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Abstract

In this paper we propose methods for speeding up min-
imal solvers based on Gröbner bases and action matrix
eigenvalue computations. Almost all existing Gröbner basis
solvers spend most time in the eigenvalue computation. We
present two methods which speed up this phase of Gröbner
basis solvers: (1) a method based on a modified FGLM al-
gorithm for transforming Gröbner bases which results in a
single-variable polynomial followed by direct calculation
of its roots using Sturm-sequences and, for larger prob-
lems, (2) fast calculation of the characteristic polynomial
of an action matrix, again solved using Sturm-sequences.
We enhanced the FGLM method by replacing time consum-
ing polynomial division performed in standard FGLM al-
gorithm with efficient matrix-vector multiplication and we
show how this method is related to the characteristic poly-
nomial method. Our approaches allow computing roots
only in some feasible interval and in desired precision.
Proposed methods can significantly speedup many existing
solvers. We demonstrate them on three important minimal
computer vision problems. 1

1. Introduction

Many important computer vision problems were in the last
few years solved using the Gröbner basis method [1, 2, 5,
16, 23, 24]. This method for solving polynomial systems
become popular for creating efficient solvers to minimal
problems and even the automatic generator creating source
codes of such solvers was proposed by [18].

Minimal solvers, such as the 5-point relative pose
solver [20, 24] are often used inside RANSAC [9] and are

1This work has been supported by EC projects FP7-
SPACE-218814 PRoVisG, FP7-SPACE-241523 PRoViScout and
SGS12/191/OHK3/3T/13.

parts of large systems like SfM pipelines. Therefore it is
very important to maximize their efficiency.

Gröbner basis solvers usually consist of Gauss-Jordan
(G-J) elimination or LU decomposition of one or several
matrices created using so-called elimination templates [18]
and the eigenvalue computation of a multiplication (action)
matrix [22].

Recently, it has been demonstrated that the numerical
stability of Gröbner basis solvers can be improved e.g. by
reordering columns in elimination templates, using QR or
LU decomposition or by “extending the basis” [3, 6, 4].
Several methods for reducing the size of elimination tem-
plates, and in this way speeding up Gröbner basis solvers
and improving their stability, were proposed [19, 18].

However, it is usually not G-J elimination or LU decom-
position of elimination templates but the eigenvalue com-
putation which takes the biggest fraction of time in these
solvers. Although the elimination templates are for some
solvers quite large, they are relatively sparse and thus can be
efficiently eliminated using sparse methods. Therefore, this
part of Gröbner basis solvers usually takes few microsec-
onds. Usually the eigenvalue and eigenvector computation
is the bottleneck taking, e.g., more than 50μs for 10×10,
140μ for 15×15 or even 250μs for 20×20 action matrices,
respectively. The computation time depends on the size of
the action matrix, and the size of the action matrix depends
on the number of solutions of the problem.

The number of solutions of a given formulation of a
problem and therefore the size of the action matrix can’t
be often reduced. Moreover, the action matrices are rela-
tively dense and hence sparse solvers do not help. On the
other hand, many solutions to some variables, which are ob-
tained as eigenvalues of these action matrices, are often not
feasible. They are either complex or out of range, e.g. too
large or negative focal lengths, depths or radial distortion
coefficients.



In this paper we show how to use Gröbner basis solvers
in such a way that only the promising interval of solutions
is examined. This is done by first transforming the problem
to a polynomial in a single variable and then by calculat-
ing the roots of this polynomial only on a selected inter-
val using efficient Sturm-sequences [13]. This way we save
huge amount of work spent in calculating solutions which
are usually latter dropped.

We present two different methods for obtaining a single
variable polynomial. The first method is based on modified
FGLM [11] algorithm for transforming the grevlex Gröbner
basis to the lexicographic Gröbner basis which contains a
single variable polynomial and the second is based on ef-
ficient computation of the coefficients of the characteristic
polynomial of the action matrix.

The standard FGLM [11] algorithm for transforming
the grevlex Gröbner basis to the lexicographic Gröbner
basis performs polynomial division which may take quite
a long time. Here we present a modification of this
method which performs only matrix-vector multiplication
and which even doesn’t require a complete grevlex Gröbner
basis. Such modification is much more efficient than the
standard FGLM [11] algorithm and results in a significant
speed up of Gröbner basis solvers.

We show how the modified “matrix FGLM” algorithm is
related to Krylov’s algorithm [12] for computing the coeffi-
cients of the characteristic polynomial of an action matrix.
Since Krylov’s algorithm [12] is suitable only for small or
medium size action matrices, we finally present a method
based on Danilevsky algorithm [8] for computing the coef-
ficients of the characteristic polynomial which is very effi-
cient and can be used even for larger problems.

We demonstrate by experiments the usefulness of both
methods, the modified “matrix FGLM” algorithm and the
Danilevsky algorithm [8] for computing the characteris-
tic polynomial, by significant speedup of several important
minimal computer vision problems.

We next briefly describe the Gröbner basis method for
solving systems of polynomial equations.

2. Gröbner basis method

Gröbner basis method for solving systems of polynomial
equations is based on polynomial ideal theory and multi-
variate polynomial division. It generates special bases of
these ideals, called Gröbner bases [7].

Let
f1(x) = 0, . . . , fm(x) = 0. (1)

be a system of m polynomial equations in n unknowns x =
(x1, . . . , xn) which we want to solve and let this system
have a finite number of solutions.

These polynomials define an ideal I =
{Σm

i=1fi hi |hi ∈ C [x1, ..., xn]}, which is a set of all

polynomials that can be generated as polynomial combina-
tions of the initial polynomials f1, ..., fm.

In general, an ideal can be generated by many different
sets of generators which all share the same solutions. There
is a special set of generators though, the reduced Gröbner
basis w.r.t. the lexicographic ordering, which generates the
ideal I but is easy (often trivial) to solve since it contains
a single variable polynomial [7]. Computing this basis and
“reading off” the solutions from it is one standard method
for solving systems of polynomial equations [7].

Unfortunately, for larger systems of polynomial equa-
tions, and therefore for most computer vision problems,
computing the Gröbner basis w.r.t. the lexicographic or-
dering is not feasible. It is because a computation of
Gröbner basis is in general an EXPSPACE-complete prob-
lem. It may take very long time to compute this basis and
huge space may be necessary for storing intermediate re-
sults [15].

Therefore, Gröbner basis solvers usually construct a
Gröbner basis G under another ordering, e.g. the graded
reverse lexicographic (grevlex) ordering, which is often
easier to compute. Then, the properties of the quotient
ring A = C [x1, . . . , xn] /I = {[f ] : f ∈ C [x1, . . . , xn]},
which is the set of equivalence classes for congruence mod-
ulo I , with cosets [f ] = f + I = {f + h : h ∈ I} and
[f ] = [g] ⇔ f − g ∈ I , are used to get the solutions to the
system (1) [7]. Usually the remainder of the polynomial f

on the division by the Gröbner basis G, denoted as f
G

, is
used as a standard representative of the coset [f ] ∈ A.

In the quotient ring A, the multiplication (action) matrix
Mp [22] is constructed. It is the matrix of the linear operator
Tp : A → A of the multiplication by a suitably chosen poly-
nomial p w.r.t. some basis B = {[b1] , . . . , [bs]} of A. Usu-

ally, the standard monomial basis B =
{
[xα] : xαG

= xα
}

of A is used. Here xα represents a monomial xα =
xα1
1 xα2

2 ...xαn
n .

Then we can represent the multiplication mapping Tp

by representing the image Tp ([bi]) of every basis element
[bi] , i = 1 . . . , s in terms of B = {[b1] , . . . , [bs]}

Tp ([bj ]) = [p] . [bj ] = [pbj] =
s∑

i=1

mij [bi] (2)

with s× s multiplication (action) matrix Mp := (mij).
The solutions to the system of equations (1) can be read

off directly from the eigenvalues and the eigenvectors of
the action matrix (2). Therefore this action matrix can be
viewed as a generalization of the companion matrix used in
solving one polynomial equation in one unknown [7].

3. Gröbner basis solvers

Since many computer vision problems share the conve-
nient property that the monomials which appear in the set



of initial polynomials (1) are always the same irrespectively
from the concrete coefficients arising from non-degenerate
image measurements, it is not necessary to use general al-
gorithms [7] for constructing Gröbner bases when solving
these problems.

Therefore, most Gröbner basis solvers for computer vi-
sion problems consist of two phases. In the first “offline”
phase, so-called “elimination templates” are found. These
templates say which input polynomials should be multi-
plied with which monomials and then eliminated to obtain
all polynomials from the grevlex Gröbner basis or at least
all polynomials necessary for constructing an action matrix.
This phase is for a one concrete problem performed only
once.

The second “online” phase consist of two steps. In the
first step the found elimination templates are used with con-
crete coefficients arising from image measurements to con-
struct the action matrix. Then eigenvalues and eigenvectors
of this action matrix are used to find solutions to initial poly-
nomial equations and in this way to solve the input problem.

Many papers addresses the numerical stability and size
of elimination templates [3, 6, 4, 18, 19]. The second step of
“online solvers” was often done by finding the eigenvalues
and the eigenvectors using a standard numerical eigenvalue
algorithm [21].

In this paper we propose two modifications of this sec-
ond step of Gröbner basis solvers, such that only feasible
intervals of solutions are examined. We create a polynomial
in a single variable and find its solutions by calculating the
roots only in a selected interval using Sturm-sequences [13].
This significantly speeds up Gröbner basis solvers.

The first method, which we present, is based on a mod-
ified FGLM algorithm [11] for transforming the grevlex
Gröbner basis to the lexicographic Gröbner basis. This
modified method doesn’t need a complete grevlex Gröbner
basis and uses the computed action matrix and matrix-
vector multiplication to obtain a single-variable polynomial.
The second method computes eigenvalues of the action ma-
trix as the roots of its characteristic polynomial.

We next present the method based on FGLM algorithm.

4. Gröbner basis conversion method

Another Gröbner basis method for solving systems of
polynomial equations (1) is based on conversion of the
Gröbner basis w.r.t. some feasible monomial ordering, e.g.
the grevlex ordering to a lexicographic Gröbner basis con-
taining a single-variable polynomial. There exist several al-
gorithms for Gröbner basis conversion, e.g. the well known
FGLM algorithm [11].

FGLM algorithm hasn’t been used to solve minimal
computer vision problems yet. It is probably because this
method requires to perform quite inefficient and sometimes
also numerically unstable polynomial division. Therefore,

it was assumed that it is more efficient to find solutions to
the initial system of polynomial equations by computing the
eigenvalues and the eigenvectors of an action matrix con-
structed from a grevlex Gröbner basis.

We present a modified “matrix FGLM” algorithm and
show that it, for some systems of equations, leads to signif-
icantly faster solvers than the standard “eigenvalue action
matrix” method. Then we show how this “matrix FGLM”
algorithm is related to Krylov’s algorithm [12] for com-
puting the coefficients of the characteristic polynomial. It
reveals the relationship between the standard FGLM algo-
rithm [11], an action matrix and its characteristic polyno-
mial.

4.1. Standard FGLM algorithm

The standard FGLM algorithm [11] starts with some
Gröbner basis G of the ideal I and converts it to a lex-
icographic Gröbner basis Glex, or a Gröbner basis w.r.t.
some other monomial ordering, of the same ideal. The algo-
rithm uses only two structures, a list Glex = {g1, . . . , gk}
which at each stage contains a subset of the lexicographic
Gröbner basis and a list Blex which contains a subset of the
monomial basis of the quotient ring A = C [x1, . . . , xn] /I .
Both these lists are initially empty. For each monomial
xα ∈ C [x1, . . . , xn] in increasing lexicographic ordering,
starting with xα = 1, the algorithm performs these three
steps:

1. For the input xα, compute xαG

• If xαG
=

∑
j cjx

α(j)
G

, where xα(j) ∈ Blex

and cj ∈ C , i.e. if xαG is linearly depen-
dent on the remainders on division by G of the
monomials in Blex, then add polynomial g =
xα−∑

j cjx
α(j) ∈ I to Glex as the last element.

• Otherwise add [xα] to Blex as the last element.

2. Termination Test

If a polynomial g was added to Glex, and if leading
term LT (g) [7] is a power of the greatest variable in
the lexicographic ordering, then STOP.

3. Next Monomial

Replace xα with the next monomial, w.r.t. the lexico-
graphic ordering, which is not divisible by any of the
monomials LT (gi) for gi ∈ Glex. GOTO 1.

Note that for the division by G in this algorithm the original
ordering (not the lexicographic ordering) is used and that
for our applications it is sufficient to stop this algorithm af-
ter finding the first polynomial from Glex, i.e. the single-
variable polynomial.



This means that for the ordering of the variables x1 >
x2 > · · · > xn, the FGLM algorithm starts with the mono-
mial xα = 1 and continues with monomials xn, x

2
n, x

3
n

and so on in increasing lexicographic order and computes

reminders xi
n

G
on the division by G. After reaching xs

n,
where s is the number of solutions to the initial system of
equations, it expresses xs

n
G as the linear combination of

xi
n

G
, i < s. Then the coefficients of this linear combi-

nation are the coefficients of the single-variable polynomial
from the lexicographic Gröbner basis Glex.

4.2. Modified matrix FGLM algorithm

The standard FGLM algorithm [11] performs polyno-
mial division which may be for some problems less efficient
than the “eigenvalue action matrix” method.

Here we show how action matrix powers can be used in-
stead of polynomial division. We propose a method, which
we call the “matrix FGLM” algorithm, and which requires
only matrix-vector multiplication for obtaining a single-
variable polynomial. This method for many problems re-
sults in a significant speedup over the eigenvalue computa-
tion.

This method even doesn’t require a complete grevlex
Gröbner basis. All it needs is the action matrix Mxi of the
linear operator Txi of multiplication by some variable [xi]
in A = C [x1, . . . , xn] /I w.r.t. the standard monomial ba-

sis B =
{
[xα] : xαG

= xα
}

of A.

In this case the jth column of the matrix Mxi corresponds

to the reminder xibj
G

, where [bj ] ∈ B. For example, imag-
ine that the basis B = {[xy] , [x] , [y] , [1]} and that we have
the action matrix Mx = (mij)i,j=1,...,4. Then we can obtain
the remainder of x2 on the division by G from this action

matrix as x2
G
= m12xy +m22x+m32y +m42.

Moreover, since the action matrix Mxi represents multi-
plication by [xi] in A = C [x1, . . . , xn] /I we can use it to

obtain reminders xk
i

G
also for higher powers k.

Let l be the largest power such that
[
xl
i

] ∈ B. Then we

have xk
i

G
= xk

i for k ≤ l and for k > l we can obtain xk
i

G

in the following way.
Let

[
xl
i

]
= [bq] for some [bq] ∈ B, i.e.

[
xl
i

]
is the qth

element of B. We set

vl = [0 . . . 1 . . . 0]
�
, (3)

vj+1 = Mxivj , j = l, . . . , s− 1, (4)

where 1 in vl is on the qth place and s is the number of
solutions of our system of polynomial equations (1).

Then we have

xk
i

G
= v�

k b, k = l + 1, . . . , s (5)

where b = [b1, . . . bs]
�, for [bj] ∈ B.

Moreover, these equations (3), (4) and (5) hold also for

l = 0, i.e. for all reminders xk
i

G
.

This means that we can compute the reminders xk
i

G
by

simple matrix-vector multiplication. This is much more ef-
ficient that the polynomial division performed in the stan-
dard FGLM [11] algorithm describe in Section 4.

After obtaining xk
i

G
using the presented method we can

continue with the standard FGLM algorithm and obtain the
coefficients cj of the single-variable polynomial by finding
the coefficients of the linear combination

xs
i

G
=

s−1∑
j=0

cjx
j
i

G

. (6)

The single-variable polynomial has then the form xs
i −

cs−1x
s−1
i − · · · − c1xi − c0 = 0.

This results in solving a simple system of s linear equa-
tions. After finding the coefficients of the single-variable
polynomial we can use Sturm-sequences [13] to find its
roots on the interval, which is feasible for the variable xi,
e.g. only positive values for the focal length. This gives us
solutions to the variable xi on this interval.

Solutions to the remaining variables can be obtained ei-
ther by backsubstituting obtained solutions to the initial
equations and solving a simplified system, by computing
the eigenvectors of the action matrix Mxi , or by performing
the whole presented process also on action matrices for the
remaining variables.

We next show that the presented “matrix FGLM” algo-
rithm, which we have obtained using properties of the ac-
tion matrix, is equivalent to the Krylov’s algorithm [12] for
computing the coefficients of a characteristic polynomial.

5. Characteristic polynomial method

Let A be an n × n matrix. To find its eigenvalues and
eigenvectors we need to solve the matrix equation Ax = λx,
where λ is the eigenvalue corresponding to the eigenvector
x �= 0. Therefore the eigenvalues λ must satisfy the equa-
tion det (A− λI) = 0. This is an nth degree monic poly-
nomial

pA (λ) = λn + pn−1λ
n−1 + · · ·+ p1λ+ p0 (7)

in λ called the characteristic polynomial of matrix A. Its
roots are the eigenvalues of matrix A.

Next we describe two methods for finding the coeffi-
cients ai of the characteristic polynomial pA (λ) for a given
matrix A. The first one is the Krylov’s method [12] which
is equivalent to the “matrix FGLM” algorithm presented in
Section 4.2 and the second is the Danilevsky method [8]
which is numerically more stable.



5.1. Krylov’s method

Krylov’s method for computing the characteristic poly-
nomial pA (λ) uses the Cayley-Hamilton theorem. Accord-
ing to this theorem the matrix A satisfies its characteristic
polynomial, i.e.

pA (A) = An + pn−1A
n−1 + · · ·+ p1A+ p0In = 0n, (8)

where In is the n× n identity matrix.
Let v �= 0 be a non-zero n × 1 vector, e.g. v =

[1 0 . . . 0]
�. Then from (8) we get

Anv + pn−1A
n−1v + · · ·+ p1Av+ p0v = 0. (9)

This means that the vectors vk, k = 1, . . . , n, defined as

vk = Akv (10)

are linearly dependent.
Therefore, to obtain the coefficients on the characteristic

polynomial it is sufficient to compute vectors vk (10), i =
1, . . . , n and find the coefficients of the linear combina-
tion (9) by solving a system of n linear polynomial equa-
tions in n unknowns.

This is exactly what is done in the “matrix FGLM” al-
gorithm presented in Section 4.2. We see that the se-
quence (10) of vectors vk, called the Krylov’s sequence, is
equivalent to the sequence of vectors (4), used in the “ma-
trix FGLM” algorithm, for Mxi = A, s = n, l = 0, and
v0 = v. The searched coefficients ai of the characteristic
polynomial are then the coefficients −ci from (6).

Krylov’s method, as well as the “matrix FGLM” algo-
rithm presented in Section 4.2, performs 3

2n
2 (n+ 1) multi-

plications and divisions and works well for small or medium
size matrices. For larger matrices it may have numerical
problems.

We next describe another method for computing the co-
efficients of the characteristic polynomial pA (λ) (7) which
is more stable than the Krylov’s method.

5.2. Danilevsky method

A very efficient and numerically stable method for com-
puting the coefficients of the characteristic polynomial (7)
was proposed by Danilevsky [8]. The main idea of this
method is in transforming the matrix

A =

⎡
⎢⎢⎣

a1,1 a1,2 . . . a1,n
a2,1 a2,2 . . . a2,n
. . . . . . . . . . . .
an,1 an,2 . . . an,n

⎤
⎥⎥⎦ (11)

to the matrix P of the form

P =

⎡
⎢⎢⎢⎢⎢⎣

−p1 −p2 . . . −pn−1 −pn
1 0 . . . 0 0
0 1 . . . 0 0

. . . . . .
. . . . . . . . .

0 0 . . . 1 0

⎤
⎥⎥⎥⎥⎥⎦
. (12)

The matrix P is known as the companion matrix of
pA (λ) (7), or the Frobenius form of A.

Since the matrices A and P have the same characteristic
polynomial pA (λ), they are similar. This means that P =
T−1AT for some regular transformation matrix T.

In the Danilevsky method this transformation from the
matrix A to P is done by n − 1 similarity transformations
Ti which successively transform the rows of A, beginning
with the last row, into corresponding rows of P. In fact
this method applies a special form of the G-J elimination
to transform A to its Frobenius form.

Here we describe only the first step of this method and
the form of the matrices Tn−1 and T−1

n−1. In this first step
we want to transform the last row of A to the last row of P.
Assuming an,n−1 �= 0, the searched transformations have
the form

Tn−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
0 1 . . . 0 0

. . . . . .
. . . . . . . . .

− an,1

an,n−1
− an,2

an,n−1
. . . 1

an,n−1
− an,n

an,n−1

0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦

(13)

and

T−1
n−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 . . . 0 0
1 1 . . . 0 0

. . . . . .
. . . . . . . . .

an,1 an,2 . . . an,n−1 an,n
0 0 . . . 0 1

⎤
⎥⎥⎥⎥⎥⎦
. (14)

The matrix T−1
n−1ATn−1 has the desired form with the last

row equal to the last row of P so the process can continue
with the next row.

In this way we can easily construct n−1 similarity trans-
formations Ti such that

P = T−1
1 T−1

2 . . . T−1
n−1ATn−1 . . . T2T1. (15)

Then the coefficients of the characteristic polynomial
pA (λ) (7) can be extracted from the computed matrix P.
Note that it is not necessary to perform full matrix multipli-
cations when computing T−1

i ATi since matrices Ti are close
to the identity matrix.

More about this method and solutions to cases when
some pivots are equal to zero can be found in [8, 12]. The
number of multiplications and divisions performed in this
method is equal to (n− 1)

(
n2 + n− 1

)
i.e. proportional

to a single G-J elimination. This method is numerically
more stable than the Krylov’s method presented in Sec-
tion 5.1 and its accuracy can be even increased by pivoting.

Moreover, Danilevsky method can be also used to find
the eigenvectors of the matrix A by transforming the eigen-
vectors of the matrix P, which have very simple form, using
the transformations Ti.



We next briefly describe how this method can be used to
solve systems of polynomial equations.

5.3. Characteristic polynomial of the action matrix

Let’s consider that we have constructed the action ma-
trix Mxi for the variable xi using the method described in
Sections 2 and 3. We know that the eigenvalues of Mxi give
solutions to xi and that the solutions to the remaining vari-
ables can be obtained from its eigenvectors.

Instead of computing these eigenvalues and eigenvectors
using a standard numerical algorithm we can use the pre-
sented Danilevsky method. This is efficient especially when
we know some constraints on the variable xi.

After finding the coefficients of the characteristic poly-
nomial pMxi

(xi) of the action matrix Mxi , as described in
Section 5.2, we can use Sturm-sequences [13] to find its
roots on the interval, which is feasible for the variable xi.

Solutions to the remaining variables xj can be again ob-
tained either by backsubstituting obtained solutions to the
initial polynomial equations and solving simplified system
or by computing the eigenvectors of the action matrix Mxi

corresponding to obtained solutions.

6. Minimal solvers

To show the usefulness of the methods presented in Sec-
tions 4.2 and 5.2 we have used them to create efficient fast
solvers to several important minimal problems. All these
problems have been previously solved using the “eigenvalue
action matrix” method described in Section 2.

We next briefly describe these three problems and their
existing Gröbner basis solutions which are the bases of our
new fast solutions. Note that in all our solutions we only re-
place the eigenvalue action matrix computation, performed
in the existing Gröbner basis solver, with the proposed “ma-
trix FGLM” method or with the Danilevsky method for
computing the coefficients of the characteristic polynomial,
followed by the computation of the roots of the obtained
single-variable polynomial using the Sturm-sequences [13].

6.1. 5-point relative pose

The problem of estimating relative pose of two calibrated
cameras from five image point correspondence is one of the
oldest and well-studied problems.

The state-of-the-art methods [20, 23] use the formulation
which results in solving ten equations in three unknowns
and gives ten solutions to this problem.

In this case, the Gröbner basis solution [24] is quite sim-
ple since it only performs G-J elimination of the 10 × 20
coefficient matrix representing the initial ten polynomials.
Then, the action matrix is created, from the rows of this
eliminated matrix. In [24] the solutions are obtained from
the eigenvalues and the eigenvectors of this action ma-
trix. This is much less efficient than the state-of-the-art

solver [20], which uses special structure of the initial equa-
tions to obtain almost a closed-form solution.

However, in experiments we show that by replacing the
eigenvalue computation in the Gröbner basis solver [24]
with the “matrix FGLM” method or the Danilevsky method
for computing the coefficients of the characteristic polyno-
mial, followed by the computation of its roots using the
Sturm-sequences [13], we obtain comparable efficiency to
the Nister’s solution [20].

6.2. 6-point focal length problem

The problem of estimating relative camera pose for two
cameras with unknown, but equal, focal length from mini-
mal number of six point correspondences has 15 solutions.
It leads to solving ten equations in three unknowns [23].

There exist several Gröbner basis solutions to this prob-
lem [23, 3, 18] which find the solutions by computing the
eigenvalues of an action matrix using a standard eigen-
value method. The solution [18] which results in the small-
est “elimination template” performs G-J elimination of the
31× 46 matrix. From the rows of this eliminated matrix the
action matrix for the unknown focal length is created.

This action matrix is the input to both our methods pre-
sented in Sections 4.2 and 5.2.

6.3. P4P+f problem

The last problem is the problem of estimating the abso-
lute pose of a camera with unknown focal length from four
2D-3D point correspondences. This problem results in five
equations in four unknowns and has ten solutions [1].

To obtain the smallest solver for the P4P+f problem, we
have used the solver generator [18] with equations proposed
in [1]. In this way we have created a Gröbner basis “eigen-
value action matrix” solver which performs G-J elimination
of the 52 × 62 matrix and for which the action matrix for
the unknown focal length is created. This action matrix is
again the input to both our presented methods.

7. Experiments

In this section we compare the speed and the numerical
stability of the proposed solutions with the existing state-
of-the-art solvers. Since all solvers are algebraically equiv-
alent, we have evaluated them on synthetic noise free data
only.

In all our experiments and performance tests we exe-
cuted each algorithm 10K times on synthetically generated
data. All scenes in these experiments were generated using
3D points randomly distributed in a 3D cube. Each 3D point
was projected by a camera with random feasible orientation
and position and random or fixed focal length.
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Figure 1. Numerical stability of studied 5-pt relative pose solvers.
Peaks on the right hand side of both figures indicate algorithm
failure.
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Figure 2. Numerical stability of studied 6-pt focal length solvers.
Peaks on the right hand side of all figures indicate algorithm fail-
ure.
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Figure 3. Numerical stability of studied P4P+f solvers. Peaks on
the right hand side of both figures indicate algorithm failure.

7.1. Numerical stability

We first study the numerical stability of the proposed
approaches on three selected important computer vision
problems. We collected several different publicly available
solvers from the Internet [14], reimplemented several state-
of-the-art methods [20, 1, 23], and compared them with
our new solvers based on the methods presented in Sec-
tions 4.2, 5.1, 5.2. For this comparison we have also im-
plemented one additional method for computing the coeffi-
cients of the characteristic polynomial, i.e. the well known
Faddeev-Leverrier method [10].

Figure 1 shows the comparison of several solvers to the
5-pt relative pose problem: GB+eig denotes the Gröbner ba-
sis “action matrix eigenvalue” solver [24], Nis - the Nisters
solver [20], peig - the polynomial eigenvalue solver [17] ,
mFGLM - the solver based on the proposed “matrix FGLM”
method, Fad - the solver based on Faddeev-Leverrier al-
gorithm [10] and Dan - the solver based on the presented
Danilevsky method.

The rotation error was measured as the angle in the angle
axis representation of the relative rotation R R−1

gt , where Rgt
is the ground truth rotation and R the estimated rotation, and
the translation error as an angle between ground-truth and

estimated translation vectors.
All new fast solvers (mFGLM, Fad, Dan) behave com-

petitively compared to the remaining solvers. Among these
new solvers, the solver based on the Danilevsky method,
Section 5.2, is the best in precision and as it will be seen
latter in speed too. This is true also for the remaining two
tested problems, the 6-pt focal length an the P4Pf problem.

For the 6-pt focal length problem, we compared the
Gröbner basis “action matrix eigenvalue” solution [18]
(GB-eig), with the polynomial eigenvalue solution [17]
(peig) and our two modifications of the Gröbner basis
solver [18] using the modified “matrix FGML” method
presented in Section 4.2 (mFGLM) and the Danilevsky
method, Section 5.2 (Dan). We do not show plots for the
Faddeev-Leverrier algorithm [10] since it was very unstable
for this problem. Figure 2 shows that the “matrix FGML”
method also suffers a little bit from numerical instability.

Finally, Figure 3 shows the comparison of several P4P+f
solves, i.e. the Gröbner basis “action matrix eigenvalue”
solver [1] (GB-eig), and our modifications of this solver
using the modified “matrix FGML” method, Section 4.2
(mFGLM), the Faddeev-Leverrier algorithm [10] (Fad) and
the Danilevsky method, Section 5.2 (Dan). It is clear that
the Faddeev-Leverrier method suffers from a large numeri-
cal instability and can not be used for solving this problem.
The “matrix FGML” method failed several times which is
visible on the right hand side of both plots. The best results
are again obtained using the Danilevsky method which for
all considered problems results in very stable solvers.

7.2. Speedup

In this experiment we are focusing on achieved speedup.
We reimplemented most of the competing solvers in C++
and used the same math libraries in all tests. We omitted
solvers which are known to be slower since our main focus
is on speed. We have used Sturm sequences [13] to find real
roots of the single-variable polynomial in all new solvers
based on the “matrix FGML” method and the characteristic
polynomial method. No special optimization e.g. CPU in-
trinsic such as SSE were used. All tests were performed on
Intel i7 Q720 1.6Ghz notebook.

Table 1 shows results for 5-point relative pose problem:

Nister GB+eig Faddeev mFGML Danilevsky
10.6μs 61.2μs 17.2μs 13.7μs 14.2μs

Table 1. Speed comparison of 5-pt relative pose solvers.

Our reimplementation of the Nister’s algorithm [20] is
the fastest for the 5-pt relative pose problem. It is because
in this solution almost all computations can be done in a
closed form. Our reimplementation of the Gröbner basis
“action matrix eigenvalue” solver [18] (GB+eig) which uses
a standard eigenvalue method [21] is almost 6× slower due



to eigenvalue and eigenvector computations. By replacing
this eigenvalue computations with either the proposed “ma-
trix FGML” method or the characteristic polynomial calcu-
lation using the Danilevsky method presented in Section 5.2
we achieved more than 4× speed up.

Table 2 shows results for the 6-pt focal length problem.
It can be seen that replacing the eigenvalue computations
in the Gröbner basis solver [18] with the “matrix FGLM”
method or the Danilevsky method resulted in almost 8×
speed up. Note that the “matrix FGML” algorithm is a little
bit less stable comparing to the remaining algorithms.

GB+eig mFGML Danilevsky
176.3μs 21.3μs 22.6μs

Table 2. Speed comparison of 6-pt focal length solvers.

In this case we do not provide results for the Faddeev-
Leverrier algorithm [10] because its numerical stability is
poor and it failed to deliver any result most of the time.

Finally, the last Table 3 shows results for the absolute
pose problem with the unknown focal length.

GB+eig sparse GB Faddeev mFGML Danilevsky
127.4μs 82.9μs 51.2μs 46.2μs 47.4μs

Table 3. Speed comparison of P4P+f solvers.

We also obtained significant speedup over the exist-
ing Gröbner basis “eigenvlaue action matrix” algorithm [1]
(GB+eig). Here sparse GB corresponds to the Gröbner
basis “eigenvlaue action matrix” algorithm [1] with the
sparse G-J elimination. Again the algorithm based on
the Danilevsky method outperforms all the remaining al-
gorithms both in numerical stability and speed.

8. Conclusion

We presented several methods for speeding up minimal
solvers based on Gröbner basis and action matrix compu-
tation. We showed that such solvers can be significantly
sped up by replacing the eigenvalue computations with the
computation of the characteristic polynomial of an action
matrix followed by the calculation of its roots using Sturm-
sequences. We demonstrated how effective the proposed
methods are on three important computer vision problems.

Source codes of the presented solvers are
available at http://cmp.felk.cvut.cz/minimal/ and
http://www.solvergenerator.com/vision/.
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