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Abstract

A number of minimal problems of structure from motion for

cameras with radial distortion have recently been studied

and solved in some cases. These problems are known to be

numerically very challenging and in several cases there ex-

ist no known practical algorithm yielding solutions in float-

ing point arithmetic. We make some crucial observations

concerning the floating point implementation of Gröbner

basis computations and use these new insights to formulate

fast and stable algorithms for two minimal problems with

radial distortion previously solved in exact rational arith-

metic only: (i) simultaneous estimation of essential matrix

and a common radial distortion parameter for two partially

calibrated views and six image point correspondences and

(ii) estimation of fundamental matrix and two different ra-

dial distortion parameters for two uncalibrated views and

nine image point correspondences. We demonstrate on sim-

ulated and real experiments that these two problems can be

efficiently solved in floating point arithmetic. 1

1. Introduction

Estimating camera motion and inner calibration parameters

from sequences of images is a challenging computer vision

problem with a broad range of applications [11]. Typically

one starts with a noisy set of tentative image point corre-
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spondences. The first step then is to make decisions about

inliers and outliers and get a good initial estimate to be able

to deploy a more sophisticated optimization algorithm on

the set of all inliers.

Two robust and widely used techniques for this purpose

are RANSAC [8] and kernel voting [14], both relying on

solving a large number of instances of the underlying prob-

lem, each with a small number of point correspondences.

There is thus a need to develop fast and stable algorithms

for solving geometric vision problems with a minimal num-

ber of points. Typically this amounts to solving a system of

polynomial equations in several variables. These problems

are known to be numerically very challenging and in sev-

eral cases there exist no known practical algorithm yielding

solutions in floating point arithmetic.

Traditionally, minimal problems have been formulated

assuming a linear pin-hole camera model with different re-

strictions on the inner calibration parameters etc. However,

for some cameras such fish-eye lenses this can be insuffi-

cient and one might need to handle strong radial distortions

already from the outset.

Solving for the fundamental matrix under radial distor-

tion was first studied in [2], where a non-minimal algorithm

based on 15 point correspondences was given for a pair of

uncalibrated cameras. More recently, in [12, 13], a number

of different minimal problems with radial distortion have

been studied and practical solutions were given in some

cases.

The state-of-the-art method for solving polynomial

equations is based on calculations with Gröbner bases [16]

and has many applications in computer vision, but also

in other fields such as cryptology [7] and robotics[1].

In [19, 3] Gröbner bases were used to derive a fast algo-



Figure 1. (Left) Input images with different radial distortions (Top)

66% cutout from omnidirectional image and (Bottom) image taken

with standard perspective camera. (Right) Corrected images.

rithm for globally optimal three view triangulation under

the L2-norm.

In this paper, we further develop the techniques of nu-

merical Gröbner basis computations. In particular we (i)

note the importance of obtaining a single elimination step

in the Gröbner basis computation, (ii) give guidelines for

how this can be achieved and (iii) give a new simplified for-

mulation of the Gröbner basis computation procedure based

on LU factorization, which reduces the computational bur-

den of the elimination step.

Leveraging on these new insights, we formulate fast and

numerically stable algorithms for two minimal problems

with radial distortion previously unsolved in floating point

arithmetic: (i) simultaneous estimation of essential matrix

and a common radial distortion parameter for two partially

calibrated views and six image point correspondences and

(ii) estimation of fundamental matrix and two different ra-

dial distortion parameters for two uncalibrated views and

nine image point correspondences.

We demonstrate the speed and intrinsic numerical stabil-

ity as well as robustness to noise of the proposed algorithms

using both synthetic data and real images.

2. Review of Gröbner Basis Techniques for

Polynomial Equation Solving

Solving systems of polynomial equations is a challenging

problem in many respects and there exist no practical nu-

merically stable algorithms for the general case. Instead,

special purpose algorithms need to be developed for spe-

cific applications. The state-of-the-art tool for doing this is

calculations with Gröbner bases.

Our general goal is to find the complete set of solutions

to a system

f1(x) = 0, . . . , fm(x) = 0, (1)

of m polynomial equations in n variables x = (x1, . . . , xn).

The polynomials f1, . . . , fm generate an ideal I in C[x],
the ring of multivariate polynomials in x over the field of

complex numbers defined as the set

I = {g(x) : g(x) = Σkhk(x)fk(x)}, (2)

where the hk(x) are any polynomials.

The Gröbner basis method for equation solving essen-

tially builds on a generalization of polynomial division to

the multivariate case. A concept arising in multivariate

polynomial division which does not exist in the univariate

case is division by a set of polynomials. See [4] for details.

Division by an ideal as given by (2) can then be defined as

division by the set of generators fk.

The starting point now is to consider the space of all pos-

sible remainders under division by I . This space is denoted

C[x]/I and referred to as the quotient space. It can be seen

as a generalization of the modulo rings Zn to polynomi-

als. A famous result from algebraic geometry now states

that if the set of equations (1) has a finite set of zeros, then

C[x]/I will be a finite-dimensional linear space with di-

mension equal to the number of zeros of (1) [4].

With the space C[x]/I in hand an elegant trick now

yields the solutions to (1). Consider multiplication by one

of the variables xk. This is a linear mapping from C[x]/I
to itself and since we are in a finite-dimensional space, by

selecting an appropriate linear basis, this mapping can be

represented as a matrix mxk
. This matrix is known as the

action matrix and the eigenvalues of mxk
are exactly the

values of xk on the zeros of (1) [4]. Furthermore, the eigen-

vectors of mT
xk

correspond to the vector of monomials eval-

uated at the zeros of (1).

The crucial step in the process is to compute the re-

mainder arithmetic of C[x]/I . Multivariate polynomial di-

vision by I is complicated by the fact that it is not well

defined for most choices of generators. Consider the op-

erator P : C[x] → C[x]/I representing division by I for

some choice of generators. For P to be well defined we re-

quire that P(f1(x) + f2(x)) = Pf1(x) + Pf2(x) for all

f1(x), f2(x) ∈ C[x].
Fortunately there exist a canonical choice of generators

for which P is well defined. This set of generators of I
is known as the Gröbner basis of I and allows direct con-

struction of the action matrix, see [3] for details. Calculat-

ing the Gröbner basis of I is therefore our main concern.

In general, this is accomplished by Buchberger’s algorithm

which works well in exact arithmetic. However, in floating

point arithmetic it very easily becomes unstable. There ex-

ist some attempts to remedy this [5, 6], but for more difficult



cases the only reliable approach (so far) is to study a particu-

lar class of equations (e.g. relative orientation for calibrated

cameras [17], optimal three view triangulation [19], etc.)

and use knowledge of what the structure of the Gröbner

basis should be to design a special purpose Gröbner basis

solver. This art has been developed by Stewenius and oth-

ers in a number of papers [16, 12, 18]. In the following sec-

tion we outline how this is done and provide new insights

enabling us to solve the two problems with radial distortion

treated in this paper.

3. A Matrix Version of Buchberger’s Algo-

rithm

The reason why Buchberger’s algorithm breaks down in

floating point arithmetic is that eliminations of monomials

are performed successively and this causes round-off errors

to accumulate to the point where it is completely impossi-

ble to tell whether a certain coefficient should be zero or

not. The trick introduced by Faugere [5] is to write the list

of equations on matrix form

C







xα1

...

xαn






= 0. (3)

where
[

xα1 · · · xαn
]T

is a vector of monomials with

the notation xαk = xαk1

1 · · ·x
αkp

p . Elimination of leading

terms now translates to matrix operations and we then have

access to a whole battery of techniques from numerical lin-

ear algebra allowing us to perform many eliminations at the

same time with control on pivoting etc.

However, as mentioned above, the real power of this ap-

proach is brought out by combining it with knowledge about

a specific problem obtained in advance with a computer al-

gebra system such as Macaulay2 [10]. One can then get

information about exactly which monomials occur in Buch-

berger’s algorithm and the dimension of C[x]/I .

3.1. Obtaining a Single Elimination Step

With knowledge of the particular problem at hand, the ideal

situation is to obtain a single big elimination step. The rea-

son for this is that each elimination step can be ill condi-

tioned and with errors accumulating the situation soon be-

comes hopeless. With a single elimination step we get max-

imal control over row pivoting etc. Moreover, the basis se-

lection method introduced in [3] can further improve stabil-

ity, but is only applicable when a single elimination step is

possible.

In Buchberger’s Algorithm, two polynomials are picked

and the least common multiple of their leading terms is

eliminated by multiplying them with the right monomials

and then subtracting them. This is done a large number of

times until convergence. We mimic this process but aim

at completely separating multiplication by monomials and

elimination. The steps are

1. Multiply the original set of equations with a large num-

ber of monomials yielding an expanded set of equa-

tions.

2. Stack the coefficients of these equations in an ex-

panded coefficient matrix Cexp.

3. If enough new equations were generated in the previ-

ous step, row operations on Cexp yield the elements of

the Gröbner basis we need.

An important observation made independently in [3]

and [12] is that not all elements of the Gröbner basis are

needed. Let B denote a selection of basis monomials for

C[x]/I . Then to construct the action matrix mxk
we only

need to calculate the elements of the ideal I with leading

monomials in the set xk · B \ B.

Let M denote the complete set of monomials and let

R = xk · B \ B denote the set of monomials that need to be

reduced to C[x]/I . Finally, let E (E for excessive) denote

the remaining monomials. We then have a partitioning of

the monomials as M = E
⋃

R
⋃

B.

Now, reorder the columns of Cexp to reflect this

[

CE CR CB

]

. (4)

and analogously rearrange and partition the vector of mono-

mials as X =
[

X
T
E X

T
R X

T
B

]T
. The E-monomials are

not in the basis and do not need to be reduced so we elimi-

nate them performing an LU factorization of Cexp yielding

the following schematic result:

[

UE1
CR1

CB1

0 UR2
CB2

]

, (5)

where UE1
and UR2

are upper triangular. We can now dis-

card the top rows of the coefficient matrix producing

[

UR2
CB2

]

(6)

From this we see that if the sub matrix UR2
is of full rank

we get precisely the polynomials from the ideal I we need

by forming
[

I U−1
R2

CB2

]

. (7)

This is because (7) represents the equations

[

I U−1
R2

CB2

]

[

XR

XB

]

= 0 (8)

or equivalently

XR = −U−1
R2

CB2
XB, (9)



which means that the R-monomials can now be expressed

uniquely in terms of the B-monomials. This is precisely

what we need to compute the action matrix mxk
in C[x]/I .

In other words, the property of UR2
as being of full rank

is sufficient to get the part of the remainder arithmetic of

C[x]/I that we need to compute mxk
.

4. Application to Minimal Problems with Ra-

dial Distortion

Based on the techniques described in the previous section,

we are now able to provide fast and stable algorithms for

two previously intractable minimal problems with radial

distortion:

1. The problem of estimating a one-parameter radial dis-

tortion model and epipolar geometry from image point

correspondences in two uncalibrated views with differ-

ent radial distortions in each image.

2. The problem of estimating a one-parameter radial dis-

tortion model and epipolar geometry from image point

correspondences in two partially calibrated views.

These two problems were previously studied in [13] and

found to be numerically very challenging. In [13] the au-

thors provide solutions to these problems computed in exact

rational arithmetic only. This results in very long computa-

tional times and is not usable in practical applications. Here

we show that these two problems can be efficiently solved

in floating point arithmetic.

4.1. Uncalibrated Case

In our solution we use the same formulation of the prob-

lem as in [13]. This formulation assume a one-parameter

division model [9] given by the formula

pu ∼ pd/(1 + λr2
d) (10)

pu = (xu, yu, 1), resp. pd = (xd, yd, 1), are the corre-

sponding undistorted, resp. distorted, image points, and rd

is the radius of pd w.r.t. the distortion center.

It is known that to get solutions to this minimal problem

for uncalibrated cameras with different radial distortion λ1

and λ2 in each image, we have to use equations from the

epipolar constraint for 9 point correspondences

p⊤

ui
(λ1) Fp′

ui
(λ2) = 0, i = 1, . . . , 9 (11)

and the singularity of the fundamental matrix F

det (F) = 0. (12)

Assuming f3,3 6= 0 we can set f3,3 = 1 and obtain 10

equations in 10 unknowns.

By linear elimination, these 10 equations can be reduced

to 4 equations in 4 unknowns (one of 2nd degree, two of 3rd

degree and one of 5th degree). For more details see [13]

where it was shown that this problem has 24 solutions.

The numerical solver is constructed starting with the four

remaining equations in the four unknowns f3,1, f3,2, λ1 and

λ2. The first step is to expand the number of equations, as

outlined in Section 3, by multiplying them by a handcrafted

set of monomials in the four unknowns yielding 393 equa-

tions in 390 monomials. See Section 4.1.1 for details.

We now stack the coefficients of the equations in a ma-

trix C as in (3). Following this, we order the monomials

as in (4). The sets E and R depend on which variable is

used to create the action matrix. For this problem f3,1 was

used as action variable. The classical method is thereafter

to choose the linear basis B of C[x]/I to be the 24 lowest

monomials (w.r.t. some monomial order). This is enough to

get a solution to the problem, but as mentioned in Section 3

we can use the method introduced in [3] to select a basis

of linear combinations of monomials from a larger set and

thereby improve numerical stability. Empirically, we have

found that the linear basis can be selected from the set of all

monomials up to degree four excluding the monomial λ4
1.

The set R then consists of monomials of degree five that

are reached when the monomials of degree four are multi-

plied with f3,1. E is the remaining set of 285 monomials.

Putting the part of C corresponding to E and R on trian-

gular form by means of an LU decomposition now produces

what is illustrated in (5). We can then remove all equations

that include excessive monomials and still have enough in-

formation to construct the action matrix.

Finally, we make the choice of representatives for

C[x]/I by the method in [3] and do the last elimination to

get the part of the Gröbner basis we need to construct the

action matrix.

4.1.1 Details on the Expansion Step for the Uncali-

brated Case

We have found in experiments that to construct the neces-

sary elements of the Gröbner basis, we need to generate

polynomials up to total degree eight. Thus, the 2nd degree

polynomial has to be multiplied with all monomials up to

degree six and corresponding numbers for the 3rd and 5th

degree polynomials.

Further investigations has shown that not exactly all

monomials up to degree eight are needed, so in the im-

plementation, the 2nd degree polynomial was only multi-

plied with monomials up to degree five and each variable

not higher than four, further on was λ1 not multiplied with

higher degree than two. For the other polynomials it was

possible to limit the degree of each individual variable to

one lower than the total degree.



These multiplications yield 393 equations in 390 mono-

mials. Without the last fine tuning of the degrees, the num-

ber of equations and monomials will be larger but all ex-

tra monomials will be in the set E and will make no real

differences to the solver except slightly longer computation

times.

4.2. Calibrated Case

To solve the minimal problem for calibrated cameras, we

make use of the epipolar constraint for 6 point correspon-

dences

p⊤

ui
(λ) Ep′

ui
(λ) = 0, i = 1, . . . , 6, (13)

the singularity of the essential matrix E

det (E) = 0 (14)

and the trace condition, which says that two singular values

of the essential matrix are equal

2
(

EE
T
)

E− trace(EET )E = 0. (15)

Again assuming e3,3 6= 0, we can set e3,3 = 1 and obtain

16 equations in 9 unknowns. Using a similar method as for

the uncalibrated case, these equations can be rewritten as

11 polynomial equations in 4 unknowns (one of 3rd degree,

four of 5th degree and six of 6th degree). In [13] it was

shown that this problem has 52 solutions.

The numerical solution of this problem largely follows

that of the uncalibrated version. In the first expansion, all

equations are multiplied with monomials to reach degree

eight. This gives 356 equations in 378 monomials. As in

the uncalibrated case it is possible to reduce the number of

monomials by fine tuning the degrees we need to go to, in

this case yielding 320 equations in 363 monomials.

The next step is to reorder the monomials as in equa-

tion (4). Once again, the linear basis of C[x]/I can be

constructed from the monomials of degree four and lower.

R will then consist of those monomials of degree five that

are reached when the degree four monomials are multiplied

with the variable e3,1, which is used as action variable.

As before C is transformed to triangular form by LU

decomposition and after that we only consider those equa-

tions that do not include any of the monomials in E . Now

C holds all necessary information to choose representatives

in C[x]/I by the method of [3] and create the action matrix

with respect to multiplication by e3,1.

5. Experiments

We have tested the algorithms for the uncalibrated and cal-

ibrated minimal problems on synthetic images with various

levels of noise, outliers and radial distortions as well as on

real images.

Both problems are solved by finding the roots of a system

of polynomial equations which means that we obtain several

potentially correct answers, 52 in the calibrated case and 24

in the uncalibrated case. In general we obtain more than one

real root, in which case we need to select the best one, i.e.

the root which is consistent with most measurements. To

do so, we treat the real roots obtained by solving the equa-

tions for one input as real roots from different inputs and

use kernel voting [14] for several inputs to select the best

root among all generated roots. The kernel voting is done

by a Gaussian kernel with fixed variance and the estimate

of λ1 and λ2 in the uncalibrated case and λ in the calibrated

case is found as the position of the largest peak [14, 12].

5.1. Tests on Synthetic Images

For both problems treated in this paper, the same synthetic

experiments were carried out to evaluate the quality of the

solvers.

In all our simulated experiments we generate our syn-

thetic data using the following procedure:

1. Generate a 3D scene consisting of 1000 points dis-

tributed randomly within a cube. Project M% of the

points on image planes of the two displaced cameras,

these are matches. In both image planes, generate

(100 − M)% random points distributed uniformly in

the image, these are mismatches. Altogether, they

become undistorted correspondences, true as well as

false matches.

2. Apply different radial distortion to the undistorted cor-

respondences in each image and in this way generate

noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the dis-

torted points.

Uncalibrated case

In the first two experiments we study the robustness of our

algorithm for the uncalibrated case to Gaussian noise added

to the distorted points.

The first experiment investigates the estimation error of

λ as a function of noise. The ground truth radial distortions

parameters were λ1 = −0.2, λ2 = −0.3 in the first case and

λ1 = −0.01, λ2 = −0.7 in the second case, see Figure 2.

The noise varied from 0 to 2 pixels. For each noise level

relative errors for 2000 λ’s (estimated as closest values to

the ground truth value from all solutions) were computed.

The results in Figure 2 for the estimated λ1 (Left) and λ2

(Right) are presented by the Matlab function boxplot which

shows values 25% to 75% quantile as a blue box with red

horizontal line at median. The red crosses show data beyond

1.5 times the interquartile range.
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Figure 2. Uncalibrated case: Relative errors of (Left) λ1 and

(Right) λ2 as a function of noise. Ground truth (Top) λ1 = −0.2,

λ2 = −0.3 and (Bottom) λ1 = −0.01, λ2 = −0.7. Blue boxes

contain values from 25% to 75% quantile.

For noiseless data we obtain very accurate estimates

of radial distortion parameters even for very different λ’s.

For larger noises the log10 relative errors are much higher

(mostly around 10−1). However obtained λ’s are still satis-

factory and mostly differ from the ground truth value in the

second decimal place. The main point though is not to use

a minimal point set to get a good estimate, but to repeatedly

draw minimal configurations from a larger set of potential

matches and then use e.g. kernel voting to get a more re-

liable estimate. Finally, the result can be further enhanced

using the obtained estimate as a good starting guess in a

large scale bundle adjustment. The effect of kernel voting

is studied in the second experiment.

In this experiment we did not select the root closest to the

ground truth value for each run of the algorithm, instead we

used kernel voting to select the best λ’s among all generated

roots from several runs. The ground truth radial distortion

parameters were as in the previous experiment (λ1 = −0.2,

λ2 = −0.3 in the first case and λ1 = −0.01, λ2 = −0.7
in the second case) and the level of noise varied from 0 to 2

pixels. Moreover, in the first case there were 10% of outliers

in the image (M=90).

The testing procedure was as follows:

1. Repeat K times (We use K from 50 to 100 though

for more noisy data K from 100 to 200 gives better

results).

(a) Randomly choose 9 point correspondences from

a set of N potential correspondences (6 point cor-

respondences for the calibrated case).

(b) Normalize image point coordinates to [−1, 1].

(c) Find 24 roots using our algorithm.
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Figure 3. Uncalibrated case, kernel voting: Estimated (Left) λ1

and (Right) λ2 as a function of noise, (Top) ground truth λ1 =

−0.2, λ2 = −0.3 (green lines), 90% of inliers and 100 samples in

kernel voting and (Bottom) ground truth λ1 = −0.01, λ2 = −0.7,

100% of inliers and 50 samples in kernel voting.

(d) Select the real roots in the feasible interval, i.e.

−1 < λ1, λ2 < 1 and the corresponding F’s.

2. Use kernel voting to select the best root.

Figure 3 shows λ’s computed using our algorithm for

the uncalibrated case as a function of noise. In the first case

with outliers Figure 3 (Top) 100 λ’s were estimated using

kernel voting for roots computed from 100 (K = 100) 9-

tuples of correspondences randomly drawn for each noise

level. In the second case Figure 3 (Bottom) 200 λ’s were

estimated using kernel voting for roots computed from 50

(K = 50) 9-tuples of correspondences. This means that

for each noise level our algorithm ran 10,000 times in both

cases. The results are again presented by the Matlab func-

tion boxplot.

The median values for λ1 and λ2 are very close to the

ground truth value for all noise levels from 0 to 2 pixels

and also for very different radial distortion parameters Fig-

ure 2 (Bottom) and 10% of outliers Figure 2 (Top).

Calibrated case

The same synthetic experiments were carried out for the cal-

ibrated solver.

The results of the first experiment which shows relative

errors of the estimated λ as a function of noise are shown in

Figure 4. The ground truth radial distortion was λ = −0.3.

For noiseless data we again obtain very precise estimates

of radial distortion parameter λ. For larger noise levels the

log10 relative errors are slightly larger than for the uncali-

brated case. However, using kernel voting we can still ob-
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Figure 4. Calibrated case: (Left) relative errors of λ as a function

of noise, ground truth λ = −0.3. (Right) kernel voting: Estimated

λ using kernel voting for roots computed from 200 6-tuples of

correspondences randomly drawn for each noise level. Ground

truth λ = −0.3 (green line).

tain good estimates. This is shown by our second experi-

ment.

In this experiment λ was estimated 50 times using kernel

voting for roots computed from 200 6-tuples of correspon-

dences randomly drawn for each noise level, Figure 4. The

median values for λ are again very close to the ground truth

value λ = −0.3 for all noise levels from 0 to 2 pixels. How-

ever the variances of this for the calibrated case are larger,

especially for higher noise levels, than the variances for the

uncalibrated case. This means that for good estimates of λ
this algorithm requires more samples in the kernel voting

procedure than in the uncalibrated case.

5.2. Time Consumption

To evaluate the speed of the new algorithm a reasonably

optimized version of the algorithm for the uncalibrated case

was implemented. The implementation was done in Matlab

so rewriting the algorithm in a compiled language such as

C should reduce the execution time further.

The algorithm was run 10,000 times and the time con-

sumption was measured using the Matlab profiler. The

experiments were performed on an Intel Core 2 CPU

2.13 GHz machine with 2 GB of memory. The estimated

average execution time for solving one instance of the un-

calibrated problem was 16 milliseconds. The corresponding

time for the calibrated case was 17 milliseconds.

These results are to be compared with the execution

times given for the same problem in [13], where solutions

were computed in exact rational arithmetic. There, the pro-

cessing time for one problem instance was 30 s for the un-

calibrated case and 1700 s for the calibrated case.

5.3. Tests on Real Images

We have tested our algorithm for uncalibrated cameras with

different radial distortions on several different sets of im-

ages. In the first experiment the input images with different

relatively large distortions in each image, Figure 5 (Left),

were obtained as 60% cutouts from fish-eye images taken

with two different cameras with different radial distortions.

Figure 5. Real data, 60% cutouts from omnidirectional images.

(Left) Input images with different radial distortions for camera 1

(Top) and camera 2 (Bottom). (Right) Corrected images.
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Figure 6. Distribution of real roots obtained by kernel voting for

images in Figure 5. Estimated λ1 = −0.301250 and λ2 =

−0.368125.

Tentative point matches were then found by the wide base-

line matching algorithm [15]. They contained correct as

well as incorrect matches. Distortion parameters λ1 and λ2

were estimated using our algorithm for uncalibrated cam-

eras with different radial distortions and the kernel voting

method for 100 samples. The input (Left) and corrected

(Right) images are presented in Figure 5. Figure 6 shows

the distribution of real roots for images from Figure 5, from

which λ1 = −0.301250 and λ2 = −0.368125 were esti-

mated as the argument of the maximum. The peaks from

kernel voting are sharp and the λ’s are estimated accurately.

In the second experiment we tested our algorithm on im-

ages with significantly different distortions. The left image

Figure 1 (Left), was obtained as a 66% cutout from a fish-

eye image and the right image was taken with a standard

perspective camera. Since these images had a rather large

difference in radial distortion, the tentative point correspon-

dences contained a larger number of mismatches. Distor-

tion parameters λ1 and λ2 were again estimated using our

algorithm for uncalibrated cameras with different radial dis-

tortions and the kernel voting method. The input (Left) and
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Figure 7. Distribution of real roots obtained by kernel voting for

images in Figure 1. Estimated λ1 = −0.925625 and λ2 =

0.002500.

corrected (Right) images are presented in Figure 1. Fig-

ure 7 shows the distribution of real roots for these images

from which λ1 = −0.925625 and λ2 = 0.002500 were es-

timated. As can be seen the peaks obtained by kernel voting

are not so sharp but still sufficient to get good estimates of

the λ’s even from only 100 samples.

6. Conclusions

In this paper we have given fast and robust algorithms for

two minimal problems previously unsolved in floating point

arithmetic. The two problems of simultaneously solving

for relative pose and radial distortion were, due to numeri-

cal problems, previously solved in exact rational arithmetic

only, yielding them to time consuming to be of practical

value. With the floating point algorithm presented in this

paper we have reduced the computation time from minutes

to milliseconds. Moreover, we have verified that this is

done without loss of numerical precision by extensive ex-

periments both on synthetic and real images.

In the experiments we have also demonstrated that the ra-

dial distortion estimation is robust both to outliers and noise

when kernel voting is used over several runs. Finally we

have shown that large differences in distortion between the

two images can be handled.
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lutions to minimal generalized relative pose problems. In

Workshop on Omnidirectional Vision, Beijing China, Oct.

2005.

[19] H. Stewénius, F. Schaffalitzky, and D. Nistér. How hard is

three-view triangulation really? In Proc. 10th Int. Conf. on

Computer Vision, pages 686–693, Beijing, China, 2005.


