be created.

We construct the action matrix mλ2
for multiplication by

λ2 because the creation of the action matrix for ϕ requires

to generate polynomials of higher degree.

The method described in Section 6 calls for generating

polynomials with leading monomials from the set λ2 ·B\B
and the remaining monomials from B. To generate these

polynomials from the ideal, we use the method described in

Section 6 in which these polynomials are generated in one

step by multiplying initial four polynomial equations with

selected monomials and reducing all generated polynomials

at once using one G-J elimination.

The set of monomials which should be used in this pro-

cess for multiplying initial polynomial equations can be

found once in advance. To do this we again use Macaulay 2.

We have found that to obtain all necessary polynomials for

crating the action matrix we need to generate all monomial

multiples of the initial four polynomial equations up to the

total degree seven. This means that we need to multiply our

four 3rd degree polynomial equations with all monomials

up to the degree four.

In this way we generate 276 new polynomials which, to-

gether with the initial four polynomial equations, form a

system of 280 polynomials in 283 monomials. Only 243

from these polynomials are linearly independent. So, in the

next step we select only 243 linearly independent polyno-

mial equations. Then we remove all unnecessary polyno-

mials by the procedure described in Section 6 and obtain

154 polynomial equations in 180 monomials. These poly-

nomial equations can be written in the matrix form (12).

After the G-J elimination of the coeficient matrix M we ob-

tain all polynomials with leading monomials from the set

λ2 ·B \B and the remaining monomials from B which we

need for constructing the action matrix mλ2
.

Note that all steps until now (computation in Macaulay

2, finding the basis B and finding the polynomials form

the ideal which should be generated to obtain all necessary

polynomials for constructing the action matrix) were done

only once by us to study this problem and provide the so-

lution to it. The online solver consists only from one G-J

elimination of the 154× 180 coefficient matrix M. This ma-

trix contains coefficients which arise from concrete image

measurements. After the G-J elimination of this matrix, and

using its rows which correspond to the polynomials with

leading monomials from the set λ2 · B \ B, the action ma-

trix mλ2
can be created. The solutions to four unknowns

λ2, λ3, λ4 and ϕ = f2 can be found using eigenvectors of

this action matrix.

8. Experiments

In this section we evaluate both hidden variable and

Gröbner basis solutions of the problem.

8.1. Synthetic data set

We study the performance of the methods on syntheti-

cally generated ground-truth planar and general 3D scenes.

These scenes were generated randomly with the Gaussian

distributions on a plane or in a 3D cube depending on the

testing configuration. Each 3D point was projected by a

camera, where the camera orientation and position were se-

lected randomly. Then, Gaussian noise with standard devi-

ation σ was added to each image point.

8.1.1 Noise free data set

The first experiment shows behavior of both Gröbner

basis and hidden variable solvers on the exact mea-

surements. For each of ten focal lengths fgt =
{20, 50, 80, 100, 140, 170, 200, 230, 260, 290} millimetres,

we have generated 100 random scenes and cameras poses.

We have estimated focal lengths using both our algorithms

and compared them with the ground truth by evaluating the

logarithm of the relative error

ǫ = log10(|
f − fgt

fgt

|). (13)
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Figure 3. Performance evaluation without noise on synthetic 3D

scenes. Results for (Top) general 3D scenes and (Bottom) planar

scenes computed using (Left) Gröbner basis solver and (Right)

hidden variable solver.

Values of ǫ for general non-planar 3D scenes are shown in

Figure 3 (Top). Plots are displayed using the Matlab func-

tion boxplot which shows a blue box from the 25% to the

75% quantile, the red horizontal line at the median. The red

crosses show data beyond 1.5 times the interquartile range.

Results for planar scenes are shown in Figure 3 (Bottom).

We see that the hidden variable solver is more accurate.

This is because hidden variable solver uses more accurate

rational arithmetic while Gröbner basis solver uses standard

“double” precision arithmetic. The Gröbner basis solver is

less accurate but provided results are far more accurate than

required in any real situation.

We have already mentioned that computing coefficients

of the resultant polynomial in hidden variable method is

not stable using double precision arithmetic. This is be-

cause coefficients of the matrix which is used to calculate

the resultant polynomial contains numbers with large dif-

ference in exponents. Then, during calculations of the de-

terminant, these numbers multiply together to numbers with

exponents bordering±300. This happened for every chosen

focal length and every scene configuration we have tested.

8.1.2 Data affected by a noise

Boxplots in Figure 4 (Top) show behaviour of the solvers

for one fixed focal length f = 60mm, a general non-planar

3D scene and different levels of noise added to image pro-

jections. Results for planar scenes are shown in Figure 4

(Bottom).

Here, both algorithms return comparable results. As ex-

pected, with growing noise level both algorithms return fo-

cal length more and more deviated from the ground truth

value. However, even for relative large noise of eight pix-
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Figure 4. Results for fixed focal length at 60mm and different lev-

els of noise. Results for (Top) general 3D scenes and (Bottom) pla-

nar scenes computed using (Left) Gröbner basis solver and (Right)

hidden variable solver.

els, the median of estimated focal lengths is still close to the

ground truth value.

8.1.3 Number of solutions

By solving the system of polynomial equations (7) using

Gröbner basis solver we obtain ten roots. Hidden variable

solver returns 32 candidates for the focal length. In this

subsection we discuss how many of them usually lead to

meaningful results.

Gröbner basis solver

First, we work in real coordinate system and thus we can

drop all complex roots. Also all negative focal lengths and

focal lengths greater than 106mm can be ignored. After

removing them we get only 2.5 solutions in average (mea-

sured on 1000 runs using synthetic data sets). Moreover,

not only focal lengths but also all negative roots can be by-

passed because all λi should be positive too. Then we get

1.90 solutions per algorithm run in average.

Second, as we have already mentioned in Section 7, our

Gröbner basis solver uses only four out of five equations to

solve the problem. Thus we have one more equation, which

can be used to filter incorrect roots. They can be filtered

as follows. Let eqi be the i-th equation where eq1 is the

equation which is omitted in the solver. Then we say that

solution is correct if

|eq1(λ2, λ3, λ4, f)| < δ max |eqi(λ2, λ3, λ4, f)|, (14)

where δ is conveniently chosen value and by

eqi(λ2, λ3, λ4, f) we mean evaluation of the polyno-

mial eqi using estimated roots λ2, λ3, λ4, f . Note that



Figure 5. Real data set models. 3D models (Right) of real objects

were created manually and image textures (Left) were mapped on

the models. Red dots show feature points detected in the textures.

all five equations have the same total degree and all

polynomials were normalised by highest degree monomial.

Using this filter even with relatively large δ = 108 we

can remove about 23% of the remaining solutions. None

of the removed solutions was correct (with respect to the

ground truth camera). This number raised to 37% in the

experiments with 30% outliers.

Hidden variable solver

In the case of hidden variable solver we have to back-

substitute focal lengths to P3P2,3(f) and P3P4,3(f) first.

By solving these two P3P problems we obtain a set of can-

didate solutions. Then we can filter them as described in the

previous section.

8.1.4 Solvers speed

We have implemented both solvers in Matlab. For Gröbner

basis solver it takes about 233ms in average to find a solu-

tion. Hidden variable solver is about 20 − 80× slower due

to rational arithmetic depending on the required length of

the number used in the computations.

8.2. Real data set

For the real data experiments we used both planar and

non-planar objects (see Figure 5). In the case of the non-

planar object, we created its 3D model, detected MSER [17]

image features on all its textures and calculated their 3D

position. For the experiment on the planar scene, we used

the picture of the front side of the book and detected image

features on it. Then, we transferred them to 3D by setting

z = 0 and scaling them to the size obtained by measur-

ing the book. We captured several images for both testing

objects and used focal lengths stored in image header (jpeg-

exif ) as ground truth.

Figure 6. Camera position, orientation and focal length were es-

timated automatically using 2D-to-3D point correspondences on

planar scene.

Using MSER detector, we found image features in the

each image. Tentative correspondences were chosen as mu-

tually best matches between the image and the 3D model

features. We used locally optimised RANSAC [7] with our

solver to find the camera parameters. In the camera cali-

bration matrix we put principal point to the middle of the

image and set skew to zero. Then, the camera calibration

matrix became

K =





f 0 w/2
0 f h/2
0 0 1



 , (15)

where focal length f was estimated using our solver.

Due to long computation times in real experiments, we

used only the Gröbner basis solver in RANSAC to find cor-

rect matches since both proposed solvers are equivalent for

this purpose. To evaluate the accuracy and stability of the

solvers, we computed camera parameters by both of them

from the correct matches.

Figure 7 (Left) and Figure 6 show results for the ex-

periment with a planar object. Differences between focal

lengths estimated by the hidden variable and the Gröbner

basis solvers are smaller than 0.1mm (wrt. 35mm film).

Logarithm of the relative error (13) to exif focal length is

around −1.4.

In the experiments with the general non-planar scene, we

have captured several triplets of images such that the cam-

era zoom settings were same for images in each triplet but

different for different triplets. We used autofocus camera

and therefore the focal lengths of one zoom setting might

slightly differ due to camera focussing. Comparison of

both solvers with focal length extracted from (jpeg-exif ) are

shown in Figure 7 (Right). Unlike in the planar test scene,

where we matched the reference image with each captured

image, here we matched the model textures with images.

Hence the quality of the result is affected also by the quality
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Figure 7. Focal lengths estimated by the hidden variable solver

(HV) and the Gröbner basis solver (GB) are very close to “exif” fo-

cal lengths. Planar scene (Left), general non-planar scene (Right).

of the reference 3D models and by resolution of the textures.

Nevertheless, as shown in Figure 7 (Right), the results are

satisfactory and visually plausible (see Figure 1).

We tried to further improve the quality of the results by

minimizing the image reprojection error

γ =
∑

i

‖P (Xi) − xi‖ (16)

where Xi are 3D points from the inlier set returned by

RANSAC, xi are the corresponding image points, and

P (Xi) represents the projection of the 3D point Xi to the

image plane using camera matrix P. The camera matrix

P = K[R|t], with calibration matrix as in (2), rotation matrix

R and translation vector t.

We used the Levenberg-Marquardt algorithm to optimize

image reprojection error (16). To initialize optimization we

used results from both our solvers. Focal lengths resulting

from the optimization were very close to the initial values

provided by the solvers. They differed in less than 0.1%.

Reprojection errors were improved by 0.3 pixels in average.

9. Conclusion

In this paper we presented a general solution to the pre-

viously unsolved problem of pose and orientation determi-

nation of a perspective camera with unknown focal length

given images of four 3D reference points. We formulated

the problem as a system of polynomial equations and solved

them using hidden variable method and Gröbner basis based

method. Both solutions are general and can be used in both

cases where all points lay on the plane as well as in a non-

planar configuration. Experiments have shown that both

our solvers behave well both on synthetic and real data-sets,

however the Gröbner basis method provides stable results.
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H. Towles, D. Nistér, and M. Pollefeys. Towards urban 3d

reconstruction from video. In 3DPVT, May 2006.

[4] M.-A. Ameller, M. Quan, and L. Triggs. Camera pose revis-

ited – new linear algorithms. In ECCV 2000.

[5] K. S. Arun, T. S. Huang, and S. D. Blostein. Least-squares

fitting of two 3-d point sets. IEEE PAMI, 9(5), 1987.

[6] M. Byröd, K. Josephson, and K. Åström. Improving numer-
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