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INTRODUCTION

Abstract
• We consider: energy minimization for graphical models
• We obtain: a part of a globally optimal solution (persistent assignment)
• Properties:

- scalable algorithm
- maximizes the number of persistent variables
- provably outperforms most of existing techniques

Energy Minimization

Given a graph (V, E), associated variables xv ∈ Xv , v ∈ V , and potentials
fC(xC) ∈ R, C ∈ V ∪ E , we consider the energy minimization problem:

min
x∈X

Ef (x)

= minx∈X

{∑
v∈V fv(xv) +

∑
uv∈E fuv(xu, xv)

}
= minx∈X 〈f, δ(x)〉

fuv(xu, xv)

v

fv(xv)fu(xu)

u

ILP / LP Relaxation
= min
µ∈conv(δ(X ))

〈f, µ〉 ≥ min
µ
〈f, µ〉

Λ


∑
i µu(i) = 1∑
j µuv(i, j) = µu(i)

µ ≥ 0
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• Is the integer part of the relaxed solution optimal?
• Can we eliminate labels that are not in the support set of relaxed solutions?

Progress in Partial Optimality Methods
Graph cut - based LP - based
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Courtesy of Kovtun [11]
93.6% (instance not available)

Instance used by Alahari et al [2]
Kovtun’s method: 1s, 87.6%

Shekhovtsov [13]
LP-windowing: 1.5h, 94%

Our: 22s, 96.7% strong
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Kovtun’s method: 1s, 0.2% Kohli et al [8] (MQPBO)
41s, 0.2%

Swoboda et al [17] (PBP optimal)
27min, 89.8%

Our: 16s, 99.94% strong

•Model 1 [11, 2]: Potts, strong unaries; •Model 2 [18]: per-pixel unaries.
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RELAXED-IMPROVING MAPPING

Improving Mapping (Substitution of labels)

pu : Xu → Xu pv p : X → X node-wise, idempotent
X p(X )

Definition: Mapping p : X → X is improving if ∀x Ef (p(x)) ≤ Ef (x)

• Equivalent to: min
x∈X

(Ef (x)− Ef (p(x))︸ ︷︷ ︸) ≥ 0

The difference energy Eg(x), g = f − PTf(
What is P ?: (PTf)C(xC) = fC(pC(xC)), or, in primal: Pδ(x) = δ(p(x))

)
Definition: Mapping p is relaxed-improving if minµ∈Λ〈(I − PT)f, µ〉 ≥ 0 (P)

Dually, Through Equivalent Transformations

Equivalent Transformations:
(∀x ∈ X ) Ef (x) = Efϕ(x)

fϕu (xu) := fu(xu) +
∑
v∈N (u) ϕuv(xu)

fϕuv(xu, xv) := fuv(xu, xv)− ϕuv(xu)− ϕvu(xv)

(
fu(xu) + ϕuv(xu)

)
+

(
fuv(xu, xv)− ϕuv(xu)

)

+ϕuv(xu)

−ϕuv(xu)

• Consider locally improving condition: fC(pC(xC)) ≤ fC(xC), ∀xC

• + equiv. transformations: ∃ϕ ∀C ∈ V ∪ E , ∀xC f
ϕ
C (pC(xC)) ≤ fϕC (xC) (D)

Theorem: The primal (P) and dual (D) definitions are equivalent.

THE PROBLEM

Maximum Persistency

• Given that the verification problem is solvable, which method is better?

Proposition

Pose "the best partial optimality" as optimization problem. Find the
mapping p : X → X that delivers the maximum problem reduction:

min
p∈P

∑
u∈V
|pu(Xu)| s.t. p is relaxed-improving; P - class of mappings.

Subset-to-one Class of Mappings

Theorem: Let µ be a solution to LP-relaxation: µ ∈ argminµ∈Λ〈f, µ〉 and
p : X → X be (strictly) relaxed-improving. Then Pµ = µ.

µ

1

2

1

2

y

• Fix a test labeling y from µ and try substitute other labels with it.
• Mapping pu selects a subset of labels in u to be substituted with yu, there are

2|Xu|−1 choices.
• Covers all methods marked in the table below

Theorem: Maximum Persistency problem over subset-to-one class of map-
pings is solvable in polynomial time [13, 14].

• This work: new efficient algorithm, connecting [13] and Pruning-Based-
Persistency [16] (CVPR’14).

Generality of Sufficient Conditions

Relaxed-improving condition with natural (local) relaxations are satisfied for all
of the following [13, 14]:
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Roof dual / QPBO [5] X

Reductions: HOCR [6], [3] FLP
Bisubmodular relaxations [10]** BLP
Generalized Roof Dualilty [7] FLP
Persistency by Adams et al [1] FLP

– all-to-one class of mappings
BLP = Basic LP Relaxation [20,
19];
FLP = Full Local LP Relaxation,
equivalent to [15];
*[16] is higher order but the comparison proof
is for pairwise case.

**Result holds for sum of bisubmodular func-
tions over the same hypergraph as the BLP re-
laxation.

ALGORITHM

Discrete Cutting Plane

• Start with a mapping p that substitutes everything with y
• Construct auxiliary ’difference’ problem g = (I − PT)f

• Test persistency conditions (relaxed inference for g):
Primal Dual

min〈g, µ〉 ≥ 0

µ ∈ Λ

? max
ϕ,ψ

∑
u∈V ψu ≥ 0

gϕu (xu) ≥ ψu
gϕuv(xu, xv) ≥ 0

?

• If not satisfied, force p to identity on the following labels xu:
in the support set of the minimizer:
µu(xu) > 0

corresponding to active constraints:
gϕu (xu) = ψu

Correctness and Optimality

• Runs in polynomial time;
• Solves the maximum persistency problem exactly when the test relaxation is

solved exactly and the solution is a strict relative interior optimal (e.g. interior
point method);
• Returns an improving mapping even when the dual is solved sub-optimally –

can use fast dual solvers, we used TRW-S [9].

Efficiency

Challenges:
- solving relaxed inference approximately even once is slow
- TRW-S is not finitely converging
How can we iterate such relaxed inference?

Fast implementation with TRW-S
• Warm-start: reuse reparametrizations ϕ in outer iterations
• Guaranteed to prune something even after 1 iteration of TRW-S
• An optimal pruning is often possible before the dual is solved
• Problem reductions preserving the sufficient condition
• Fast message passing for (I − PT)f with reductions

Combined Effect of Speedups
Instance Initialization Extra time for persistency

(1000 it.) no speedups +reduction +node pruning +labeling pruning +fast msgs
Protein folding 1CKK 8.5s 268s (26.53%) 168s (26.53%) 2.0s (26.53%) 2.0s (26.53%) 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%) 230s (93.41%) 85s (93.41%) 76s (93.41%) 19s (93.41%)

EXPERIMENTS

Algorithm Demo

Proved optimal part Reminder
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OpenGM Benchmark
In-Painting (N8)
J. Lellmann et.al. 
converted by J. Lellmann and J.H. Kappes

ColorSegmentation (N8)
J. Lellmann et.al. 
converted by J. Lellmann and J.H. Kappes

ColorSegmentation
K. Alahari et.al. 
converted by J.H. Kappes

Object Segmentation
K. Alahari et.al. 
converted by J.H. Kappes

MRF Photomontage
R. Szeliski et.al. 
converted by J.H. Kappes

MRF Stereo
R. Szeliski et.al. 
converted by J.H. Kappes

MRF Inpainting
R. Szeliski et.al. 
converted by J.H. Kappes

Chinese Characters
S. Nowozin et.al. 
converted by S. Nowozin and J. H. Kappes

Brain 9mm
J. H. Kappes et.al. 
converted by J. H. Kappes

Scene Decomposition
Gould et.al. 
converted by S. Nowozin and J. H. Kappes

OpenGM Benchmark
Problem family #I #L #V MQPBO MQPBO-10 Kovtun [16]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † † 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7 ≤ 514080 93s 22% 866s 16% † 3.7h 16% 483s 41.98%
color-seg 3 3-4 ≤ 424720 22s 11% 87s 16% 0.3s 98% 1.3h >99% 61.8s 99.95%
color-seg-n4 9 3-12 ≤ 86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21 ≤ 483 ≤ 1972 685s 2% 2705s 2% † 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

Easy
object-seg Kovtun [11]: 0.2s, 80.5% Ours: 1.4s, 100% (LP-tight)

Hard
mrf-stereo Kovtun [11]: 2.5s, 0.42% Ours: 62+180s, 75%

Very hard
mrf-photomontage Kovtun [11]: 0.5s, 27.5% Ours: 130+390s, 79.2%

Implementation
C++/Matlab
http://icg.tugraz.at/Members/shekhovtsov/persistency


