Maximum Persistency via Iterative Relaxed Inference with Graphical Models

TUG HCI, Heidelberg University, Germany swoboda@math.uni-heidelberg.de

INTRODUCTION

- We consider: energy minimization for graphical models
- We obtain: a part of a globally optimal solution (persistent assignment)
- Properties:
- scalable algorithm
- maximizes the number of persistent variables
- provably outperforms most of existing techniques

Energy Minimization

Given a graph $(\mathcal{V}, \mathcal{E})$, associated variables $x_v \in \mathcal{X}_v$, $v \in \mathcal{V}$, and potentials $f_{\rm C}(x_{\rm C}) \in \mathbb{R}$, ${\rm C} \in \mathcal{V} \cup \mathcal{E}$, we consider the energy minimization problem:

ILP / LP Relaxation

- Is the integer part of the relaxed solution optimal?
- Can we eliminate labels that are not in the support set of relaxed solutions?

Progress in Partial Optimality Methods

RELAXED-IMPROVING MAPPING

mproving Mapping (Substitution of labels)

Definition: Mapping $p: \mathcal{X} \to \mathcal{X}$ is improving if $\forall x \ E_f(p(x)) \leq E_f(x)$

• Equivalent to: $\min_{x \in \mathcal{X}} (E_f(x) - E_f(p(x))) \ge 0$

The difference energy $E_q(x)$, $g = f - P^{\mathsf{T}} f$ (What is P?: $(P^\mathsf{T} f)_\mathsf{C}(x_\mathsf{C}) = f_\mathsf{C}(p_\mathsf{C}(x_\mathsf{C}))$, or, in primal: $P\delta(x) = \delta(p(x))$)

Definition: Mapping p is relaxed-improving if $\min_{\mu \in \Lambda} \langle (I - P^{\mathsf{T}})f, \mu \rangle \geq 0$ (P)

ly, Through Equivalent Transformations

- Consider locally improving condition: $f_{C}(p_{C}(x_{C})) \leq f_{C}(x_{C}), \forall x_{C}$
- + equiv. transformations: $\exists \varphi \ \forall C \in \mathcal{V} \cup \mathcal{E}, \forall x_C f_C^{\varphi}(p_C(x_C)) \leq f_C^{\varphi}(x_C)$ (D)

Theorem: The primal **(P)** and dual **(D)** definitions are equivalent.

- higher-order Markov random fields. In: ICCV, pp 1020–1027 Goldstein RF (1994) Efficient rotamer elimination applied to protei side-chains and related spin glasses. Biophysical Journal 66(5)
- Hammer P, Hansen P, Simeone B (1984) Roof duality, complem Programming pp 121–155
- Ishikawa H (2011) Transformation of general binary MRF minimization to the first-order case. PAMI 33(6):1234–1249
- Kahl F, Strandmark P (2011) Generalized roof duality for pseudo Boolean optimization. In: ICCV, pp 255–262
- [8] Kohli P, Shekhovtsov A, Rother C, Kolmogorov V, Torr P (2008) On partial optimality in multi-label MRFs. In: ICML, pp 480–487
- Kolmogorov V (2006) Convergent tree-reweighted message passing for energy minimization. PAMI 28(10):1568–1583
- [10] Kolmogorov V (2010) Generalized roof duality and bisubmodular functions. In: NIPS, pp 1144–1152 Kovtun I (2003) Partial optimal labeling search for a NP-hard subc of (max, +) problems. In: DAGM-Symposium, pp 402–409

- 4] Shekhovtsov A (2015) Higher order maximum persistency and comparison theorems. CVIU SI on Inference and Learning of Graphical Models DOI 10.1016/j.cviu.2015.05.002, in press [15] Sherali HD, Adams WP (1990) A hierarchy of relaxations between the continuous and convex hull representations for zero-one program-
- ming problems. SIAM J Discrete Math 3(3):411–430 tation and persistency in quadratic 0-1 optimization. Mathematical [16] Swoboda P, Savchynskyy B, Kappes J, Schnörr C (2014) Partial optimality by pruning for MAP-inference with general graphical models. In: CVPR, pp 1170–1177, DOI 10.1109/CVPR.2014.153
 - [17] Swoboda P, Shekhovtsov A, Kappes JH, Schnörr C, Savchynskyy B (2014) Partial optimality by pruning for MAP-inference with general graphical models. Computing Research Repository abs/1410.6641, [18] Szeliski R, Zabih R, Scharstein D, Veksler O, Kolmogorov V, Agarwala
 - A, Tappen M, Rother C (2008) A comparative study of energy minimization methods for Markov random fields with smoothness-based [19] Thapper J, Živný S (2013) The complexity of finite-valued CSPs. In:
- Symposium on the Theory of Computing (STOC), pp 695–704 [20] Werner T (2007) A linear programming approach to max-sum prob-2] Kovtun I (2011) Sufficient condition for partial optimality for (max, +) lem: A review. PAMI 29(7):1165–1179

THE PROBLEM

Maximum Persistency

• Given that the verification problem is solvable, which method is better?

Proposition

Pose "the best partial optimality" as optimization problem. Find the mapping $p: \mathcal{X} \to \mathcal{X}$ that delivers the maximum problem reduction:

 $\min_{v \in \mathcal{P}} \sum |p_u(\mathcal{X}_u)|$ s.t. p is relaxed-improving; \mathcal{P} - class of mappings.

ubset-to-one Class of Mappings

Theorem: Let μ be a solution to LP-relaxation: $\mu \in \operatorname{argmin}_{\mu \in \Lambda} \langle f, \mu \rangle$ and $p: \mathcal{X} \to \mathcal{X}$ be (strictly) relaxed-improving. Then $P\mu = \mu$.

- Fix a *test* labeling y from μ and try substitute other labels with it.
- Mapping p_u selects a subset of labels in u to be substituted with y_u , there are Correctness and Optimality
- Covers all methods marked in the table below

Theorem: Maximum Persistency problem over subset-to-one class of mappings is solvable in polynomial time [13, 14].

• This work: new efficient algorithm, connecting [13] and Pruning-Based-Persistency [16] (CVPR'14).

– all-to-one class of mapping

BLP = Basic LP Relaxation [20,

FLP = Full Local LP Relaxation,

*[16] is higher order but the comparison proof

**Result holds for sum of bisubmodular fun

tions over the same hypergraph as the BLP re-

equivalent to [15];

is for pairwise case.

Generality of Sufficient Conditions

Relaxed-improving condition with natural (local) relaxations are satisfied for all of the following [13, 14]:

	Simple DEE [4]	√		
label	MQPBO [8]	\checkmark		
multilal pairwis	[11] one-agains-all	\checkmark		
mul pair	[12] iterative	\checkmark		
	Swoboda et al [16]*	\checkmark		
ean	Roof dual / QPBO [5]	\checkmark		
ole	Reductions: HOCR [6], [3]	FLP		
order	Bisubmodular relaxations [10]**	BLP		
ado ner	Generalized Roof Dualilty [7]			
pset high	Persistency by Adams et al [1]	FLP		

ALGORITHM

Discrete Cutting Plane

- Start with a mapping p that substitutes everything with y
- Construct auxiliary 'difference' problem $g = (I P^{\mathsf{T}})f$

• Test persistency conditions (relaxed inference for *g*):

 $\min\langle g, \mu \rangle \geq 0$? $\max_{\varphi,\psi} \sum_{u \in \mathcal{V}} \psi_u \ge 0 ?$ $g_u^{\varphi}(x_u) \ge \psi_u$ $g_{uv}^{\varphi}(x_u, x_v) \ge 0$

• If not satisfied, force p to identity on the following labels x_u :

in the support set of the minimizer: | corresponding to active constraints: $g_u^{\varphi}(x_u) = \psi_u$ $\mu_u(x_u) > 0$

- Runs in polynomial time;
- Solves the maximum persistency problem exactly when the test relaxation is solved exactly and the solution is a strict relative interior optimal (e.g. interior point method);
- Returns an improving mapping even when the dual is solved sub-optimally can use fast dual solvers, we used TRW-S [9].

Challenges:

- solving relaxed inference approximately even once is slow - TRW-S is not finitely converging

How can we iterate such relaxed inference?

Fast implementation with TRW-S

- Warm-start: reuse reparametrizations φ in outer iterations
- Guaranteed to prune something even after 1 iteration of TRW-S
- An optimal **pruning** is often possible before the dual is solved • Problem reductions preserving the sufficient condition
- Fast message passing for $(I P^{\mathsf{T}})f$ with reductions

Combined Effect of Speedups

Instance	Initialization	Extra time for persistency									
	(1000 it.)	no speedups	+reduction	+node pruning	+labeling pruning	+fast msgs					
Protein folding 1CKK	8.5s	268s (26.53%)	168s (26.53%)	2.0s (26.53%)	2.0s (26.53%)	2.0s (26.53%)					
colorseg-n4 pfau-small	9.3s	439s (88.59%)	230s (93.41%)	85s (93.41%)	76s (93.41%)	19s (93.41%)					

EXPERIMENTS

Problem family	#1	#L	# V	MQPBO		MOBBO-10		Kovtun		[16]-TRWS		Our-TR	
mrf-stereo	3	16-60	> 100000		†	†			†	2.5h	13%	117s	73.
mrf-photomontage	2	5-7	≤ 514080	93s	22%	866s	16%		†	3.7h	16%	483s	41.9
color-seg	3	3-4	≤ 424720	22s	11%	87s	16%	0.3s	98%	1.3h	>99%	61.8s	99.9
color-seg-n4	9	3-12	≤ 86400	22s	8%	398s	14%	0.2s	67%	321s	90%	4.9s	99.2
ProteinFolding	21	≤ 483	≤ 1972	685s	2%	2705s	2%		†	48s	18%	9.2s	55.
object-seg	5	4-8	68160	3.2s	0.01%	†		0.1s	93.86%	138s	98.19%	2.2s	10

Ours: 62+180s, 75%

Very hard

C++/Matlab

http://icg.tugraz.at/Members/shekhovtsov/persistency