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Programming

/* Interpolation of a volume described by B−spline coefficients
   at arbitrary points.

   Jan Kybic, 1999
   $Id: splninterp.c,v 1.1.1.1.2.6 2001/04/26 14:44:47 cvsuser Exp $
*/

#ifdef BIGSPLINES
#include " BIGsplines.h"
#include <math.h>
#endif

extern int  mfoldmirroronbound( int  k, int  n)
/* having a signal 0..n−1, fold k using mirror on boundary conditions, 
   i.e. k=n−1 gives n−1, k=n gives n−2, k=−1 gives 1 etc. */
{ int  m ;
  if (n<=1) return 0 ;
  m=2*(n−1) ;
  k=(k<0) ? k%m+m : k%m ;
  return k>=n ? m−k : k ;
}

extern double  mfolddmirroronbound( double  k, int  n)
/* having a signal 0..n−1, fold k using mirror on boundary conditions, 
   i.e. k=n−1 gives n−1, k=n gives n−2, k=−1 gives 1 etc. */
{ int  m,q ;
  m=2*(n−1) ;
  q=floor(k/m) ; k−=q*m ;
  return k>n−1 ? m−k : k ;
}

extern int  mfoldmirroroffbound( int  k, int  n)
/* having a signal 0..n−1, fold k using mirror off boundary conditions, 
   i.e. k=n−1 gives n−1, k=n gives n−1, k=−1 gives 0 etc. */
{ int  m ;
  if (n<=1) return 0 ;
  m=2*n ;
  k=(k<0) ? k%m+m : k%m ;
  return k>=n ? m−1−k : k ;
}

extern double  mfolddmirroroffbound( double  k, int  n)
/* having a signal 0..n−1, fold k using mirror off boundary conditions, 
   i.e. k=n−1 gives n−1, k=n gives n−1, k=−1 gives 0 etc. */
{ int  m,q ;
  m=2*n ;
  q=floor(k/m) ; k−=q*m ;
  return k>n−1 ? m−1−k : k ;
}

extern int  evalbspln( double  *x, double  *y, int  n, int  degree)
/* Evaluates B−spline of degree ’degree’ at n−points x[0],...,x[n−1] */
/* results are put into y[0],..,y[n−1] */
{ int  i,supp ;
  double  (*evsplnx)( double ) ;    /* pointer to the evaluation functions */
  if (choosespln(degree,&evsplnx,&supp,0)) {
    myErrMsg(" Unsupported degree.") ;
    return 1 ;
  }

  for (i=0;i<n;i++) y[i]=(*evsplnx)(x[i]) ;
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  return 0 ;
}

extern int     splinterp
/* Takes an input matrix of size nxi*nyi*nzi, containing B−spline
    coefficients of degree ‘degree’. Samples the resulting function at
    nxc*nyc*nzc points given by coord, each point described by ndc 
    coordinates. Uses mirror boundary conditions. Everything should be 
    allocated in advance.
    In this routine, x is simply the index that changes fastest and 
    z the index which changes slowest. C convention is applied for indexing,
    i.e. the first element of ‘input’ is assumed to correspond to 
    point (0,0,0). If coord gives multidimensional coordinates, they are laid
    consecutively, i.e., as the fastest changing (sub)index − even faster 
    than x.
*/
(
 double *input,                 /* B−spline coefficients */
 double *coord,         /* 3D coordinates */
 double  *output,                /* output values, one for each coord */  
 int nxi, int  nyi, int  nzi, /* input size */
 int     nxc, int  nyc, int  nzc,            /* output size */  
 int     ndc,                    /* coordinate range dimensionality */
 int degree,                 /* 0 − Haar, 1 − Linear etc. */
 int     dflag,                  /* 0 − value, 1,4,16 − first derivative with 
                                   respect to x,y,z ; 2,8,32 − second der. */
 int  bcond 
 )
{ 
  int  ix,iy,iz,ofs,jx,jy,jz,kz,lx,ly,lz ;
  double  (*evsplnx)( double ) ;    /* pointer to the evaluation functions */
  double  (*evsplny)( double ),(*evsplnz)( double ) ;  
  int  supp; double  hsupp ;      /* spline support */
  double  x,y,z,sum,sumt ;
  double  *tabx,*taby,*ptr ;
  int  *foldx,*foldy ;
  int  (*mfold)( int , int ) ; double  (*mfoldd)( double , int ) ;

  switch(bcond) {
      case MirrorOffBounds: 

mfold=mfoldmirroroffbound ;
mfoldd=mfolddmirroroffbound ;
break ;

      case MirrorOnBounds: 
mfold=mfoldmirroronbound ;
mfoldd=mfolddmirroronbound ;
break ;

  default:
        myErrMsg(" Unsupported boundary conditions.") ;

return 1 ;
  }

    

  //  mexPrintf("splninterp called with nxi=%d nyi=%d nzi=%d nxc=%d nyc=%d nzc=%
d ndc=%d degree=%d\n", nxi, nyi, nzi, nxc, nyc, nzc, ndc, degree) ;
  if (choosespln(degree,&evsplnx,&supp,dflag & 3) | 
      choosespln(degree,&evsplny, NULL,(dflag & 12)>>2) | 
      choosespln(degree,&evsplnz, NULL,(dflag & 48)>>4)) {
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Unwarping of Unidirectionally Distorted
EPI Images

Jan Kybic† , Philippe Thévenaz, Arto Nirkko and Michael Unser

Abstract— Echo-planar imaging (EPI) is a fast nuclear
magnetic resonance imaging method. Unfortunately, local
magnetic field inhomogeneities induced mainly by the sub-
ject’s presence cause significant geometrical distortion, pre-
dominantly along the phase-encoding direction, which must
be undone to allow for meaningful further processing. So
far, this aspect has been too often neglected.

In this paper, we suggest a new approach using an algo-
rithm specifically developed for the automatic registration
of distorted EPI images with corresponding anatomically
correct MRI images. We model the deformation field with
splines, which gives us a lot of flexibility while comprising
the affine transform as a special case. The registration cri-
terion is least-squares. Interestingly, the complexity of its
evaluation does not depend on the resolution of the control
grid. The spline model gives us good accuracy thanks to
its high approximation order. The short support of splines
leads to a fast algorithm. A multiresolution approach yields
robustness and additional speed-up.

The algorithm was tested on real as well as synthetic
data, and the results were compared with a manual method.
A wavelet-based Sobolev-type random deformation genera-
tor was developed for testing purposes. A blind test indi-
cates that the proposed automatic method is faster, more
reliable, and more precise than the manual one.

Keywords—image registration, splines, geometrical distor-
tion, unwarping

I. Introduction

A. EPI features

Echo planar imaging (EPI) [1] is a fast magnetic reso-
nance imaging (MRI) technique permitting an acquisition
of a two-dimensional slice using a single excitation, which
leads to very short scan times. It is used mainly for func-
tional imaging (fMRI), the in vivo non-invasive study of
the temporal, spatial and behavioral dependencies of brain
activations. The basis of fMRI lies in the fact that de-
oxyhemoglobin (the hemoglobin without a bound oxygen
molecule) is paramagnetic. Neural activation in the cere-
bral cortex leads to an increase of blood flow, hence to
a decrease of deoxyhemoglobin concentration.1 This re-
sults in a measurable alteration of the magnetic field and
in a consequent increase of signal intensity in the appro-
priately weighted MRI images (blood oxygen-level depen-
dent, BOLD). It is therefore difficult to compensate for the
unwanted magnetic field inhomogeneities induced mainly
by the spatially varying magnetic susceptibility of the sub-
ject [2]. In contrast to conventional MRI, where the number

† indicates corresponding author. Jan Kybic, Philippe Thévenaz,
and Michael Unser are with Biomedical Imaging Group, DMT/IOA,
Swiss Federal Institute of Technology Lausanne, CH-1015 Lausanne
EPFL, Switzerland, email: Jan.Kybic@epfl.ch. Arto Nirkko is with
Inselspital, Bern, Switzerland

1This effect prevails over the increase of oxygen consumption.

of excitations per slice is equal to the number of scan lines,
in EPI the magnetic field gradients have to encode two co-
ordinates simultaneously in one excitation. As one of the
gradients (the so-called phase-encoding gradient) is several
orders of magnitude weaker than the other, the inhomoge-
neous magnetic field will manifest itself mainly as a geo-
metrical distortion of the 2D slice image along the direction
of this gradient. This effect is clearly visible in Figure 1.
Since the stronger gradient is less affected, the distortion is
essentially unidirectional. Letting g be the unknown warp-
ing (deformation) function, we have

fo(g(x, y), y) ' fu(x, y) (1)

where fo is the observed EPI image and fu is the hy-
pothetical ideal undistorted EPI image. We can consider
each slice separately, as the shift in the z axis due to pa-
tient’s movement is insignificant because his head is at-
tached. Should there be such a displacement, it can by
readily corrected by existing algorithms [3].

B. The reasons to unwarp

The amplitude of the deformation g can be as large as
3–5 mm [4] (confirmed by our own observations), which
typically amounts to several pixels. In some cases, as in
Figure 1, specifically intended to illustrate EPI distortion,
the deformation can be even more pronounced. Moreover,
g can vary significantly from slice to slice and from ac-
quisition to acquisition. For localization applications like
stereotactic surgery, this inaccuracy is much larger than
the required limit of 1 mm and therefore EPI cannot cur-
rently be used to this end. It also severely hinders the
performance of the statistical processing of sets of fMRI
images used to obtain activation information. Since the
task-induced signal changes represent typically only 5–10%
of the mean signal intensity in fMRI [1, 5], they will not
stand out clearly unless the perturbations caused by the
deformation g are undone.

C. Existing distortion correction techniques

One approach consists in changing the acquisition pro-
cedure [2, 4, 6]. However, this is often not practical due to
technical or organizational limitations, for example lack of
support or approval. Furthermore, while the alternative
acquisition sequences reduce the distortion, the distortion
is never removed completely, and the methods usually sac-
rifice either sensitivity or acquisition speed.

The second group of methods uses a two-step proce-
dure [4, 7]. First, a field map or a deformation map is
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Radon transform
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Conclusions

Image registration is useful

Our registration algorithm works

Interpolation is interesting

Variational is elegant

Splines are great
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The End
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Díky!

Merci!

Thank you!

¡Gracias!

Grazie!

Danke!
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Bâtiment de microtechnique, 4th floor
Elastic Image Registration using Parametric Deformation Models – p.45/45


	
	What did I do?
	
	Overview
	What is image registration?
	Find corresponding points
	Correspondence function
	Deformation field
	Image warping
	Image registration
	
	(Biomedical)
applications
	Image alignment
	Registration types
	Manual registration
	What is interpolation?
	Find a function
	Rank functions
	Variational reconstruction
	Tunable 1D interpolation
	Tunable 2D interpolation
	Tomographic reconstruction
	Radon transform
	Tomographic experiments
	Overview (2)
	The splines
	(Uniform)
splines
	Uniform B-splines
	Automatic registration
	Spline based warping
	Registration as minimization
	Image warping (2)
	Registration as minimization (2)
	Evaluating the difference
	Registration as minimization (3)
	Optimization
	Acceleration
	Multiresolution
	Overview (3)
	Movie
	Applications
	Conclusions
	
	
	Party

