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Range Image Registration Problem

Difficulties

e Half-occlusion = solutions are ‘partial’ matchings
e Finite resolution =

1. "true correspondences’ are not discrete

2. surface discretization is not viewpoint-
Invariant

e Occluding boundary artefacts = robust methods

In This Talk

e A robust matching method

e for partial (incomplete) matchings,

e which is algorithmically efficient.

e This is possible in discrete optimization framework of graph kernels.

Assumptions: rigid objects, no texture information



Posing the Surface Registration Problem

S So

y1=Ti1xq

Y1

putative correspondence:
M (xi, yi; Ts)
y2
>0

yo = Toxo

Task: Find matching M : §; — Ss and registration parameters T = {R, t} under:

e similarity of invariants [
(x,y) e M if F(x)~ F(y) xe€S,yeds
e geometric compatibility of covariants x;, n;, etc:
T,=T,(=T) forall p,ge M

e uniqueness constraint: each point x; is matched at most once
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Checking Compatibility of Covariants is Cheap
e checking Ty = Ty = T does need the knowledge of T, T

Sl 82
y1 = T1x;
: Y1 |
A single correspondence does not
provide all parameters of T, but
M a pair overconstrains it!
y2
>0
y2 = T2 X2

e given positions x;, ¥; and normal vectors n;, m;, we know

yvi=Ri(x;,—t), m;=R;n;, i=1,2

T, = T'5 iff there is a special orthogonal matrix R such that a Yes/No T1 =T,
compatibility
[Y2 — Y1, My, m1] =R [XQ — X1, No, nl] condition over
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correspondence pairs

® R.: 3 parameters = highly redundant condition
® a weaker necessary condition is, e.g. ||y2 — y1|| = [|x2 — x1]|

® together with n we also use a splash-like structure matrix (see the paper)




Invariant Features & Their Similarity

elementary oriented triangles

0—O0—0
), f\X {
(I \/ \)
0—O0—o0

3 x 3 image 3 ofall 24
neighborhood  triangles

for each triangle i: triple feature

det [H, 1nq, HQ]

fi(x) =

I(x1 = x) % (x2 = x|

Point neighborhood gives a large collection F'(x) ={f;; i=1,...,t}
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simil (F(x), F(y)) = KS(CDF(F(x)), CDF(F(y)))

similarity ~ Kolmogorov-Smirnov distance
between feature distributions

in fact sensitivity interval [KS — §(KS), KS]
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Representing the Matching Problem

Geometric Compatibility Graph G.:

putative correspondences (X1, y1) and (x1, y1)

. . . f ‘ tri ,
(X2, y2) are incompatible if T; £ T O\éXQ’ y2) green for ‘geometric

Uniqueness Graph Gy :
(X1, ¥1) (X1, y2)

Choose either (x1, y1) or (X1, y2)
but never both

(X2, ¥1) (x2, ¥2)

This is the line graph of a complete bipartite graph

Given data: The union of G- U Gy is oriented by similarity of invariant features F':

(x1,y2)
simil(F(x1), F(y2)) > simil(F(x2), F(y2)) qis strongly better
pd (intervals do not overlap)
(x2,¥1) (x2,¥2)

N_  simil (F(Xg), F(yl)) ~ simil (F(Xg), F(yg)) we do not know which is better

(overlapping intervals)
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Strict Sub-Kernel of an Oriented Graph

Goal: To define which is ‘the best solution.’

Def. [ Strict Sub-Kernel, SSK | peM
O<=—>0 1
An independent vertex subset M is a strict sub-kernel f$strigt_ _
of oriented graph G if every successor of every p € M & (unidirectional)
has a strict successor in M.
re M
Examples:
£<—O O<—0O O<—=O0 l<—0
has one SSK has no SSK has no SSK has 2 SSKs

T: If every even circuit of G has a bidirectional arc = there is at most one maximal SSK.

¢ condition guaranteed for orientations induced by interval overlap

¢ SSK can be incomplete if data insufficient or contradicting the model

explains part of data that is consistent with prior model (geometric consistency, uniqueness)

¢ SSK is robust to small data perturbations



Strict Sub-Kernel Algorithm
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Sink reduction algorithm: Successive simplifying transformations to equivalent problems

p
—>0 O

ﬁ sink reduction

—

q

this is not mutually best matching:

a vertex with successors (like g) can be in M
(MBM is a subset of M)

O(n*) time complexity for n-point matching
(O(n®) algorithm exists)

Easy to implement

Can be massively parallelized
(stability of a network of comparators)

This algorithm is valid for special class of orientations only,

see the paper.

sink reduction

O

p




Coarse Range Image Registration: IP Detection

Detection of interest points I; in each range image 1

e all points of good localizability (=dissimilarity to immediate neighborhood)
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Coarse Range Image Registration: IP Selection

Interest point selection in each range image gives [
e finding mutually geometrically inconsistent subset of I;
for each pair x, y € I there is no allowed rigid transform bringing ngh(x) onto ngh(y)
e problem size reduction
e improves data rejection rate due to repeated similar structures
e can be found by solving an SSK problem see the paper




Coarse Range Image Registration: Matching

Matching via SSK as described before.

Interpretation of the Matching Procedure

1. Find a consistent match p that clearly correct (as measured by F)
2. Constrain acceptable rigid motions to those consistent with p
3. Repeat

Result: Ever tighter geometric guidance as the similarity decreases.
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Results on Pooh Dataset

main failure mode: empty matching

Timings (per pair)
normals | 0.2 min
features | 0.6 min

IP detection | 0.1 min
IP selection | 1.7 min
matching | 0.1 min

total | 2.7 min

1 failure

Data courtesy of Ohio State University



Results on Pooh Dataset (cont’d)

coarse registration after ICP refinement

e Coarse registration: rotation well estimated, translation not so well
(but ICP can deal with it)

® around the neck: occlusion boundary/interreflection artefacts in data
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Results on Rickl Dataset
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5 1 2 3 4 5 6 7 8
[I,] | 37 35 28 34 32 35 31 52
I,| | 41 37 28 34 33 32 33 58
M|| 18 17 10 9 14 18 10 11
co |1.79 571 472 325 938 251 6.07 8.06
ecr | 0.35 0.43 0.96 0.58 0.43 0.45 0.60 1.14
eicp | 0.24 026 0.46 039 026 031 0.37 0.72

= o0
oy ~ Improvement
X X
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Conclusions

e SSK can be used for coarse registration
reduces initial closest-point error by about the order of magnitude

e What does SSK open for us?

1. Robust behavior: either finds a unique robust solution or rejects data.
robust w.r.t. small data perturbation

2. Multi-criterial matching (e.g. geometry, color) w/o mixing apples and pears.

3. Algorithmic simplicity.
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