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Abstract. We overview different approaches to safety in (semi)auto-
nomous robotics. Particularly, we focus on how to achieve safe behavior
of a robot if it is requested to perform exploration of unknown states. Pre-
sented methods are studied from the viewpoint of reinforcement learning,
a partially-supervised machine learning method. To collect training data
for this algorithm, the robot is required to freely explore the state space
– which can lead to possibly dangerous situations. The role of safe explo-
ration is to provide a framework allowing exploration while preserving
safety. The examined methods range from simple algorithms to sophis-
ticated methods based on previous experience or state prediction. Our
overview also addresses the issues of how to define safety in the real-world
applications (apparently absolute safety is unachievable in the continu-
ous and random real world). In the conclusion we also suggest several
ways that are worth researching more thoroughly.
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1 Introduction

Reinforcement learning (RL) as a machine learning method has been thoroughly
examined since 80’s. In 1981, Sutton and Barto [3] inspired themselves in the
reinforcement learning discoveries in behavioral psychology and devised the Tem-
poral Difference machine learning algorithm that had to simulate psychological
classical conditioning. In contrast with supervised learning, reinforcement learn-
ing does not need a teacher’s classification for every sample presented. Instead, it
just collects rewards (or punishment) on-the-go and optimizes for the expected
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long-term reward (whereas supervised learning optimizes for the immediate re-
ward). The key advantage is that the design of the rewards is often much simpler
and straight-forward than classifying all data samples.

Reinforcement learning proved to be extremely useful in the case of state-
space exploration – the long-term reward corresponds to the value of each
state [17]. From such values, we can compose a policy which tells the agent
to always take the action leading to the state with the highest value. As an
addition, state values are easily interpretable for humans.

Since the early years, a lot of advanced methods were devised in the area of
reinforcement learning. To name one, Q-learning [25] is often used in connection
with safe exploration. Instead of computing the values of states, it computes
the values of state–action pairs, which has some simplifying consequences. For
example, Q-learning doesn’t need any transition model (i.e. dynamics model) of
the examined system.

A completely different approach is policy iteration. This algorithm starts with
a (more or less random) policy and tries to improve it step-by-step [16]. This
case is very valuable if there already exists a good policy and we only want to
improve it [11].

What do all of these methods have in common, is the need for rather large
training data sets. For simulated environments it is usually not a problem. But
with real robotic hardware, the collection of training samples is not only lengthy,
but also dangerous (be it mechanical wear or other effects). Another common
feature of RL algorithms is the need to enter unknown states, which is inherently
unsafe.

As can be seen from the previous paragraph, safety is an important issue
connected with reinforcement learning. However, the first articles focused on
maintaining safety during exploration started to appear much later after the “dis-
covery” of RL. Among the first, Heger [15] “borrowed” the concept of a worst-
case criterion from control theory community. In 1994 he created a variant of
Q-learning where maximization of long-term reward is replaced with maximiza-
tion of minimum of the possible rewards. That basically means his algorithm
prefers to never encounter a bad state (or, at least to choose the best of the bad
states). This approach has one substantial drawback – the resulting policies are
far from being optimal in the long-term–reward sense [10].

In this paper we show the various approaches to safe exploration that have
emerged so far. We classify the methods by various criteria and suggest suitable
use cases for them. To better illustrate some of the practical details, we use
the UGV (Unmanned Ground Vehicle) robotic platform from EU FP7 project
NIFTi [6] (see Figure 1) as a reference agent. It may happen that in these
practical details we assume some advantages of UGVs over UAVs (Unmanned
Aerial Vehicles), like the ability to stand still without much effort, but it is
mostly easy to convert these assumptions to UAVs, too.

Further organization of this paper is the following: in Section 2 we discuss
some basics of reinforcement learning (the reader may skip it if he is familiar
with reinforcement learning); Section 3 is an overview of the safety definitions
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Fig. 1. NIFTi UGV robotic platform

used in literature; Section 4 is the main part concerning the various approaches
to safe exploration, and in Section 5 we conclude the findings and we suggest
some further areas of possible research.

2 Reinforcement learning basics

2.1 Markov Decision Processes

Markov Decision Processes (MDPs) are the standard model for deliberating
about reinforcement learning problems. They provide a lot of simplifications,
but are sufficiently robust to describe a large set of real-world problems.

The simplest discrete stochastic MDP comprises of: [17]

– a finite set of states S

– a finite set of actions A

– a stochastic transition model P : Pt(s, a, s
′) = Pr(st+1 = s′ | st = s, at = a)

for each s, s′ ∈ S, a ∈ A, where Pr stands for probability

– and the immediate reward function R : S×A → R (or R : S×A× S → R
if the reward depends on the stochastic action result)
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To interpret this definition, we say that the at every time instant t the agent is
in a state s, and by executing action a it gets to a new state s′. Furthermore,
executing a particular action in a particular state may bring a reward to the
agent (defined by R).

The most important and interesting property of MDPs is the Markov prop-
erty. If you have a look at the definition of the transition model, the next state
only depends on the current state and the chosen action. Particularly, the next
state is independent of all the previous states and actions but the current one.
To give an example, the robot’s battery level cannot be treated implicitly by
counting the elapsed time, but rather it has to be modeled as a part of the
robot’s state.

Once the model is set up, everything is ready for utilizing an MDP. “The
agent’s job is to find a policy π mapping states to actions, that maximizes
some long-run measure of reinforcement” [17]. The “long-run” may have different
meanings, but there are two favorite optimality models: the first one is the finite
horizon model, where the term J =

∑h
t=0 rt is maximized (h is a predefined time

horizon and rt is the reward obtained in time instant t while executing policy π).
The dependency of rt on the policy is no longer obvious from this notation, but
this is the convention used in literature when it is clear which policy is used. This
model represents the behavior of the robot which only depends on a predefined
number of future states and actions.

The other optimality model is called discounted infinite horizon, which means
we maximize the discounted sum J =

∑∞
t=0 γ

trt with γ ∈ (0, 1) being the
discount factor. The infinite horizon tries to find a policy that is the best one
taking into account the whole future. Please note the hidden dependency on the
policy π (and the starting state s0) – it is the policy that decides on which action
to take, which in turn specifies what will the reward be.

Other extensions of MDPs to continuous states, time or actions are beyond
the scope of this overview. However, some of the referenced papers make use of
these continuous extensions, which proved to be useful for practical applications.

2.2 Value iteration

Value iteration is one of the basic methods for finding the optimal policy. To
describe this algorithm, it is first needed to define the essential notion of the
optimal value of a state. In this whole subsection we suppose the discounted
infinite horizon model, but analogous results can be shown for finite horizon,
too. “The optimal value of a state is the expected infinite discounted sum of
reward that the agent will gain if it starts in that state and executes the optimal
policy.” [17] Given a policy π, the induced value function is therefore defined as

Vπ(s) = E

[ ∞∑
t=0

rkγ
k

]
, (1)

where E denotes the expected value and rk are the rewards for executing policy
π. Taking the best value function over all policies then yields the optimal value
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function V∗: [17]
V∗(s) = max

π
Vπ(s) . (2)

Inversely, if we have the value function given, we can derive a policy from
that. It is a simple policy that always takes the action leading to the most
profitable neighbor state (with the highest value).

One useful formulation of the properties of the optimal value function is
the formulation using the recurrent Bellman equations which define a dynamic
system that is stable for the optimal value function. We can say a state’s optimal
value is the best immediate reward plus its best neighbor’s optimal value: [17]

V∗(s) = max
a

(
R(s, a) + γ

∑
s′∈S

P(s, a, s′)V∗(s′)

)
. (3)

Analogously, we can find the optimal policy using the same Bellman equation:

π∗(s) = argmax
a

(
R(s, a) + γ

∑
s′∈S

P(s, a, s′)V∗(s′)

)
. (4)

The Value iteration algorithm is based on trying to compute the solution
of Equation 4 using iterative Bellman updates (refer to Algorithm 1). In the
algorithm, we use a structure called Q to store the “value” of state-action pairs.
In Value iteration it is just a structure to save intermediate results, but it is the
core of the Q-learning algorithm (described in Section 2.3). The stopping crite-
rion of the Value iteration algorithm is not obvious, but Williams and Baird [26]
derived an easily applicable upper bound on the error of the computed value
function.

That said, after a sufficient number of those simple iterations, we can compute
the almost optimal value function. The number of iterations needed for Value
iteration to converge may be impractically high, but it is shown that the optimal
policy converges faster [4], thus making Value iteration practical.

2.3 Q-learning

Just a small change to the Value iteration algorithm results in Q-learning. The
basic algorithm is the same as Value iteration, just the update step is done
differently (refer to Algorithm 2). The consequence of this change is that no
model of the system (transition function P) is needed. It is sufficient to execute
all actions in all states equally often, and Watkins [25] proved that if Q-learning
were run for an infinite time, the computed Q would converge to the optimal
Q∗ (an analogue of V∗).

2.4 Policy iteration

Policy iteration is a completely different approach to computing the optimal pol-
icy. Instead of deriving the policy from the Value or Q function, Policy iteration
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Algorithm 1 The Value iteration algorithm [17]

Input: an MDP (states S, actions A, rewards R, transition model P)

Output: the optimal value function V∗, resp. the optimal policy π∗

derived from the value function

1. V(s) := arbitrary function

2. π := the policy derived from V
3. while π is not good enough do

4. for all s ∈ S do

5. for all a ∈ A do

Update:

6. Q(s, a) := R(s, a) + γ
∑
s′∈S

P(s, a, s′)V(s′)

7. end for

8. V(s) := max
a

Q(s, a)

9. end for

10. π := the policy derived from V
11. end while

12. V∗ := V, π∗ := π

Algorithm 2 The Q-learning algorithm (only the parts that differ from Value
iteration when V is substituted with Q) [17]

Input: an MDP (states S, actions A, rewards R, transition model may be

unknown)

Output: the optimal state-value function Q∗, resp. the optimal policy π∗

derived from the state-value function

6. Q(s, a) := Q(s, a)+

α
[
R(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

]
8. line left out
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works directly with policies. In the first step, a random policy is chosen. Then
a loop consisting of policy evaluation and policy improvement repeats as long as
the policy can be improved [17] (refer to Algorithm 3 for details). Since in every
step the policy gets better, and there is a finite number of different policies, it
is apparent that the algorithm converges [23].

Policy iteration can be initialized by a known, but suboptimal policy. Such
policy can be obtained e.g. by a human operator driving the UGV. If the initial
policy is good, Policy iteration has to search much smaller subspace and thus
should converge more quickly than with a random initial policy [11].

Algorithm 3 The Policy iteration algorithm [17]

1. π′ = arbitrary policy

2. repeat

3. π := π′

Policy evaluation: (system of linear equations)

4. Vπ(s) = R(s, π(s)) + γ
∑
s′∈S

P(s, π(s), s′)Vπ(s′)

Policy improvement:

5.

π′(s) := argmax
a∈A

[
R(s, a) + γ

∑
s′∈S

P(s, a, s′)Vπ(s′)
]

6. until π = π′

3 Defining safety

To examine the problems of safe exploration, it is first needed to define what
exactly is the safety we want to maintain. Unfortunately, there is no unified
definition that would satisfy all use cases; thus, several different approaches are
found in the literature. An intuitive (but vague) definition could be e.g.: “State-
space exploration is considered safe if it doesn’t lead the agent to unrecoverable
and unwanted states.” It is worth noticing here that unwanted doesn’t necessarily
mean low-reward. In the next subsections we present the main interpretations
of this vague definition.

3.1 Safety through labeling

The largely most used definition of safety is labeling the states/actions with one
of several labels indicating the level of safety in that state/action. What varies
from author to author is the number and names of these labels.

To start with, Hans [14] has the most granular division of state/action space.
His definitions are as follows (slightly reformulated):
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– an (s, a, r, s′) tuple (transition) is fatal if the reward r is less than a certain
threshold (s is the original state, a is an action and s′ is the state obtained
after executing a in state s, yielding the reward r),

– an action a is fatal in state s if there is non-zero probability of leading to
a fatal transition,

– state s is called supercritical if there exists no policy that would guarantee
no fatal transition occurs when the agent starts in state s,

– action a is supercritical in state s if it can lead to a supercritical state,
– state s is called critical if there is a supercritical or fatal action in that state

(and the state itself is not supercritical),
– action a is critical in state s if it leads to a critical state (and the action

itself is neither supercritical nor fatal in s),
– state s is called safe if it is neither critical nor supercritical,
– action a is safe in state s if it is neither critical, nor supercritical, nor fatal

in state s,
– and finally a policy is safe if for all critical states it leads to a safe state in

a finite number of non-fatal transitions (and if it only executes safe actions
in safe states).

Since we will compare other definitions the the Hans’, it is needed to define
one more category. A state s is called fatal if it is an undesired or unrecoverable
state, e.g. if the robot is considered broken in that state. The fatal transition
can then be redefined as a transition ending in a fatal state. Opposite to the
precisely defined terms in Hans’ definition, the meaning of words “undesired”
and “unrecoverable” here is vague and strongly task-dependent.

Continuing on, Geibel [12] defines only two categories – fatal and goal states.
“Fatal states are terminal states. This means, that the existence of the agent ends
when it reaches a fatal state” [12]. This roughly corresponds to our defined set of
fatal states. Goal states are the rest of final states that correspond to successful
termination. Since Geibel only considers terminal states for safety, his goal states
correspond to a subset of safe states. The other Hans’ categories need not be
represented, since they are meaningless for final states.

An extension of Geibel’s fatal and goal states is a division presented by
Garćıa [10]. His error and non-error states correspond to fatal and goal states,
but Garćıa adds another division of the space – the known and unknown states,
where known states are those already visited (and known have empty intersection
with error). He then mentions a prerequisite on the MDP that if an action leads
to a known error/non-error state, then its slight modification must also lead to
an error/non-error state (a metric over the state space is required).

In Ertle’s work [9], again the two basic regions are considered – they are
called desired and hazardous (corresponding to safe and fatal). However, due
to the used learning technique, one more region emerges – the undesired region.
It contains the whole hazardous region and a “small span” comprising of desired
states, and denotes the set of states where no training (safe) samples are avail-
able, because it would be dangerous to acquire those samples. In particular, he
says that “The hazards must be ‘encircled’ by the indications of the undesired
approaching so that it becomes clear which area [. . . ] is undesired” [9].
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A summary of the labeling-based definitions is shown in Figure 3. We ex-
amined the apparent imbalance between the number of categories Hans defines,
and the other definitions, and that led us to the following observations.

The first observation is that creating labels for actions or transitions is un-
necessary. If we need to talk about the “level of safety” of an action, we can
use the worst label out of all possible results of that action (which retains com-
patibility with Hans’ definitions). Moreover, as “it is impossible to completely
avoid error states” [22], we can ignore the effects of the action which have only
small probability (lower than a safety threshold) – we will call such effects the
negligible effects.

A second remark is that the fatal and supercritical sets can be merged.
In Hans’ work we haven’t found any situation where distinguishing between su-
percritical and fatal would bring any benefit. Specifically, in his work Hans
states that: “Our objective is to never observe supercritical states” [14], which
effectively involves avoiding fatal transitions, too. And since we avoid both su-
percritical and fatal, we can as well avoid their union.

Third, safety of a state does not necessarily depend on the reward for getting
to that state. E.g. when the UGV performs a victim detection task, going away
from the target area may be perfectly safe, but the reward for such action should
be small or even negative.

Putting these observations together, we propose a novelty definition of safety
for stochastic MDPs, which is a simplification of Hans’ model and a generaliza-
tion of the other models:

– A state is unsafe if it means the agent is damaged/destroyed/stuck. . . or it
is highly probable that it will get to such state regardless of further actions
taken.

– A state is critical if there is a not negligible action leading to an unsafe
state from it.

– A state is safe if no available action leads to an unsafe state (however, there
may be an action leading to a critical state).

To illustrate the definition on a real example, please refer to Figure 2. In 2(a),
the UGV is in a safe state, because all actions it can take lead again to safe
states (supposing that actions for movement do not move the robot for more
than a few centimeters). On the other hand, the robot as depicted in 2(b) is
in a critical state, because going forward would make the robot fall over and
break. If the robot executed action “go forward” once more, it would come to
an unsafe state. Right after executing the action it would still not be broken;
however, it would start falling and that is unsafe, because it is not equipped to
withstand such fall and therefore it is almost sure it will break when it meets
the ground.

3.2 Safety through ergodicity

An MDP is called ergodic iff for every state there exists a policy that gets the
agent to any other state [20]. In other words, every mistake can be remedied in
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(a) A safe state.

(b) A critical state – if the robot went still forward, it would fall down and probably
break.

Fig. 2. An illustration of safe and critical states.
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such MDP. Moldovan [20] then defines δ-safe policies as policies guaranteeing
that from any state the agent can get to the starting state with probability at
least δ (using a return policy, which is different from the δ-safe one). Stated
this way, the safety constraint may seem intractable, or at least impractical –
it is even proved, that expressing the set of δ-safe policies is NP-hard [20]. An
approximation of the constraint can be expressed in the terms of two other MDP
problems which are easily solved [20]; that still leads to δ-safe policies, but the
exploration performance may be suboptimal.

In our view, safety through ergodicity imposes too much constraints on the
problems the agent can learn. It sometimes happens that a robot has to learn
some task after which it is not able to return to the initial state (e.g. drive down
a hill it cannot go upwards; a human operator then carries the robot back to the
starting position). But the inability to “return home” in no means indicates the
robot is in an unsafe state.

3.3 Safety through costs

Another definition of safety is to define a cost for taking an action/being in
a state and minimize the worst-case cost of the generated policies (up to some
failure probability). Such approach is presented in [15].

However, unless a threshold is set, this definition leads only to the safest pos-
sible policies, which are not necessarily safe. Expressing the safety using costs
is natural for some RL tasks (e.g. when learning the function of a dynamic
controller of an engine, the engine’s temperature can be treated as a cost). Un-
fortunately, not all unsafe states can be described using such costs in general.
In addition, specifying the right costs may be a difficult task.

3.4 Safety as variance of the expected return

An alternative to safety as minimization of a cost (either worst-case or expected)
is minimizing both the cost and its variance. This approach is called expected
value-variance criterion [15] and is used mainly in works prior 2000, e.g. [7].
A safe policy by this criterion can be viewed as a policy that minimizes the
number of critical actions (because fatal transitions are expected to yield much
larger costs than safe transitions, increasing the variance significantly).

As stated in [10], the worst-case approach is too restrictive and cautious.
The other expected value-variance criteria suffer from the same disadvantages
as safety through costs – mainly from the general difficulty to tune up the costs.

4 Safe exploration approaches

Finally, when the theoretical concepts have been shown and the various safety
definitions have been presented, we can focus on the main part of this overview.
Our categorization of safe exploration techniques is based on the work of Garćıa
[10]. The basic division is as follows: approaches utilizing the expected return



LNCS: Safe Exploration for Reinforcement Learning 13

or its variance (Sec. 4.1), labeling-based approaches (Sec. 4.2) and approaches
benefiting from prior knowledge (Sec. 4.3).

4.1 Optimal control approaches

Techniques in this category utilize variations of the expected value-variance safety
criterion. The most basic one is treating the rewards as costs (when a reward is
denoted by rt, the corresponding cost is denoted by ct). Standard RL methods
can then be used to solve the safe exploration task, as described e.g. in [7] for
discounted infinite horizon.

The RL objective function

J = E

[ ∞∑
t=0

γtct

]
(5)

is called the risk-neutral objective. To make this objective risk-sensitive, we spec-
ify a risk factor α and rewrite the objective as: [15]

J = 1
α logE [exp (αγt

∑∞
t=0 ct)] (6)

' E [
∑∞
t=0 γ

tct] + α
2 V ar [

∑∞
t=0 γ

tct] ,

which is also called the expected value-variance criterion. This approach is a part
of theory using exponential utility functions, which is popular in optimal con-
trol [19]. To complete this section, the worst-case objective function (also called
the minimax objective) is defined as

J = sup

[ ∞∑
t=0

γtct

]
. (7)

As can be seen, the objective functions containing expectations cannot in fact
assure that no unsafe state will be encountered. On the other hand, the minimax
objective provides absolute certainty of the safety. However, it may happen that
some of the unsafe states can only be reached with a negligible probability. In
such cases, the α-value criterion defined by [15] can be used – it only takes
into account rewards that can be reached with probability greater than α. In
the work of Mihatsch [19], a scheme is presented that allows to “interpolate”
between risk-neutral and worst-case behavior by changing a single parameter.

Delage’s work [8] takes into account the uncertainty of parameters of the
MDP. It is often the case that the parameters of the MDP are only estimated
from a limited number of samples, causing the parameter uncertainty. He then
proposes a possibility that the agent may “invest” some cost to lower the uncer-
tainty in the parameters (by receiving some observations from other sources than
exploration). A completely new research area then appears – to decide whether
it is more valuable to pay the cost for observations, or to perform exploration
by itself.
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An approximation scheme for dealing with transition matrix uncertainty is
presented in [21]. It considers a robust MDP problem and provides a worst-case,
but also robust policy (with respect to the transition matrix uncertainty).

A theory generalizing these approaches can be found in [24]. The theory states
that the optimal control decision is based on three terms – the deterministic,
cautionary and probing terms.

The deterministic term assumes the model is perfect and attempts
to control for the best performance. Clearly, this may lead to disaster
if the model is inaccurate. Adding a cautionary term yields a controller
that considers the uncertainty in the model and chooses a control for
the best expected performance. Finally, if the system learns while it
is operating, there may be some benefit to choosing controls that are
suboptimal and/or risky in order to obtain better data for the model
and ultimately achieve better long-term performance. The addition of
the probing term does this and gives a controller that yields the best
long-term performance.[24]

To conclude this section, we think that these methods are not well suited for
safe exploration – the expected value-variance and similar criteria provide no
warranties on the actual safety. On the other hand, the worst-case approaches
seem to be too strict.

4.2 Labeling-based approaches

The approaches utilizing some kind of state/action labeling (refer to Section 3.1
for the various labeling types) usually make use of two basic components – a risk
function and a backup policy. The task of the safety function is to estimate the
safety of a state or action. In the simplest case, the safety function can just
provide the labeling of the given action; or it can return a likelihood that the
action is safe; and in the best case, it would answer with a likelihood to be safe
plus a variance (certainty) of its answer. The backup policy is a policy that is
able to lead the agent out of the critical states back to the safe area. It is not
obvious how to get such a policy, but the authors show some ways how to get
one.

In the work of Hans [14], the most granular labeling is used, where fatal
transitions are said to be the transitions with reward less than a given threshold.
The safety function is learned during the exploration by collecting the so-called
min-reward samples – this is the minimum reward ever obtained for executing
a particular action in a particular state. The backup policy is then told to either
exist naturally (e.g. a known safe, but suboptimal controller), or it can also be
learned. To learn the backup policy, an RL task with altered Bellman equations
is used:

Q∗min(s, a) = max
s′

min
[
R(s, a, s′),max

a′
Q∗min(s′, a′)

]
.

A policy derived from the computed Q∗min function is then taken as the backup
policy (as it maximizes the minimum reward obtained, and the fatal transitions
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are defined by low reward). He defines a policy to be safe, if it executes only safe
actions in safe states and produces non-fatal transitions in critical states. To learn
such safe policy, he then suggests a level-based exploration scheme (although he
gives no proofs why it should be better than any other exploration scheme).
This scheme is based on the idea that it is better to be always near the known
safe space when exploring. All unknown actions from one “level” are explored,
and their resulting states are queued to the next “level”. For exploration of
unknown actions he proposes that the action should be considered critical until
proved otherwise, so the exploration scheme uses the backup policy after every
unknown action execution. A disadvantage of this approach is that the agent
needs some kind of “path planning” to be able to get to the queued states and
continue exploration from them.

Garćıa’s PI-SRL algorithm [10] is a way to safeguard the classical policy
iteration algorithm. Since the labels error/non-error are only for final states,
the risk function here is extended by a so called Case-based memory, which is
in short a constant-sized memory for storing the historical (s, a, V(s)) samples
and is able to find nearest neighbors for a given query (using e.g. the Euclidean
distance). In addition to the error and non-error states, he adds the definition of
known and unknown states, where known states are those that have a neighbor
in the case-based memory closer than a threshold. A safe policy is then said to be
a policy that always leads to known non-error final states. To find such policy,
the policy iteration is initialized with the safe backup policy and exploration is
done via adding a small amount of Gaussian noise to the actions. This approach
is suitable for continuous state- and action-spaces.

Another approach is presented in the work of Geibel [12], where the risk and
objective functions are treated separately. So the risk function only classifies the
states (again only final states) as either fatal or goal, and the risk of a policy
(risk function) is then computed as the expected risk following the policy (where
fatal states have risk 1 and goal states have risk 0). The task is then said to be
to maximize the objective function (e.g. discounted infinite horizon) w.r.t. the
condition that the risk of the considered policies is less than a safety threshold.
The optimization itself is done using modified Q-learning, and the optimized ob-
jective function is a linear combination of the original objective function and the
risk function. By changing the weights in the linear combination the algorithm
can be controlled to behave more safely or in a more risk-neutral way.

A generalization of Geibel’s idea to take the risk and reward functions sep-
arately can be found in the work of Kim [18]. In this work, the constrained RL
task is treated as a Constrained MDP and the algorithm CBEETLE for solving
the Constrained MDPs is shown. The advantage of this work is that it allows
for several independent risk (cost) functions and doesn’t need to convert them
to the same scale.

A similar approach of using constrained MDP to solve the problem can be
found in the work of Moldovan [20]. He does, however, use the ergodicity condi-
tion to tell safe and unsafe states apart (that is, safe are only those states from
which the agent can get back to the initial state). Moreover, this approach is only
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shown to work for toy examples like the grid world with only several thousands
of discrete states, which may not be sufficient for real robotics tasks.

The idea of having several risk functions is further developed by Ertle [9].
The agent is told to have several behaviors and a separate safety function is
learned for each behavior. This approach allows for modularity and sharing of
the learned safety functions among different types of agents. More details on this
work will be provided in the next section, because it belongs to learning with
teachers.

An approach slightly different from the previously mentioned in this section
is using the methods of reachability analysis to solve safe exploration. Gillula
in his work [13] defines a set of keep-out states (corresponding to unsafe in our
labeling) and then a set called Pre(τ) is defined as a set of all states from which
it is possible to get to a keep-out state in less than τ steps. Reachability analysis
is used to compute the Pre(τ) set. Safe states are then all states not in Pre(τ)
for a desired τ . This approach, however, doesn’t utilize reinforcement learning,
it computes the optimal policy using standard supervised learning methods with
one additional constraint – that the system must use safe actions near the Pre(τ)
set. On the other hand, the system is free to use whatever action desired when
it is not near Pre(τ).

As was presented in this section, the labeling-based approaches provide a num-
ber of different ways to reach safety in exploration. They are, however, limited in
several ways – some of them make use of the (usually hard-to-obtain) transition
matrix, the others may need to visit the unsafe states in order to learn how to
avoid them, or need the state-space to be metric.

4.3 Approaches benefiting from prior knowledge

The last large group of safe exploration techniques are the ones benefiting from
various kinds of prior knowledge (other than the parameters of the MDP). We
consider this group the most promising for safe exploration, because “it is impos-
sible to avoid undesirable situations in high-risk environments without a certain
amount of prior knowledge about the task”[10].

The first option how to incorporate prior knowledge into exploration is to
initialize the search using the prior knowledge. In fact, several works already
mentioned in previous sections use prior knowledge – namely the approaches
with a backup policy (Hans [14], Garćıa [10]). Also, Garćıa suggests that the
initial estimate of the value function can be done by providing prior knowledge,
which results in much faster convergence (since the agent does no more have to
explore really random actions, the estimate of the value function already “leads
it” the right way) [10].

Another option how to incorporate prior knowledge is by using Learning from
Demonstration (LfD) methods. Due to the limited space, we will not give the
basics of LfD – a good overview of the state-of-the-art methods is for example
in [2]. For our overview, it is sufficient to state that LfD methods can derive
a policy from a set of demonstrations provided by a teacher. What is important,
is that the teacher does not necessarily have to have the same geometrical and
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physical properties as the trainee (although it helps the process if possible). It is
therefore possible to use LfD to teach a 5-joint arm to play tennis, while using
3-joint human arm as the source of demonstrations (but the learned policy may
be suboptimal; RL should then be used to optimize the policy).

In Apprenticeship Learning [1], the reward function is learned using LfD.
The human pilot flies a helicopter at his best, and both system dynamics and
the reward function are learned from the demonstrations. It is however apparent
that the performance of the agent is no longer objectively optimal, but that it
depends on the abilities of the human pilot.

Another way of incorporating prior knowledge into the learning process is
to manually select which demonstrations will be provided, as in the work of
Ertle [9]. In the work it is suggested that more teacher demonstrations should
come from the areas near the unsafe set, in order to teach the agent precisely
where the border between safe and unsafe is located.

The last technique described in our overview is interleaving autonomous ex-
ploration with teacher demonstrations. As in the previous case, some teacher
demonstrations are provided in advance, and then the exploration part starts
utilizing the teacher-provided information. After some time, or in states very
different from all other known states, the agent requests the teacher to provide
more examples [2,5]. The idea behind this algorithm is that it is impossible to
think out in advance what all demonstrations will the agent need in order to
learn the optimal policy.

Finishing this section, the algorithms utilizing prior knowledge seem to be the
most promising out of all the presented approaches. They provide both a speedup
of the learning process (by discarding the low-reward areas) and a reasonable
way to specify the safety conditions (via LfD or interleaving).

5 Conclusion

In our work we have given a short introduction on the basics of Markov Decision
Processes as well as the basic Reinforcement Learning methods like Value Iter-
ation, Q-learning and Policy Iteration. In Section 3 we have summarized many
recent approaches on how to define safety in the framework of optimal control
and reinforcement learning. We have also proposed a novelty definition of safety,
which divides the state space to safe, critical and unsafe states. We have shown
that all other labeling-based safety definitions are covered by our new definition.

In Section 4 many different safe exploration methods are categorized into
three basic groups – algorithms from optimal control theory, reinforcement learn-
ing algorithms based on state labeling, and algorithms utilizing extra prior
knowledge. We have shortly summarized the advantages and disadvantages of the
particular approaches. We have also stated that at least for difficult real-world
problems, safe exploration without prior knowledge is practically impossible,
and prior knowledge almost always helps to achieve faster convergence. Another
observation has been that some of the safe exploration algorithms need to visit
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unsafe states to correctly classify them later, which might discard them from
some usage scenarios where the unsafe states are really fatal.

It seems to us that the field of safe exploration in reinforcement learning has
been very fragmented and lacks an all-embracing theory. However, the question
is, if it is even possible to find such theory – the main problem may be the
fragmentation and differences of various RL methods themselves. At least, the
safe exploration community would benefit from a unification of the terminology
(and our proposal of the novelty safety labeling would like to help that).

Other ways of possible future research are for example the following. New
ways of incorporating prior knowledge into methods not utilizing it yet could
bring interesting speed-up of those algorithms. There is also a bottleneck in the
estimation of the results of unknown actions – some advanced function approx-
imation methods should be explored (we aim to investigate Gaussian Processes
this way). There are not enough experiments from difficult continuous real-world
environments, which would show for example how large problems can be solved
using safe exploration. The interleaved learning needs some guidelines on how
to cluster the queries for the teacher to some larger “packs” and “ask” them
together, possibly increasing the fully autonomous operating time. Last, but
not least, the possibility to share some learned safety functions among different
kinds of robots seems to be an unexplored area with many practical applications
(maybe robot-to-robot LfD could be used).
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14. Hans, A., Schneegaß, D., Schäfer, A., Udluft, S.: Safe exploration for reinforcement
learning. In: Proceedings of European Symposium on Artificial Neural Networks.
pp. 23–25. No. April (2008)

15. Heger, M.: Consideration of risk in reinforcement learning. In: 11th International
Machine Learning Conference (1994)

16. Howard, R.A.: Dynamic Programming and Markov Processes. Technology Press of
Massachusetts Institute of Technology (1960)

17. Kaelbling, L.P., Littman, M.L., Moore, A.W.: Reinforcement Learning: A Survey.
Journal of Artificial Intelligence Research 4, 237–285 (1996)

18. Kim, D., Kim, K.E., Poupart, P.: Cost-Sensitive Exploration in Bayesian Reinforce-
ment Learning. In: Proceedings of Neural Information Processing Systems (NIPS)
(2012)

19. Mihatsch, O., Neuneier, R.: Risk-sensitive reinforcement learning. Machine learning
49(2-3), 267–290 (2002)

20. Moldovan, T.M., Abbeel, P.: Safe Exploration in Markov Decision Processes. In:
Proceedings of the 29th International Conference on Machine Learning (May 2012)

21. Nilim, A., El Ghaoui, L.: Robust Control of Markov Decision Processes with Un-
certain Transition Matrices. Operations Research 53(5), 780–798 (Oct 2005)

22. Peter Geibel, Wysotzki, F.: Risk-Sensitive Reinforcement Learning Applied to Con-
trol under Constraints. Journal Of Artificial Intelligence Research 24, 81–108 (Sep
2011)

23. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Pro-
gramming. John Wiley & Sons, Inc., New York, NY, USA, 1st edn. (1994)

24. Schneider, J.G.: Exploiting model uncertainty estimates for safe dynamic control
learning. Neural Information Processing Systems 9, 1047–1053 (1996)

25. Watkins, C.J., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (May
1992)

26. Williams, R.J., Baird, L.C.: Tight performance bounds on greedy policies based on
imperfect value functions. Tech. rep., Northeastern University,College of Computer
Science (1993)


	LNCS: Safe Exploration for Reinforcement Learning
	Introduction
	Reinforcement learning basics
	Markov Decision Processes
	Value iteration
	Q-learning
	Policy iteration

	Defining safety
	Safety through labeling
	Safety through ergodicity
	Safety through costs
	Safety as variance of the expected return

	Safe exploration approaches
	Optimal control approaches
	Labeling-based approaches
	Approaches benefiting from prior knowledge

	Conclusion
	Acknowledgments


