
ul drv - uLan RS-485 Communication Driver

Pavel Pisa (pisa@cmp.felk.cvut.cz)

2nd December 2002

Contents

1 What is uLan 1

2 uLan Message Protocol 2
2.1 Data Frame Format . 2
2.2 Access Arbitration and Timing . 3
2.3 Control Characters . 4
2.4 Commands or Frame Type Codes . 4

3 uLan driver 5
3.1 Install driver for Linux . 5
3.2 Install KMD for Windows . 7
3.3 WDM Driver for Windows . 8
3.4 Driver Implementation . 9
3.5 Organization of Source Files . 10
3.6 RS-485 Converter . 10

4 uLan Interface and Services 11
4.1 Message Sending and Reception . 11
4.2 Query Module Type . 16
4.3 Network Control Messages . 16
4.4 Dynamic Address Assignment . 17

5 uLan Object Interface Layer 17

1 What is uLan

uLan provides 9-bit message oriented communication protocol, which is transferred over RS-485
link. Characters are transferred same way as for RS-232 asynchronous transfer except parity bit,
which is used to distinguish between data characters and protocol control information. A physical
layer consists of one twisted pair of leads and RS-485 transceivers.

Use of 9-bit character simplifies transfer of binary data and for intelligent controllers can lower
the CPU load, because of the CPU need not to care about data characters send to other node.
Producers of most microcontrollers for embedded applications know that and have implemented
9-bit extension in UARTs of most of today’s MCUs. There is the list below to mention some of
them :

• all Intel 8051 and 8096 based MCUs with UART

• members of Motorola 683xx family (68332, 68376, ...)

• Hitachi H8 microcontrollers

1

mailto:pisa@cmp.felk.cvut.cz

Intel has developed a multiprotocol UART i82510, which is very well suited for implementing 9-bit
communication interface for PC computers. The second example of the chip, which is well suited
for 9-bit communication, is OX16C954-PCI produced by Oxford Semiconductors.

One of the problems of 9-bit communications is missing standardization of message protocol.
Drivers and formats of one possible implementation of uLan message protocol are described below.

2 uLan Message Protocol

2.1 Data Frame Format

The data frame is a basic communication unit of the uLan protocol. The frame has its destination
(node address, general address or not addressed reply start), source node, frame type or com-
mand, end mark and integrity check xor sum. The frame consists of sequence of 9-bit characters.
Characters are transferred asynchronously, so every character has one start bit, nine data bits and
one stop bit, see fig 1. Total transfer time of one character is equal to transfer of 11 bits. Control
characters are transferred with bit D8 equal to one. These control characters appears only on
begin and end of the data frame.

D0 D1 D2 D3 D4 D5 D6 D7 D8

start bit
stop bit

char begin

Transfered character

Figure 1: 9-bit Character Format

The data frame starts with a control character equal to the destination node address (DAdr)
or an indication of the reply frame (uL Beg). The receiving of this character wakes up all nodes
and every node decides if rest of the frame will be received. The second character in the frame
is an address of the source node (SAdr) and next character is command number or message type
(Com). These characters and continuing frame data body are transferred with D8 equal to zero.
No length information is sent with frame and frame data body can contain from none to maximum
data characters defined by maximal admissible blocking time for other nodes. It is recommended,
that data length should not exceed 2kB. The end of data body is marked by the frame end control
character, which is followed by the integrity check code (xor sum). The check code (xor sum) is
counted from all control and data characters of the frame as cumulative xor and addition of one.

The frame end control character selects, what should a node do after receive of the frame.
There are four possible values (uL End, uL Arq, uL Prq, uL Aap).

uL End frame should be transferred into the input queue

uL Arq frame should be transferred into an input queue, but the sending node is waiting for
the acknowledge about successful receiving of the frame. The frame in acknowledged by
sending of the character (uL ACK). In case of xor sum error or other undefined problem
negative acknowledge should be sent (uL NAK). Delay equivalent to transfer time of more
than three characters is considered by the sender as negative acknowledge or missing node
with specified address too. The input queue full condition can be signaled to the sender
by “wait please” negative acknowledge (uL WAK). It solves the problem of overloading of
the network by repeating attempts to deliver a message to the node, which has no room to

2

receive messages at the moment. The sender node can wait or process other messages before
next attempts. uL Arq cannot be specified for frames with general destination address and
reply frames, because of it can lead to parallel sending of uL ACK from more nodes, which
leads to line collision.

uL Prq proceed request marks frame that needs immediate processing after reception. Next
activity is fully defined by command of the frame (Com). Numerical values of these command
should be greater than 80h. Processing of such frame can lead to sending or receiving of
next frame (for example memory read and write commands implied to use next frame for
data).

uL Aap same as uL Prq, but acknowledge should be sent before a start of the frame processing.
uL NAK should be sent in case, that the command is unknown to the receiver node.

SAdrDAdr
or

uL_Beg

Com 0 to MaxBlock
of data bytes

uL_End,
uL_Arq,
uL_Prq

or
uL_Aap

XorSum

Data frame format

Figure 2: uLan Frame Format

2.2 Access Arbitration and Timing

The RS-485 line has no standard instruments to distinguish an access collision. The collision can
be found only by receiving of corrupted message with bad xor sum. Because the uLan protocol
is relatively slow and it is designed to be used for real-time control, it would be bad to rely on
such late collision detect. On the other side, usage of centralized arbiter or token passing behaves
badly when some node dies and takes piece of bandwidth. That is why deterministic distributed
arbitration scheme has been used.

Bus request and release

LAdr delay
(LAdr-Adr-1)
mod 16 + 4

first
connect
mark

delay
Adr

+1

delay

and 3 +1and 3

delay
(Adr shr 2) (Adr shr 4)

and 3 +1

release

with DAdr of
first frame

transfer of data
frames beginning of bus by

LAdr=Adr
or 80h

Figure 3: uLan Access Arbitration

The deterministic arbitration is achieved by timing rules for access sequence. The Sequence
consist of sending of break characters (11 bits of zero) with enabled line driver and waiting for
specified intervals with disabled line driver and listening for breaks from other nodes. All times
are taken as multiples of time for sending one character, so no additional timer is needed. Before
start of arbitration sequence the node must wait for 4 to 20 character times of no activity on line.
This time is calculated from difference of own address and address of last node owning line. The
last owner address with B7 and B8 set is used as line release signal. To revitalize communication
in case, that last wining node dies before sending of release signal, silence of more than four

3

characters is taken as indication of such situation. All nodes sets interval 20 character times in
such case. If node receives any character in this wait interval, it considers line as busy and must
wait for release signal or long silence (die of previous master). This scheme lowers possibility of
collision and its second benefit is cyclic priority between 16 masters with waiting messages with
no decrease of total bandwidth.

To satisfy fully deterministic arbitration between 64 masters, arbitration sequence continues
after first break character by sending another three ones in times fully determined by own address
of master. Receiving of any character at time of inter-break delay leads to lost of arbitration. Full
timing specification is written in figure 3.

2.3 Control Characters

Control characters have bit D8 set and are received by all nodes. They delimit frames and controls
bus busy state by bit D7. The sending of an address with bit D7 and D8 set means release of the
bus. All values of control characters except destination addresses are selected such way, that their
mutual Hamming’s distance is at least 2.

Name Value Description
DAdr 100h General address
DAdr 101h .. 164h Destination node address
uL Beg 175h Begin of unaddressed frame
uL END 17Ch End of frame
uL ARQ 17Ah End with acknowledge request
uL PRQ 179h End with proceed request
uL AAP 176h End with acknowledge and proceed request
uL ERR 17Fh Error without release of bus
LAdr 181h .. 1E4 Release of bus by node
uL ERR 1FFh Error, abort and release bus

Next table shows characters used for acknowledge. They are not real control characters (D8=0),
but they are important for protocol too and Hamming’s distance is selected to 4.

Name Value Description
uL ACK 019h Acknowledge of frame
uL NACK 07Fh Negative acknowledge
uL WAK 025h Receiver can probably receive message later, but cannot now

2.4 Commands or Frame Type Codes

Next table shows preferred value ranges of command codes for frames with different processing.

Command Range Type of Message Processing
00h .. 3Fh Store to buffer
40h .. 7Fh Store to buffer without uL ACK
80h .. 9Fh Immediate process
A0h .. BFh Process with additional receive
C0h .. FFh Process with additional send

4

Some of the defined commands are enumerated in the next table. Most of them are designed
for target system debugging, and that is why, it is necessary to process these frames immediately
after receiving and processing must be done in high priority interrupt services. The second part
of table summarizes commands/types used for higher level services.

Name Value Description
UL CMD RES 80h Reinitialize RS485
UL CMD SFT 81h Test free space in input buffer
UL CMD SID F0h Send identification
UL CMD SFI F1h Send amount of free space in input queue
UL CMD TF0 98h End of stepping
UL CMD TF1 99h Begin of stepping
UL CMD STP 9Ah Do step
UL CMD DEB 9Bh Additional debug commands
UL CMD SPC DAh Send state
UL CMD RDM F8h Memory read
UL CMD WRM B8h Memory write
UL CMD OI 10h Standard value for uLan OI
UL CMD OIr 11h Standard type for uLan OI reply
UL CMD NCS 7Fh Network control service
UL CMD SNST C1h Fast status and connection check

3 uLan driver

ul drv is the Linux device driver designed to access the uLan network. Today supported hardware
is ISA i82510 RS-485 card or simple active converter dongle for standard PC RS-232 ports. The
driver version 0.5.5 adds support for PCI card equipped by OX16C950-PCI controller. This version
of driver could be compiled for WindowsNT and Windows 2000 as Kernel Mode Driver.

3.1 Install driver for Linux

The "Makefile" is a link to ”Makefile-mod” to compile driver with your kernel configuration.
”Makefile-mod” expect, that kernel sources are in the ”/usr/src/linux” directory and that
kernel sources and its configuration are of same version as the current running kernel. The ker-
nel source self reference link ”/lib/modules/2.y.z/build” is used for new kernels. Enter next
command in the ul drv directory to compile and install the module

make install

The module is installed into ”/lib/modules/x.y.z/misc” directory or ”/lib/modules /x.y.z-
/kernel/drivers/char”.

The driver can control up to nine devices, but only check for 0x3e8 port number is default
behavior after ”insmod ul drv”. Because of driver controls same hardware as the Linux serial
driver, it is necessary to disable default kernel driver for same port in case of conflict. It can be
done for example by

setserial /dev/ttyS2 uart none

Port numbers and others parameters can be defined by module parameters. Special character
device files must be created to access the driver from programs . Suggested names are

5

mknod /dev/ulan0 c 248 0
mknod /dev/ulan1 c 248 1
ln -sf /dev/ulan0 /dev/ulan

”/dev/ulan” is default name for client programs. Major number 248 is in experimental range
and will be changed in future. This number is defined in ul hdep.h. If defined as zero, dynamic
number is assigned after insmod.

ul drv module parameters

port=<iop>{,<iop> ...} up to nine IO port numbers separated by comas for up to four uLan
devices

irq=<int>{,<int> ...} select for every defined device corresponding IRQ number. Value 0
means autoprobe.

chip=<string>{,<string> ...} optional specification of used controller chip: auto, 82510,
16450, 16950-pci

slot=<slot spec>{,<slot spec> ...} optional, used for PnP cards to find baud and my adr
from slot type (pci), full slot specification (pci00:0c.0) or slot with device interface number
specification (pci00:0c.0.1)

baud=<spd>{,<spd> ...} defines transfer baud-rate for every device, default value is 19200

my adr=<adr>{,<adr> ...} node address of every computer interface as seen from uLan
network range is from 1 to 64 default value is 2 for all interfaces

debug=<int> sum of debug flags (FATAL=1, CHIO=2, IRQ=4, MSG=8, FAILS=16, SEQ=32,
PORTS=64, FILE=128, FILT=256)

Most of the parameters are optional. The port and baud are enough for most of ISA or moth-
erboard interfaces. PCI interfaces are matched against parameters in autodetection order. Spec-
ification of slot parameter can be used for precision parameters and minor control. Example
parameters for the dongle converter plugged to regular COM2 port are below.

setserial /dev/ttyS1 uart none
insmod ul drv port=0x2f8 irq=3 baud=9600 my adr=2

Add next lines to “/etc/modules.conf” to enable on-demand module loading

alias /dev/ulan* ul drv
alias char-major-248 ul drv
options ul drv port=0x2f8 irq=3 baud=9600 my adr=2
pre-install ul drv setserial /dev/ttyS1 uart none

The recent versions of the driver supports Linux device filesystem and creates ulan<x> devices af-
ter driver initialization. Device creation and permissions are controlled by the “/etc/devfsd.conf”
file.

LOOKUP ^ulan$ EXECUTE /bin/ln -s ${mntpnt}/ulan0 ${mntpnt}/ulan
LOOKUP ^ulan.* MODLOAD
REGISTER ^ulan[0-9] PERMISSIONS root.users rw-rw----

The first line creates conventional link “/dev/ulan” to default interface. Next line enables module
autoloading and last changes permission to enable access to ordinal users.

6

3.2 Install KMD for Windows

uLan driver can be compiled as WindowsNT/2000 Kernel Mode Driver. Aspects of this version
of driver are described in this paragraph. New WMD PnP version of driver (Windows2000/98)
solves some present limitations of KMD version. Manual installation of current KMD version
consists of next steps :

• driver ”ul drv.sys“ file must be copied to system driver directory “%WINNT%/system32-
/drivers”

• branch “ul drv” in
“HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Services”
should be added

• next keys in “ul drv” branch are responsible for driver automatic of start

– "Type"=dword:00000001

– "Start"=dword:00000002

– "ErrorControl"=dword:00000001

– "DisplayName"="UL DRV"

– "Group"="port"

– "Tag"=dword:00000001

• driver needs to know port address and interrupt line of the ISA card or serial port, this
information is stored in the “ul drv/Parameters” registry branch. Next base port address
and interrupt line apply for default jumpers setting of ISA 82C510 card.

– "Port Address"=dword:000003e8

– "IRQ Line"=dword:00000005

• OX16C954 PCI cards are autodetected by the driver when PCI support is enabled in
“ul drv\Parameters”

– "ScanforPCI"=dword:00000001

• next keys in the “ul drv\Parameters” registry branch selects communication and internal
driver parameters

– "Baud Rate"=dword:00004b00

– "Buffer Size"=dword:00004000

– "My Addr"=dword:00000002

– "Debug"=dword:00000019

Driver is automatically started after reboot. Driver can be started and stopped from the Device
control dialog in WindowsNT environment. The Device Manager started from My Computer .
Properties . Hardware For Windows2000 could be used. View . Show Hidden Devices must be
checked and branch Non PnP drivers must be opened to view ul drv in list of drivers .

There are some limitations of current KMD ul drv driver version. Driver does not recognize and
support more than one uLan interface. Main source of this limitation is the use of simple registry
“Parameters” branch, conflicts with Windows internal RS-232 serial driver and motherboard
PnP management for serial ports with plugged dongle RS-485 adapter.

Next steps should be done in case of problems :

• check of correct registry parameters

7

• “ul drv\enum” branch, “InitStartFailed” and “ImagePath” keys could be deleted

• presence of “ul drv.sys” in “%WINNT%/system32/drivers” should be checked

• reboot computer

3.3 WDM Driver for Windows

The WDM driver is designed for Windows2000 and Windows98 operating systems. It imple-
ments PnP functions. Present version of the driver does not support power management functions.
The binary image of WDM version of the driver has been renamed to “ul wdm.sys” to distinguish
it from WindowsNT KMD version (“ul drv.sys”). Driver can be assigned to one or more PnP
standard serial port with RS-485 converter or OX16C954 based PCI cards from device property
page of device manager. Next steps could be used to select uLan driver for COM2 serial port.

• prepare driver image (“ul wdm.sys”) and installation informations (“ul wdm.inf”) in some
directory. Copy “ul wdm.sys” and “ul wdm98.inf” files to floppy drive in the case of Win-
dows98.

• inspect, that RS-485 converter is plugged to COM2 socket

• open My Computer . Properties . Hardware . Device Manager

• open branch Ports (COM and LPT) and select Serial Port (COM2) . Properties

• select Driver . Actualization, Installation guide dialog opens

• select Next, then Find optimal driver and Next

• check Look for alternative location and reply right directory where prepared files are located

• check Install one from alternative drivers on next dialog to enable alternative drivers selection
dialog and select Next

• choose desired driver, select line with “- uLan xxxx ” extension to install uLan driver .
Same dialog is used to return back to RS-232 driver, when Communication Port (Microsoft)
is chosen

• Press Next, driver is started at this point and guide is closed after press to Finish

The COM2 port is then moved to class unknown, when port is assigned to uLan driver. uLan
communication is possible immediately after port assignment for Windows2000 device manager
(Windows98 requires reboot). When all applications using uLan are stopped, the port can be
disabled or assigned back to standard RS-232 driver (again RS-232 can be used immediately in
Windows2000 environment). Next Registry branch is responsible for the COM2 port driver
assignment

[HKEY LOCAL MACHINE\SYSTEM\CurrentControlSet\Enum\ACPI\PNP0501\2]

The key "Service"="ul wdm" is responsible for driver assignment. The subbranch “Device
Parameters” stores device specific parameters. Next parameters are recognized by actual ver-
sion of driver with shown predefined values

• "uLanBaudrate"=dword:00004b00
communication speed, default 19200 Bd

• "uLanMyAddress"=dword:00000002
uLan address of PC computer on uLan network

8

Instalation of uLan WDM driver for ISA card or PCI card is different in case, that device is not
recognized automatically by PnP manager. In such case Add/Remove Hardware vizard must be
used for class Unknown and driver INF file location must be specified in INF file search dialog.

Registry layout is different and not such clear in case of Windows98. The first branch for
ports added throught Add Hardware vizard is

[HKEY LOCAL MACHINE\Enum\Root\Unknown\0000]

When PnP COM2 port is used, brach is

[HKEY LOCAL MACHINE\Enum\ACPI*PNP0501\00000002]

Above described uLan driver parameters are stored in this branch as well, but driver image name
and load specification is stored in class branches selected by the "Driver" key. Usual storage is

[HKEY LOCAL MACHINE\System\CurrentControlSet\Services\Class\Ports\0001]

Next keys in that branch are critical for uLan driver loading

"DevLoader"="*ntkern"
"NTMPDriver"="ul wdm.sys"

Windows98 are not real operating system and support was added on user request. Use uLan
driver for Windows98 system on your own risk and do not expect any usable real or particular
help.

3.4 Driver Implementation

The driver is implemented as relatively independent layers and subsystems. Messages are prepared
and received in the driver dedicated memory. This memory is divided into blocks with uniform
size with atomic allocation routines. When message is being stored into blocks, head of message
with couple of data bytes is stored in the first allocated memory block. If all data cannot be stored
in the first block, next blocks are allocated and linked together. The message heads are linked
in bidirectional linked lists of messages prepared for sending, processed messages and messages
prepared for client notification. These lists or queues are main mechanism for transferring of
messages between subsystems.

Link protocol is programmed as finite state automata with state stack, which state routines
are executed by interrupt handler. State routine can return positive integer information, negative
error notification or zero, which leads to wait for next interrupt. Information or error is used
as input parameter when state routine is called. When the state routine wants initiate transfer
to another state routine it changes pointer to the actual state routine. If previous state routine
returns nonzero value new routine is called immediately, in other case next interrupt invokes
new state routine. There is stack of callers of actual state routines which enables to constructs
automata subsystems, which can be used in more places in main automata loop. Main purpose of
this automata is to send or process messages coming in list of messages prepared for sending and
if specified, move these messages onto list of messages prepared for client notification. Received
messages are put onto this list too. Subsystem is supervised by timeout handler, which can
revitalize communication in case of die of other node. The interrupt and timeout handlers are
fully SMP reentrant.

The automata subsystem uses pointers to chip driver routines for hardware port manipulation.
This is only part dependent on used chip, today 82510, 16450 and OX16C950PCI. These routines
can send and receive 9 bit character, connect to RS-485 line by the arbitration sequence, wait for
specified time for character and initialize and close port.

File operation subsystem makes interface between OS kernel VFS and client message queues. It
enables to prepare single or multi-frame messages and stores notifications of received or processed
messages in clients’ private state structures. This part is heavily operating system dependent.

9

3.5 Organization of Source Files

Source tree contains directory containing driver kernel source files (”ul drv”), directory with user-
space library hiding system dependent kernel driver access routines (”ul drv”) and some example
utilities (”ul drv”).

ul drv directory containing sources of kernel driver (Linux, DOS, WinNT,
Win2000/98)

k compat.h header file hiding differences between different Linux kernel versions, it
is tested from 2.2.xx up-to 2.5.xx (it could work with kernels down-to
1.3 version)

ul drv.h declaration of bidirectional linked lists of messages, atomic memory allo-
cations, message flags and driver state structure (header is almost target
system independent)

ul hdep.h definition of hardware dependent functions and macros for all target
systems and definition of kernel internal per client state structure

ul drv.c implementation of 16550 and 82510 chip drivers.
includes source of Ox16950 chip driver
generic message processing automata own memory blocks allocation and
queues of messages more IOCTL generic code code for client notifications
and wakeup
Linux kernel device and DEVFS interface PCI plug and play
library target interface, almost done as stub functions to above generic
IOCTL and read and write, enables to link driver directly into applica-
tion, it can be used under DOS or Linux user-space with IRQ emulation
by signals
WinNT target interface, which again uses as most of functions developed
for Linux kernel as possible.It can be compiled into PnP Win2000/Win98
WDM driver with included conditionals and support sources for PnP.
this file is really long and should be divided into more parts, but there
could be problems with make commands under WinNT

ul lib library implementing basic message processing (send, receive, filtering
and notification) and some common commands for applications

drv def.h target system dependent parts of user-space driver API
ulan.h target system independent part of API usable under Linux/DOS/NT

etc.
ul l drv.c kernel driver interface access functions, replaced by direct inclusion of

driver into library for DOS target
ul l msg.c basic message sending and reception functions
ul log.c simple logging facilities for messages send and processed by applications
ul l oi.c basic primitive functions for higher object uLan layer

utils command line test programs independent on target systems
ul buftst.c test of hardware of line transceivers
ul spy.c uLan message monitor
ul sendhex.c intelhex and binay downloader and uploader

3.6 RS-485 Converter

In figure 4 is shown schematic diagram of simple RS-232 to RS-485 dongle converter. This converter
is powered directly from ±12V signals of regular RS-232 port. RTS signal is used for enabling of
line driver. CTS signal is used for direct line logic level reading. Interconnection of TxD and DSR
enables timing by sending of zero characters when output driver is disabled. Then modem status
interrupt can serve as transmit machine empty interrupt, which is not natively implemented in
PC COM hardware.

The converter without external power supply is not well suited for large networks with long

10

���
���
� �
���
���
� �
���
���
�
� �
�
� �
	
� �

� �
�
� 	
�
�

�
� �
�
� �
�

�
� �

�
��������� ���

���

� � � � � �

� �

���
�
�
� �

� ���

�
� �

���
�����

���
� 	

���
�

� �
��
� �
��
� �
��
� ����

� �

� �
� 	
�

� �
� 	
�

� � ��� �

� � ��� �

�
 � �
� �
� �!

� � � �!"

� � ��#

� � ��# "

 � # �$"

	 # �
� � � � �$
� � � �!" �
� �� �

�
� �
� �
��� �

�
� �

� 	
��%

� �
��%

�
� ��
� �

�
� �

� ���

� �
������&

�
� �

���

��
�
�
�
�

� �

�
� �
	 ��' � �

� �
���
�

� �

�
� �

��� � � "

	 � � 	

Figure 4: RS-485 Dongle Converter

cables. But it is elegant solution for networks of up to 10 nodes. The custom ISA card with 82510
is available for large networks. PCI industrial cards with OX16C954 are solution for proffesional
high demanding environment.

4 uLan Interface and Services

4.1 Message Sending and Reception

Every uLan interface (hardware port) is seen as one special character file under Linux operating
system or system device under WindowsNT. All client program operations are accessible through
standard open, close, read, write, ioctl and select system calls. The ioctl calls are used
for preparation and sending of new messages and for selecting, which external messages will be
received by associated file handle. The ul msginfo structure is used for all message and frame
oriented ioctls.

typedef struct ul msginfo {
int dadr; /* destination address */
int sadr; /* source address */
int cmd; /* command/frame type */
int flg; /* message flags */
int len; /* length of frame */
unsigned stamp; /* unique message number */

} ul msginfo;

Next table describes flg field of ul msginfo, which requests and reflects state of processing of
message or its frames by the driver.

11

Name Description
UL BFL LOCK locked message is pointed only once
UL BFL MSST Message must be received by some proces
UL BFL M2IN After succesfull processing inform sending client
UL BFL LNMM Length of received frame must match expected len
UL BFL FAIL Message cannot be processed - error status
UL BFL TAIL Multiframe message continues by next bll block
UL BFL SND Send this frame
UL BFL REC Receive answer frame into this bll block
UL BFL VERL Verify free space in buffer of destination station
UL BFL NORE Do not try to repeat if error occurs
UL BFL REWA If error occurs do wait with retry
UL BFL PRQ Request imediate processing of frame by receiving station
UL BFL ARQ Request imediate acknowledge by receiving station

A client state description structure is build by the driver and connected to the kernel file
description after open system call. Client state is used for preparation and reception of messages
and stores list of message filters for reception. Client applications manipulates with their respective
state through ioctl system calls. The client uses standard read and write system calls for
incremental reading of received message frame or filling newly created message frame. Next ioctls
are defined.

Name Argument Ptr data dir Description
UL DRV VER Returns driver version
UL NEWMSG ul msginfo *ptr W Prepare new outgoing message
UL TAILMSG ul msginfo *ptr W Add next frame to message
UL FREEMSG Free (send) prepared or received message
UL ACCEPTMSG ul msginfo *ptr R Accept message from receive queue
UL ACTAILMSG ul msginfo *ptr R Accept next frame of multiframe message
UL ADDFILT ul msginfo *ptr W Add specification for receiving of messages
UL ABORTMSG Abort preparation of message
UL REWMSG Return to beggining of first frame of message
UL STROKE Restart proccessing loop of driver
UL DEBFLG debug mask Set kernel driver debug level
UL HWTEST subcommand RS-485 buffer hardware checking

Opening and closing uLan file handle

The file descriptor (handle) is obtained from open system call with correct device name param-
eter. The conventional name for first interface is “/dev/ulan” for Linux and “\\.\UL DRV” for
WindowsNT based systems.

int ul fd;
ul fd=open(ul dev name, O RDWR, S IWRITE | S IREAD);
if(ul fd<0)
{ perror("print nodes : uLan open failed");
return -1;

};

/* uLan communication through ul fd possible */

12

close(ul fd);

Sending of message or command

New message must be created with module destination address, command type and flags. Data
write is optional. Message is send into output queue for transmission after client UL FREEMSG
ioctl. This ioctl returns message unique identifier to the sender of message and for messages with
UL BFL M2IN flag prepares single shot filter which serves for client transmission result notification.

int send command(int ul fd,int dadr,int cmd,int flg,void *buf,int len)
{ int ret;
ul msginfo msginfo;
memset(&msginfo,0,sizeof(msginfo));
msginfo.dadr=dadr;
msginfo.cmd=cmd;
msginfo.flg=UL BFL M2IN|flg;
ret=ioctl(ul fd,UL NEWMSG,&msginfo);
if(ret<0) return ret;
if(len)if(write(ul fd,buf,len)!=len)
{ ioctl(ul fd,UL ABORTMSG);
return -1;

};
return ioctl(ul fd,UL FREEMSG);

};

Well written Linux application takes minimum processor time. Application should call select with
list of monitored file descriptors after processing of all available events and data. Code with only
one such descriptor for uLan driver is presented here.

int ul fd wait(int ul fd, int wait sec)
{
int ret;
struct timeval timeout;
fd set set;

FD ZERO (&set);
FD SET (ul fd, &set);
timeout.tv sec = wait sec;
timeout.tv usec = 0;
while ((ret=select(FD SETSIZE,&set, NULL, NULL,&timeout))==-1

&&errno==-EINTR);
return ret;

}

Next example sends command and waits for result of transmission processing. Wait loop is added
for case that client has added more message filters before command send or sends some commands
without waiting for results. I such case received or processed messages reported before last send
command are ignored. Bigger applications should wait for received or processed messages in main
event loop and report received or processed messages as events to other objects of application.

int send command wait(int ul fd,int dadr,int cmd,int flg,void *buf,int len)
{ int stamp;
int ret;

13

ul msginfo msginfo;
stamp=send command(ul fd,dadr,cmd,flg,buf,len);
if(stamp<0) return stamp;
while(1)
{ ret=ul fd wait(ul fd,10);

if(ret<=0) return ret?ret:-1;
ret=ioctl(ul fd,UL ACCEPTMSG,&msginfo);
if(ret<0) return ret;
ioctl(ul fd,UL FREEMSG);
if(msginfo.stamp==stamp)
{ if(msginfo.flg&UL BFL FAIL) return -2;
else return 1;

};
};

};

Sending immediate query

Most of fieldbus area networks have one specific feature missing and in most cases impossible to
implement in LAN or WAN area networks. It is ability to request and receive answer immediately
after last byte of query command. This feature is defined and generalized in uLan network.
Simplest case consisting of master to slave command frame and slave to master immediate reply is
discussed here. As in above examples, code is divided into part which prepares and sends message
and and result waiting loop. The second part should be implemented as event handling for bigger
applications.

int send query(int ul fd,int dadr,int cmd,int flg,void *buf,int len)
{ int ret;
ul msginfo msginfo;
memset(&msginfo,0,sizeof(msginfo));
msginfo.dadr=dadr;
msginfo.cmd=cmd;
msginfo.flg=UL BFL M2IN|flg;
ret=ioctl(ul fd,UL NEWMSG,&msginfo);
if(ret<0) return ret;
if(len)if(write(ul fd,buf,len)!=len)
{ ioctl(ul fd,UL ABORTMSG);
return -1;

};
memset(&msginfo,0,sizeof(msginfo));
msginfo.flg=UL BFL REC|UL BFL M2IN;
if(ioctl(ul fd,UL TAILMSG,&msginfo)<0)
{ ioctl(ul fd,UL ABORTMSG);
return -1;

};
return ioctl(ul fd,UL FREEMSG);

};

Next function sends query to module dadr with command cmd and lenin bytes from buffer bufin.
Destination module receives frame processes command and data and sends immediate reply frame.
Data from reply frame are returned to caller as pointer *bufout to malloced memory block.
Number of received data bytes is reported as *lenout.

int send query wait(int ul fd,int dadr,int cmd,int flg,

14

void *bufin,int lenin,void **bufout,int *lenout)
{ int stamp;
int ret;
int len;
ul msginfo msginfo;
stamp=send query(ul fd,dadr,cmd,flg,bufin,lenin);
if(stamp<0) return stamp;
while(1)
{ ret=ul fd wait(ul fd,10);

if(ret<=0) return ret?ret:-1;
ret=ioctl(ul fd,UL ACCEPTMSG,&msginfo);
if(ret<0) return ret;
if(msginfo.stamp==stamp)
{ if(msginfo.flg&UL BFL FAIL)

{ioctl(ul fd,UL FREEMSG); return -2;};
ret=ioctl(ul fd,UL ACTAILMSG,&msginfo);
if(ret<0) {ioctl(ul fd,UL FREEMSG); return ret;};
if(bufout&&lenout)
{ len=msginfo.len;
if(!*bufout) *bufout=malloc(len);
else if(*lenout<len) len=*lenout;
if(read(ul fd,*bufout,len)!=len)
{ioctl(ul fd,UL FREEMSG); return -3;};

*lenout=len;
};
ioctl(ul fd,UL FREEMSG);
return msginfo.len;

};
ioctl(ul fd,UL FREEMSG);

};
};

Receiving external messages

Filters must be specified to receive external messages by client. The filter specifies which messages
with which source (sadr), destination (dadr) and command/message type (cmd) should be reported
to application. Each client could register more filters. To prevent filters duplication in kernel
client state, UL BFL NORE flag could be specified. Then repeat registration of same filter is ignored.
Assignment of zero value to some of fields results in ignoring of such field when message is reported
to clients.

ul msginfo msginfo;
memset(&msginfo,0,sizeof(msginfo));
msginfo.dadr=filt dadr;
msginfo.sadr=filt sadr;
msginfo.cmd=filt cmd;
ret=ioctl(ul fd,UL ADDFILT,&msginfo);
if(ret<0) { printf("add filter failed\n");return ret;};

Application interface routines are part of provided uLan library. The library includes above
discussed routines and simple uLan object interface communication layer implementation. uLan
application to library interface is operating system independent and actual version of the library
and driver can be compiled for Linux, DOS and WindowsNT/2000.

15

4.2 Query Module Type

Query for type of module with specified address returns short string describing connected mod-
ule. Every uLan communicating device or module should implement immediate processing of
UL CMD SID command. Query can be used for initial searching for all connected active modules.
Next function call with previously opened driver handle returns in case of success allocated buffer
filled by null terminated string describing module with module adr. Negative return value indi-
cates error - no reply from module or other problem.

ret=ul send query wait(ul fd, module adr, UL CMD SID, UL BFL NORE
|UL BFL PRQ, NULL, 0, (void**)&buf, &buf len);

Example of returned string : “.mt MDET v0.4a .uP 51x .dy”
String should conform to next rules :

• it should contain “.mt” tag followed by space and one word module or device type

• software version can follow after next space

• other specifications with “.xx” tags can follow

Next tags are specified:

• “.mt” module type

• “.mv” module vendor short name

• “.uP” microprocessor family, used for selection of right debugger

• “.dy” module supports dynamic address assignment

4.3 Network Control Messages

This one frame message of UL CMD NCS type is used for changing of module address and other
network management purposes. Message processing is not strictly required for all developed
modules. Same messages results in sending of reply. Reply is send as regular queued message
in uLan multimaster environment, no interrupt immediate processing is necessary. Many of
commands uses module unique four bytes serial number assigned by producer. It is necessary for
dynamic address assignment described in next paragraph. Producer is responsible that no pair of
all existing modules has same number. Main uLan serial number authority is PiKRON Ltd.[4]
company. When module wants to use NCS and its serial number could not be assigned, it must
report serial number with the most significant byte SN3 equal to 0xFF. Random constant values for
rest of serial number can sometimes help or be used for experimental devices. Next subcommands
specified by the first data byte are used:

Subcommand Format after first byte Description
ULNCS RQ ADDR SN0 SN1 SN2 SN3 Request for new address
ULNCS SET ADDR SN0 .. SN3 NEW ADR Set new module address
ULNCS SID RQ Request identification reply
ULNCS SID RPLY SN0 .. SN3 SID string Reply with SN and identification
ULNCS ADDR NVSV SN0 SN1 SN2 SN3 Permanent address change

Module can send request for new address after power-up or when its find that it is not in database of
dynamic address server. Message can be send to the found server or as broadcast (zero destination
address). New address can be send to module at any time by server or on user request. Serial
number check is critical at this phase, it ensures, that two devices with same initial address
could be distinguished. Recommended initial address for devices in highly dynamic and changing
environment is 0 or 99. The NCS type request for identification has two advantages over basic
UL CMD SID. There is no need for all address scanning, message could be send as broadcast and

16

then all responses could be collected. Reply contains module unique serial number. Returned
string is same as for UL CMD SID. Permanent address change could be useful for static environment
with devices which have no keyboard or jumpers for address selection.

4.4 Dynamic Address Assignment

This protocol is mainly defined for environments witch frequent changes, working modules plug
and transfer between networks. It demands and uses serial number comparison, implementation of
network control services UL CMD NCS command and immediate status reply command UL CMD SNST.
One dynamic address server must be connected to each network and status check cycle must be
repeated. Each cycle first status check message with subcommand <=3 and broadcast address
serves as dynamic server address publication. Server than individually asks all known modules for
status (subcommand 16) and collect this information for other purposes. After connected module
receives three times server start cycle message and no status check message, it uses ULNCS RQ ADDR
to request address assignment from server. For case of reconnecting of working module from one
to another network, address collision could occur. Next checking prevents such situation. When
module receives status query with different serial number, module address is reset to zero and
address assignment request is send to the server. Serial number check could be requested as the
first command of object interface message as well. This protect reception of module properties
writes, reads and commands for critical time window after reconnection of module into different
network and reception first status query message.

5 uLan Object Interface Layer

The uLan Object Interface is designed to enable flexible setting and querying of node/instrument
variables/objects and for sending of commands. A message format is designed to be as short as pos-
sible, but does not compromise generality. This approach results in more complex node/instrument
profile. The uLan Object Interface enables to store object descriptions directly into nodes/instruments
and provides way to automatically build node profile from the descriptions.

Name OID Parameters Description

I AOID 10 <string> Substitues numeric OID by ASCII name
for I DOII and I DOIO

I DOII 12 <oid> Query description for writeable/in
<oid> returned I DOII R

I DOIIr 13 <oid><oiddesc> Description of writeable <oid>
I DOIO 14 <oid> Query description for readable/out

<oid> returned I DOIO R
I DOIOr 15 <oid><oiddesc> Description of readable <oid>
I QOII 16 <oid><maxret> Query up-to <maxret> writeable/input

OIDs list startingfrom <oid> or 0 for
first

I QOIIr 17 <oid0>...
<oidn><0>

List of writeable OIDs ended by 0

I QOIO 18 <oid><maxret> Query up-to <maxret> readable/output
OIDs list startingfrom <oid> or 0 for
first

I QOIOr 19 <oid0>...
<oidn><0>

List of readable OIDs ended by 0

17

I RDRQ 20 <oid0>...
<oidn><0>

Query for values of OIDs

I RDRQr 21 <oid0><...> ...
<oidn><...><0>

Reply with acquired values of OIDs

I SNCHK 29 <SN0 .. SN3> Check module serial number
I STATUS 30 Standard OID for 16 bit status
I ERRCLR 31 Standard OID for clear error status

References

[1] Komunikan protokol uLan, Pavel Pisa http://cmp.felk.cvut.cz/~pisa/ulan/dipl_kom.
html

[2] Directory with older versions of uLan Driver for Linux, Pavel Pisa http://cmp.felk.cvut.
cz/~pisa/ulan/

[3] uLan Driver for Linux, Pavel Pisa http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv-0.6.3.
tar.gz

[4] PiKRON Ltd., Laboratory Instrumets Developers , http://www.pikron.com/

18

http://cmp.felk.cvut.cz/~pisa/ulan/dipl_kom.html
http://cmp.felk.cvut.cz/~pisa/ulan/dipl_kom.html
http://cmp.felk.cvut.cz/~pisa/ulan/
http://cmp.felk.cvut.cz/~pisa/ulan/
http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv-0.6.3.tar.gz
http://cmp.felk.cvut.cz/~pisa/ulan/ul_drv-0.6.3.tar.gz
http://www.pikron.com/

	What is uLan
	uLan Message Protocol
	Data Frame Format
	Access Arbitration and Timing
	Control Characters
	Commands or Frame Type Codes

	uLan driver
	Install driver for Linux
	Install KMD for Windows
	WDM Driver for Windows
	Driver Implementation
	Organization of Source Files
	RS-485 Converter

	uLan Interface and Services
	Message Sending and Reception
	Query Module Type
	Network Control Messages
	Dynamic Address Assignment

	uLan Object Interface Layer

