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Abstract

Epipolar geometry and relative camera pose computa-

tion for uncalibrated cameras with radial distortion has re-

cently been formulated as a minimal problem and success-

fully solved in floating point arithmetics. The singularity of

the fundamental matrix has been used to reduce the min-

imal number of points to eight. It was assumed that the

cameras were not calibrated but had same distortions. In

this paper we formulate two new minimal problems for es-

timating epipolar geometry of cameras with radial distor-

tion. First we present a minimal algorithm for partially cali-

brated cameras with same radial distortion. Using the trace

constraint which holds for the epipolar geometry of cali-

brated cameras to reduce the number of necessary points

from eight to six. We demonstrate that the problem is solv-

able in exact rational arithmetics. Secondly, we present a

minimal algorithm for uncalibrated cameras with different

radial distortions. We show that the problem can be solved

using nine points in two views by manipulating polynomials

by a sequence of Gauss-Jordan eliminations in exact ratio-

nal arithmetics. We demonstrate the algorithms on synthetic

and real data.

1. Introduction

Estimating 1 camera models from image matches in an

important problem. Recently, epipolar geometry and rela-

tive camera pose computation for cameras with radial dis-

tortion has been formulated as a minimal problem and suc-

cessfully solved in floating point arithmetics [12]. The

epipolar geometry was estimated altogether with the radial

distortion parameter following the paradigm of autocalibra-

tion of cameras with radial distortion [21, 27, 11, 5, 17, 18,

25, 20] as a minimal problem in the spirit of previous work

on minimal problems, e.g. the perspective three point prob-

lem [4, 7], the five point relative pose problem [19, 22, 15],

1This work has been supported by grants EU FP6-IST-027787 DIRAC
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Figure 1. Real data. (Left) Input images with different radial dis-

tortions for left (Top) and right camera (Bottom). (Right) Cor-

rected images.

the six point focal length problem [23, 13], the six point

generalized camera problem [24], the nine-point problem

for estimating para-catadioptric fundamental matrices [8]

and the nine point radial distortion problem [14].

The problem [12] was formulated as a system of alge-

braic equations and the singularity of the fundamental ma-

trix was used to reduce the minimal necessary number of

points from nine [5, 14] to eight. It was assumed that cam-

eras were not fully calibrated and that the radial distortion

was same for both of them.

In this paper we use the same minimal problem paradigm

and extend the result [12] in two ways.

Many digital cameras have square pixels and the prin-

cipal point as well as the radial distortion center are in the

center of image. Thus they are partially calibrated [10]. In

the first contribution of this paper we use the trace constraint

which holds for the epipolar geometry of completely cal-

ibrated cameras to reduce the number of necessary points

from eight to six. Here we also assume same distortion in

both cameras. We demonstrate that the problem is solvable

in exact arithmetics.

Without any information about images, it is not safe to
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assume anything about camera calibration and possibly not

even that both cameras in the stereopair have the same ra-

dial distortion. In the second contribution of this paper we

allow radial distortion be different in different cameras and

provide a minimal solution which can compute epipolar ge-

ometry of cameras from nine correspondences. This is a

considerable advancement of the previosuly known non-

minimal solution which used 15 points [1].

A smaller number of the points considerably reduces the

number of samples in RANSAC [4, 10]. On the other hand,

the resulting systems of polynomial equations are more

difficult than, e.g., the systems arising from similar prob-

lems for estimating epipolar geometry of perspective cam-

eras [23, 22]. In principal, every solvable system of poly-

nomial equations can be algorithmically solved by finding

the reduced Gröbner basis of its corresponding ideal [2, 3].

In practice however, two main problems occur. First, the

construction of a Göbner basis has in general exponential

complexity and many practical problems lead to difficult an

impractical computations. Secondly, even tractable com-

putations may require extreme numerical precision to yield

useful results.

Two problems presented in this paper are considerably

more difficult than the corresponding problems for perspec-

tive cameras but they are still tractable. The first “calibrated

problem” of this paper, which is more difficult, required to

generate 119 new polynomials in 182 monomials up to 6th

order and to do 7 Gauss-Jordan eliminations to obtain 52

solutions. The second “uncalibrated problem” was solved

by generating 97 new polynomials in 125 monomials up to

5th order and required to do 7 Gauss-Jordan eliminations to

obtain 24 solutions.

Problems solved in this paper seem to call for signif-

icantly higher precision than the problem solved in [12].

Therefore, we present here a solution computed in exact ra-

tional arithmetic in Maple. Construction of a robust floating

point solver is a non-trivial issue which will be treated else-

where. Computing in rational arithmetics is much slower

than floating point computations (seconds instead of mil-

liseconds) but it is directly applicable to all real measure-

ments in images. Consider that image measurements are

always obtained in limited resolution, say 1/10 of pixel.

Thus, we can represent an image measurement u as inte-

ger 10 u and start with equations with integer coefficients.

Manipulating equations can be done exactly and will pro-

duce rational coefficients. Only at the end we will need

to compute solutions approximately, e.g. in floating point

arithmetics, to find approximations of possibly non-rational

roots of polynomial equations.

In the next section we briefly summarize the method for

solving systems of algebraic equations, and then present the

formulations and solutions of the two problems for this pa-

per. Finally we demonstrate that the algorithms work.

2. Solving algebraic equations

Our goal is to solve a system of algebraic equations

f1 (x) = ... = fm (x) = 0 which are given by a set of

m polynomials F = {f1, ..., fm| fi ∈ C [x1, ..., xn]} in n
variables over the field of complex numbers. The method

which we use to solve a system of algebraic equations is

based on the method proposed in [12]. Here the solver con-

sists of two main parts.

The goal of the first part is to simplify the input equations

by reducing the number of variables. This is done because

the complexity of the second part of the solver, computation

of so called “action matrix” depends on the complexity of

polynomials. It is better to have the degrees as well as the

number of variables low. The reduction of the number of

variables may considerably help to solve the system.

The second part of the solver is based on the Gröbner

basis G of the ideal I = {
∑m

i=1 fi pi | pi ∈ C [x1, ..., xn]}
generated by polynomials F and on constructing the action

matrix in the quotient ring A = C [x1, ..., xn] /I , i.e. the set

of equivalence classes represented by remainders modulo

I . The action matrix Mf is the matrix of the linear opera-

tor Tf : A → A of the multiplication by a suitably chosen

polynomial f w.r.t. the basis B =
{

x
α|xαG

= x
α
}

of A,

where x
α is a monomial x

α = xα1

1 xα2

2 ...xαn

n and xαG
is

the reminder of x
α on the division by G. The solutions to

the set of equations can be read off directly from the eigen-

values and eigenvectors of the action matrix [3].

To construct the action matrix we use the same method

as was proposed in [12] where this matrix was constructed

without computing the complete Gröbner basis G. In this

method the basis B of A is found once in advance and then

the action matrix is constructed by generating polynomials

qi = fx
α(i) +hi from I with hi =

∑N

j=1 cjix
α(j) ∈ A and

x
α(i) ∈ B.

To construct the action matrix we need to compute

Tf

(

x
α(i)

)

= fxα(i)
G

for all x
α(i) ∈ B [3]. But if

for some x
α(i) ∈ B and chosen f , fx

α(i) ∈ A, then

Tf

(

x
α(i)

)

= fxα(i)
G

= fx
α(i) and we are done. For

all other x
α(i) ∈ B for which fx

α(i) /∈ A we consider

mentioned polynomials qi. For these x
α(i), Tf

(

x
α(i)

)

=

fxα(i)
G

= qi − hi

G
= −hi ∈ A.

Since polynomials qi are from the ideal I , we can gen-

erate them as algebraic combinations of the initial genera-

tors F . The method starts with F and then systematically

generate new polynomials from I by multiplying already

generated polynomials by individual variables and reducing

them by the Gauss-Jordan elimination. This algorithm is

similar to F4 algorithm [6] for constructing Gröbner bases.

See [12] for more about this method for constructing the

action matrix.



3. Minimal problems for correcting radial dis-

tortion

We want to correct radial lens distortion using the mini-

mal number of image point correspondences in two views.

We consider and two new minimal problems:

1. The problem of estimating one-parameter radial dis-

tortion model and epipolar geometry from image point

correspondences in two partially calibrated views.

2. The problem of estimating one-parameter radial dis-

tortion model and epipolar geometry from image point

correspondences in two uncalibrated views with differ-

ent radial distortions in each image.

It is well known that for the standard calibrated case with-

out considering radial distortion, 5 point correspondences

are sufficient and necessary to estimate the epipolar geome-

try. When estimating radial distortion from point correspon-

dences in calibrated views, we have one more parameter, the

radial distortion parameter λ. Therefore, for this problem,

we will need 6 point correspondences to estimate λ and the

epipolar geometry.

For standard uncalibrated case, 7 point correspondences

are sufficient and necessary. When estimating two differ-

ent radial distortions in two views, two radial distortion pa-

rameters λ1 and λ2 appear. Therefore, for this problem the

minimal number of point correspondences which is needed

to estimate λ1, λ2 and the epipolar geometry is 9.

In both these problems we assume one-parameter divi-

sion model [5] given by the formula

pu ∼ pd/(1 + λr2
d) (1)

where λ is the distortion parameter, pu = (xu, yu, 1), resp.

pd = (xd, yd, 1), are the corresponding undistorted, resp.

distorted, image points, and rd is the radius of pd w.r.t. the

distortion center. We assume that the distortion center has

been found, e.g., by [9]. We also assume square pixels, i.e.

r2
d = x2

d + y2
d. To use the standard notation, we write the

division model as

x + λz =





xd

yd

1



 + λ





0
0
r2
d



 ∼





xu

yu

1



 . (2)

In the next sections we give solutions to these minimal prob-

lems for correcting radial distortion.

3.1. Calibrated cameras

To get solutions to the minimal problem of estimating

one parameter radial distortion model from point correspon-

dences in two calibrated images, we have to use equations

from the epipolar constraint for 6 point correspondences

p
⊤

ui
(λ) Ep

′

ui
(λ) = 0, i = 1, . . . , 6 (3)

E =





e1,1 e1,2 e1,3

e2,1 e2,2 e2,3

e3,1 e3,2 e3,3



 , (4)

the singularity of the essential matrix E

det (E) = 0, (5)

and the trace condition, which says that two singular values

of the essential matrix are equal

2
(

EE
T
)

E− trace(EET )E = 0. (6)

We obtain 16 equations in 10 unknowns. Assuming e3,3 6=
0, we can set e3,3 = 1.

3.1.1 Eliminating variables

The epipolar constraint gives 6 equations with 15

monomials (λe1,3, λe2,3, λe3,1, λe3,2, λ
2, e1,1, e1,2, e1,3,

e2,1, e2,2, e2,3, e3,1, e3,2, λ, 1) and 9 variables (e1,1, e1,2,
e1,3, e2,1, e2,2, e2,3, e3,1, e3,2, λ).

Among them, we have four variables which appear in

one monomial only (e1,1, e1,2, e2,1, e2,2) and four vari-

ables which appear in two monomials (e1,3, e2,3, e3,1, e3,2).
Since we have six equations from which each contains all 15

monomials we can eliminate five from these nine variables.

We select the first four variables e1,1, e1,2, e2,1, e2,2 that ap-

pear in one monomial only (and can be straightforwardly

eliminated) and the fifth variable as e1,3 which appears in

two monomials.

We reorder monomials contained in 6 equations putting

monomials containing e1,1, e1,2, e2,1, e2,2 and e1,3 at the

beginning. The reordered monomial vector will be X =
(e1,1, e1,2, e2,1, e2,2, e1,3λ, e1,3, e2,3λ, e3,1λ, e3,2λ, λ2,
e2,3, e3,1, e3,2, λ, 1)T .

We can rewrite 6 equations from the epipolar constraint

in a matrix form MX = 0, where M is the coefficient ma-

trix. After performing the Gauss-Jordan (G-J) elimination

on matrix M, we obtain 6 equations of the form

fi = LT (fi) + gi(e2,3, e3,1, e3,2, λ) = 0, (7)

where LT (fi) = e1,1, e1,2, e2,1, e2,2, e1,3λ, resp. e1,3

for i = 1, 2, 3, 4, 5 resp. 6 and gi(e2,3, e3,1, e3,2, λ) are

2ndorder polynomials in 4 variables e2,3, e3,1, e3,2, λ. So,

five variables e1,1, e1,2, e1,3, e2,1, e2,2 can be expressed as

functions of the other four variables e2,3, e3,1, e3,2, λ.

e1,1 = −g1(e2,3, e3,1, e3,2, λ)

e1,2 = −g2(e2,3, e3,1, e3,2, λ)

e1,3 = −g6(e2,3, e3,1, e3,2, λ) (8)

e2,1 = −g3(e2,3, e3,1, e3,2, λ)

e2,2 = −g4(e2,3, e3,1, e3,2, λ).



We can substitute these expressions to the remaining

equation from the epipolar constraint and to the singularity

and trace constraint for E. In this way we obtain 11 poly-

nomial equations in 4 unknowns (one of degree 3, four of

degree 5 and six of degree 6)

One equation from the epipolar constraint

λ(−g6(e2,3, e3,1, e3,2, λ))+g5(e2,3, e3,1, e3,2, λ) = 0 (9)

one equation from the singularity constraint

det (E) = 0, (10)

and 9 equations from the trace constraint

2
(

EE
T
)

E− trace(EET )E = 0, (11)

with

E =





−g1 −g2 −g6

−g3 −g4 e2,3

e3,1 e3,2 1



 . (12)

Using these 11 equations we create the action matrix for the

polynomial f = λ as described next.

3.1.2 Computing B and the number of solutions

For both problems we use algebraic geometry software

Macaulay 2, which can compute in finite fields, to solve the

polynomial equations for many random coefficients from

Zp, to compute the number of solutions, the Gröbner ba-

sis, and the basis B [26]. Here the exact arithmetic can

be used and numbers can be represented in a simple and

efficient way. It speeds up computations, minimizes mem-

ory requirements and especially avoid numerical instability.

Computing with coefficients represented as floating point

approximations may lead to numerical instability when

computing the Gröbner basis and action matrix, since it may

be difficult to determine when coefficients become zero in

the reduction.

If the basis B remains stable for many different random

coefficients from Zp, i.e. if it consists of the same mono-

mials, it is generically equivalent to the basis of the original

system of polynomial equations. Also, the way of obtaining

polynomials that are necessary to create the action matrix is

always the same and for general data the generated polyno-

mials differ only in their coefficients. Once this is known,

action matrix can be created for rational coefficients or even

their floating point approximation.

Using Macaulay 2 to solve the above system of 11 poly-

nomial equations for many random coefficients from Zp, we

compute the number of solutions, the Gröbner basis, and the

basis B for this problem.

In this way we have found that this problem has 52

solutions. To create the action matrix, we used the graded

reverse lexicographic ordering e2,3 > e3,1 > e3,2 > λ

and got the basis B = (e2
3,1e

2
3,2, e2,3e

3
3,2, e3,1e

3
3,2, e

4
3,2,

e3
2,3λ, e3

3,1λ, e2
2,3e3,2λ, e2,3e3,1e3,2λ, e2

3,1e3,2λ, e2,3e
2
3,2λ,

e3,1e
2
3,2λ, e3

3,2λ, e2
3,1λ

2, e3,1e3,2λ
2, e2

3,2λ
2, e3,1λ

3, e3,2λ
3,

λ4, e3
2,3, e

2
2,3e3,1, e2,3e

2
3,1, e

3
3,1, e

2
2,3e3,2, e2,3e3,1e3,2,

e2
3,1e3,2, e2,3e

2
3,2, e3,1e

2
3,2, e

3
3,2, e

2
2,3λ, e2,3e3,1λ, e2

3,1λ,
e2,3e3,2λ, e3,1e3,2λ, e2

3,2λ, e3,1λ
2, e3,2λ

2, λ3, e2
2,3, e2,3e3,1,

e2
3,1, e2,3e3,2, e3,1e3,2, e

2
3,2, e2,3λ, e3,1λ, e3,2λ, λ2, e2,3, e3,1,

e3,2, λ, 1) of the algebra A = C [e2,3, e3,1, e3,2, λ] /I .

3.1.3 Constructing action matrix

We construct the action matrix Mλ for multiplication by

polynomial f = λ. The method described in Section 2 calls

for generating polynomials qi = λx
α(i) +

∑N

j=1 cjix
α(j) ∈

I . As described in Section 2, we will do this by system-

atically generating higher order polynomials from I . This

will be done by adding monomial multiples of initial poly-

nomial equations. We stop when all necessary polynomials

qi are obtained.

The basic steps of generating the polynomials necessary

for constructing the action matrix for the calibrated problem

are as follows:

1. We begin with one 3rd, four 5th and six 6th de-

gree polynomials. In the first step we multiply the

one 3rd degree polynomial with all four variables

e2,3, e3,1, e3,2, λ. This polynomial together with its

multiples can be represented by 5 × 35 matrix with

rank 5 which we simplify by G-J elimination.

2. In the next step we add e2,3, e3,1, e3,2, λ multiples of

four new 4th degree polynomials to the existing 5 poly-

nomials. Together with 5th degree polynomial from

det(F ) we obtain 22 polynomials which can be rep-

resented by a 22 × 75 matrix with rank 16. We again

perform G-J elimination.

3. We obtain one new 4th degree polynomial and 10

new 5th degree polynomials. In this step we add

e2,3, e3,1, e3,2, λ multiples of this 4th degree polyno-

mial to the already generated 16 polynomials. In

this way we obtain 20 polynomials representable by

a 20× 103 matrix with rank 20. We simplify it by G-J

elimination.

4. Now we have four new 5th degree polynomials. In

this step we add e2,3, e3,1, e3,2, λ multiples of all 14

5th degree polynomials (4 new and 10 generated in

the previous step) to already generated 20 polynomi-

als. Together with three 5th degree and six 6th de-

gree polynomials from the trace constraint we obtain

85 polynomials representable by a 85 × 180 matrix,

which has rank 59. We simplify it by G-J elimination.

5. After G-J elimination we obtain one new 4th degree

polynomial, five new 5th degree polynomials and 33

new 6th degree polynomials. We add e2,3, e3,1, e3,2, λ



multiples of the one new 4th and five new 5th degree

polynomials to already generated 59 polynomials. Ob-

tained 83 polynomials can be represented by a 83×180
matrix, which has rank 82. We again perform G-J

elimination.

6. Now we have 12 new 5th degree, 11 new 6th degree

polynomials. Again by adding e2,3, e3,1, e3,2, λ mul-

tiples of these 12 new 5th degree polynomials to the

generated 82 polynomials we obtain 130 polynomials

which can be represented by a 130 × 182 matrix with

rank 119. We perform G-J elimination on this matrix.

7. In the last step we add e2,3, e3,1, e3,2, λ multiples of

seven new generated 4th degree polynomials to previ-

ously generated 119 polynomials. Obtained 147 poly-

nomials can be represented by a 147 × 182 matrix,

which has rank 130. We perform the last G-J elimi-

nation.

8. All polynomials needed for constructing the action

matrix have been generated. Action matrix Mλ has

been constructed.

3.1.4 Solving equations using eigenvectors

The eigenvectors of Mλ give solutions for e2,3, e3,1, e3,2, λ.

Using a backsubstitution, we obtain solutions also for

e1,1, e1,2, e1,3, e2,1, e2,2. In this way we obtain 52 (in gen-

eral complex) solutions.

3.2. Uncalibrated cameras with different radial dis-
tortion

To get solutions to the minimal problem of estimating

one parameter radial distortion model from point correspon-

dences in two uncalibrated image with different radial dis-

tortion λ1 and λ2 in each image, we have to use equations

from the epipolar constraint for 9 point correspondences

p
⊤

ui
(λ1) Fp

′

ui
(λ2) = 0, i = 1, . . . , 9 (13)

F =





f1,1 f1,2 f1,3

f2,1 f2,2 f2,3

f3,1 f3,2 f3,3



 (14)

and the singularity of the fundamental matrix F

det (F) = 0. (15)

We obtain 10 equations in 11 unknowns. Assuming f3,3 6=
0, we can set f3,3 = 1.

3.2.1 Eliminating variables

The epipolar constraint gives 9 equations with 16

monomials (f3,1λ1, f3,2λ1, f1,3λ2, f2,3λ2, λ1λ2, f1,1, f1,2,

f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, λ1, λ2, 1) and 10 variables

(f1,1, f1,2, f1,3, f2,1, f2,2, f2,3, f3,1, f3,2, λ1, λ2).
Using similar elimination method like in the calibrated

case we can eliminate 6 from these 10 variables. All these

variables can be eliminated at once.

We have again four variables which appear in one mono-

mial only (f1,1, f1,2, f2,1, f2,2) and four variables which

appear in two monomials (f1,3, f2,3, f3,1, f3,2). Since we

have 9 equations from the epipolar constraint we can use

these equations to eliminate 6 variables, four variables

which appear in one monomial only and two of the vari-

ables which appear in two monomials. In this solution we

have selected f1,3 and f2,3.

We reorder monomials contained in 9 equations and put

monomials containing f1,1, f1,2, f2,1, f2,2, f1,3 and f2,3 at

the beginning. Reordered monomial vector becomes X =
(f1,1, f1,2, f2,1, f2,2, f1,3λ2, f1,3, f2,3λ2, f2,3, f3,1λ1,
f3,2λ1, λ1λ2, f3,1, f3,2, λ1, λ2, 1)T .

We rewrite 9 equations from the epipolar constraint in a

matrix form MX = 0. After performing G-J elimination we

obtain 9 equations of the form

fi = LT (fi) + gi(f3,1, f3,2, λ1, λ2) = 0, (16)

where LT (fi) = f1,1, f1,2, f2,1, f2,2, f1,3λ2, f1,3, f2,3λ2,
f2,3 resp. f3,1λ1 for i = 1, 2, 3, 4, 5, 6, 7, 8 resp. 9 and

gi(f3,1, f3,2, λ1, λ2) are 2ndorder polynomials in four vari-

ables f3,1, f3,2, λ1, λ2. So we can express 6 variables,

f1,1, f1,2, f1,3, f2,1, f2,2, f2,3 as the functions of other four

variables f3,1, f3,2, λ1, λ2.

f1,1 = −g1(f3,1, f3,2, λ1, λ2)

f1,2 = −g2(f3,1, f3,2, λ1, λ2)

f1,3 = −g6(f3,1, f3,2, λ1, λ2) (17)

f2,1 = −g3(f3,1, f3,2, λ1, λ2)

f2,2 = −g4(f3,1, f3,2, λ1, λ2)

f2,3 = −g8(f3,1, f3,2, λ1, λ2),

Substituting these expressions to other three equations

from the epipolar constraint and also to the singularity con-

straint for F gives 4 polynomial equations in 4 unknowns

(one of 2nd degree, two of 3rd degree and one of 5th de-

gree)

λ2(−g6(f3,1, f3,2, λ1, λ2)) + g5(f3,1, f3,2, λ1, λ2) = 0

λ2(−g8(f3,1, f3,2, λ1, λ2)) + g7(f3,1, f3,2, λ1, λ2) = 0

f3,1λ1 + g9(f3,1, f3,2, λ1, λ2) = 0

det





−g1 −g2 −g6

−g3 −g4 −g8

f3,1 f3,2 1



 = 0. (18)

Using these four equations we create the action matrix for

the polynomial f = λ2.



3.2.2 Computing B and the number of solutions

Using Macaulay 2 we have found that this prob-

lem has 24 solutions. To create the action matrix,

we use the graded reverse lexicographic ordering

f3,1 > f3,2 > λ1 > λ2. With this ordering,

we get the basis B = (λ4
2, f3,1f

2
3,2, f

3
3,2, f3,2λ

2
1, λ

3
1,

f2
3,2λ2, λ

2
1λ2, f3,1λ

2
2, f3,2λ

2
2, λ

3
2, f

2
3,1, f3,1f3,2, f

2
3,2, f3,2λ1,

λ2
1, f3,1λ2, f3,2λ2, λ1λ2, λ

2
2, f3,1, f3,2, λ1, λ2, 1) of the

algebra A = C [f3,1, f3,2, λ1, λ2] /I .

3.2.3 Constructing action matrix

In this problem we construct the action matrix Mλ2
for multi-

plication by polynomial f = λ2. We again generate polyno-

mials qi = λ2x
α(i) +

∑N

j=1 cjix
α(j) ∈ I by systematically

generating higher order polynomials from I .

The basic steps of generating the polynomials necessary

for constructing the action matrix for this problem are as

follows:

1. We begin with one 2nd, two 3rd and one 5th degree

polynomials. In the first step we multiply the 2nd

and the 3rd degree polynomials with all four variables

f3,1, f3,2, λ1, λ2. These three polynomials and their

multiples can be represented by 37 monomials and a

15× 37 matrix with rank 15 which we simplify by G-J

elimination.

2. We obtain five new 3rd degree polynomials and 7

new 4th degree polynomials. In this step we add

f3,1, f3,2, λ1, λ2 multiples of these five 3rd degree

polynomials to already generated 15 polynomials. So

we obtain 35 polynomials representable by a 35 × 63
matrix, which has rank 29. We simplify it by G-J elim-

ination.

3. After G-J elimination we obtain two new 3rd degree

polynomials and 12 new 4th degree polynomials. We

again add f3,1, f3,2, λ1, λ2 multiples of two new 3rd

degree polynomials to already generated 29 polynomi-

als. Obtained 37 polynomials can be represented by a

37 × 64 matrix, which has rank 34. We again perform

G-J elimination.

4. We obtain five new 4th degree polynomials. In this

step we add f3,1, f3,2, λ1, λ2 multiples of all 24 4th de-

gree polynomials (5 new and 19 generated in previous

steps) to already generated 34 polynomials. Together

with 5th degree polynomial from det(F ) we obtain

131 polynomials representable by a 131× 119 matrix,

which has rank 80. We simplify it by G-J elimination.

5. Now we have one new 3rd degree, one new 4th degree

and 44 new 5th degree polynomials. Again by adding

f3,1, f3,2, λ1, λ2 multiples of the one new 3rd degree

and the one new 4th degree polynomial to the gener-

ated 80 polynomials we obtain 88 polynomials which

can be represented by a 88 × 125 matrix with rank 86.

We perform G-J elimination on this matrix.

6. In the next step we add f3,1, f3,2, λ1, λ2 multiples of

the one new 3rd degree and three new 4th degree poly-

nomials to the generated 86 polynomials. We ob-

tain 102 polynomials which can be represented by a

102 × 125 matrix with rank 95 which is simplified by

G-J elimination.

7. In the last step we add f3,1, f3,2, λ1, λ2 multiples of

five new 4th degree polynomials to previously gener-

ated 95 polynomials. Obtained 115 polynomials can

be represented by a 115 × 125 matrix, which has rank

101. We perform last G-J elimination.

8. Action matrix Mλ2
has been constructed.

3.3. Solving equations using eigenvectors

The eigenvectors of Mλ2
give solutions for

f3,1, f3,2, λ1, λ2. Using a backsubstitution for f1,1, f1,2,
f1,3, f2,1, f2,2, f2,3 we obtain 24 (in general complex)

solutions.

4. Experiments

The first calibrated problem is more difficult than the

second different distortions problem. It also took much

more time (1700 s compared to 30 s) to compute. It

would be impractical in present form and therefore we only

demonstrate that we obtained correct results for this cali-

brated problem and experiments with noise and outliers are

left for future. The different distortions problem, on the

other hand, took “only” 30 s to compute and thus we present

experimental results on simulated data and an example on

real images.

In both cases we get more roots, 52 in calibrated case and

24 in different distortions case. In general, we also obtain

more than one real root. If there is more than one real root,

we need to select the best root, the root which is consistent

with most measurements. To do so, we treat the real roots

obtained by solving the equations for one input as real roots

from different inputs and use RANSAC [4, 10] or kernel

voting [14] for several (many) inputs to select the best root

among all generated roots. The kernel voting is done by a

Gaussian kernel with fixed variance and the estimate of λ is

found as the position of the largest peak. See [14] or [12]

for more on kernel voting for this problem.

4.1. Tests on synthetic images

We initially studied results of our algorithms imple-

mented in exact arithmetic using synthetic datasets. Our

testing procedure for uncalibrated case with different radial

distortions in each image was as follows:
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Figure 2. Kernel voting results, for ground truth λ1 = −0.1 and

λ2 = −0.2, image size 512 × 512 and (Left) noiseless data and

100% inliers , (Center) noise level 2 pixels, (Right) noise level 1

pixel and 90% inliers. Estimated radial distortion parameters were

(Left) λ1 = −0.1004, λ2 = −0.2004, (Center) λ1 = −0.1005,

λ2 = −0.1858, and (Right) λ1 = −0.1048, λ2 = −0.2121.

1. Generate a 3D scene consisting of N (from 100 to 500)

random points distributed uniformly within a cube.

Project M% of the points on image planes of the

two displaced cameras. These are matches. In both

image planes, generate (100 − M)% random points

distributed uniformly in the image. These are mis-

matches. Altogether, they become undistorted corre-

spondences.

2. Apply different radial distortion to the undistorted cor-

respondences in each image and in this way generate

noiseless distorted points.

3. Add Gaussian noise of standard deviation σ to the dis-

torted points.

4. Repeat K times (We use K from 50 to 100 though

for more noisy data K form 100 to 200 gives better

results).

(a) Choose 9 point correspondences from given N
correspondences randomly.

(b) Normalize image point coordinates to [−1, 1]

(c) Find up to 24 roots of the minimal solution to the

autocalibration of radial distortion.

(d) Select the real roots in the feasible interval, e.g.,

−1 < λ < 1 and the corresponding F’s.

5. Use kernel voting to select the best root.

The resulting density functions for different noise levels and

outlier contaminations are shown in Figure 2. Here, K =
100, image size was 512×512 and ground truth λ1 = −0.1
and ground truth λ2 = −0.2. In all cases, a good estimates,

close to the true λ1 and λ2 were found as the position of the

maximum of the root density function. Thus this method in

exact arithmetic is robust to mismatches and noise.

Our testing procedure for the calibrated case was similar

to the procedure for uncalibrated case with different radial
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Figure 3. Distribution of real roots obtained by kernel voting for

image in Figure 1. Estimated λ1 = 0.1806 and λ2 = −0.2266.

distortions. For noiseless data we obtain comparably good

estimates. For ground truth λ = −0.3 we have repeatedly

obtained λ’s between −0.291 and −0.306.

4.2. Tests on real images

The input images with different relatively large distor-

tions in each image, Figure 1 (Left), were obtained by syn-

thetically adding large distortion to (almost) perspective im-

ages. Tentative point correspondences were then found by

the wide base-line matching algorithm [16]. They contained

correct as well as incorrect matches. Distortion parame-

ters λ1 and λ2 were estimated by Maple implementation of

our 9-point algorithm for uncalibrated cameras with differ-

ent radial distortions and the kernel voting method. The

input (Left) and corrected (Right) images are presented in

Figure 1. Figure 3 shows the distribution of real roots,

for images from Figure 1, from which λ1 = 0.1806 and

λ2 = −0.2266 were estimated as the argument of the max-

imum.

4.3. Conclusion

In this paper we have presented two new minimal prob-

lems for simultaneous estimation of epipolar geometry and

radial distortion. We were able to demonstrate that algo-

rithms we provided are correct and give the right solutions.

We also demonstrate that the radial distortion estimation for

cameras with different distortions is stable and behaves fa-

vorably in presence of noise and outliers.

We used exact rational arithmetic to be able to get work-

ing algorithms because the problems in this paper become

too sensitive to rounding errors and naive approach to in-

clude only linearly independent equations before starting

Gauss-Jordan elimination did not give stable results.

Our current implementation in Maple is clearly far from

the optimal one. It will be the topic of future research to find

whether it will be better to construct a robust approximate

solver in floating point arithmetics or to use exact rational

arithmetics in combination with controlled approximations.
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