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Introduction
Persist

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?
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Introduction
Persistency

ILP LP
minc'x minc'x
Ax<b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?

X:(Ovlvlvoaév%v%vlvow")

@ Is the integer part of an optimal solution to LP optimal for ILP?
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Introduction
Persistency

ILP

min ¢’ x

Ax < b
x €{0,1}"

@ When the solution to LP is integer?

LP

min ¢! x

Ax < b
x €[0,1]"

X:(Ovlvlvoaév%v%vlvow")

@ Is the integer part of an optimal solution to LP optimal for ILP?

© Is any part of an optimal solution to LP optimal for ILP?
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Introduction
Persistency

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?

X = (Ovlvlvovév%v%vlvow")
@ Is the integer part of an optimal solution to LP optimal for ILP?
© Is any part of an optimal solution to LP optimal for ILP?

@ Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?
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Introduction
Persistency

ILP LP
minc'x minc'x
Ax < b Ax < b
x € {0,1}" x €1]0,1]"

@ When the solution to LP is integer?

X = (Ovlvlvovév%v%vlvow")
@ Is the integer part of an optimal solution to LP optimal for ILP?
© Is any part of an optimal solution to LP optimal for ILP?

@ Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?

© Find the largest part of LP solution satisfying 4.
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Vertex Packing / Maximum Independent Set

Minimum Vertex Cover

N

/
//' Maximum Independent Set

. \\ —/ e = Maximum Vertex Packing

Maximum Weighted Vertex Packing

e (V,&) — an undirected graph;
o Vertex Packing is a subset P C V for which u,v € P = (u,v) & &;
o Weights c: V — R;

@ Problem: maxz Coxy (VP)

(Vuv € &) x, + x, < 1,
(Vv e V) x, € {0,1}.
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Vertex Packing / Maximum Independent Set

Relaxing the integrality constraints:
max 3 oy (VPL)
K vey
(Vuv € &) pu + v <1,
(VV € V) y > 0.

Theorems

o (Balinski, 1965; Lorentzen, 1966): Any basic feasible solution to (VLP) is
{0, 3, 1}-valued.

@ (Edmonds and Pulleyblank) (VLP) reduces to a maxflow problem on a
related symmetric bipartite graph;

@ (Nemhauser and Trotter, 1975): Variables which assume binary values in an
optimum (VLP) solution retain the same values in an optimum (VP) solution.

o (Picard and Queyranne, 1977): There exists a unique maximum set of
variables that are integer valued in an optimal solution to (VLP).
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QPBO

Quadratic pseudo-Boolean Optimization (QPBO)

e (V,€&) — an undirected graph;
o Weights a: YUE — R;

@ Problem: min E ayXy + E Ayy XuXy
X
vey uveé

(Vv € V) x, € {0,1}.

o Generalizes Vertex Packing (let a,, = B, a big number; a = —c,).
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QPBO

Natural linear relaxation: xs — us € [0, 1], xsx¢r — pst € [0, 1];

min Z avpy + Z awlus St (LP)

: YUE—0,1
pi VOE=0, ]VEV uvel

(VUV S 5) My + Mty — 1 S Huv S min(Muva)-

Theorems

o (?): Each extreme point of the feasible set is {0, 3, 1}-valued.

o (Hammer et al., 1984; Boros et al., 1991): LP reduces to a maxflow problem;

o Weak Persistency (Hammer et al., 1984): Variables i, which assume binary
values in an optimum (LP) solution retain the same values in an ILP solution.

@ Strong Persistency (Hammer et al., 1984): Variables yu, which assume
binary values in all optimal (LP) solutions retain the same values in all
optimal ILP solutions.
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Introduction
0-1 Polynomial Programming

A hypergraph (courtesy of wikipedia).

V7

0-1 Polynomial Programming / pseudo-Boolean Optimization
e (V,&) — a hypergraph, £ C 2Y;
o Weights f: £ — R;

@ Problem: i Z £, HX"‘ (PP)

0,1}V
xe{0,1} ceg vec

@ Any pseudo-Boolean function can be represented as a multilinear polynomial.
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Introduction
-1 Polynomial Programming

@ Relaxation of Sherali and Adams (1990)

— optimal solutions are not half-integral in general;
— no combinatorial method to solve;
— does not possess persistency in general;
+ Tightest "local” relaxation
o (Bi)submodular relaxations (Kolmogorov, 2012)
+ extreme feasible solutions are half-integral;
+ reduces to sum of (bi)submodular functions minimization;
+

possess persistency;
— Weaker than relaxation of Sherali and Adams (1990);
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Introduction
Energy Minimization

=) N

Energy Minimization / Weighted Constraint Satisfaction

(*]
(]
(]
(]
(]

(V, &) - a hypergraph;

X, - a finite set of labels, v € V;

Costs fo: [[,ec Xv — R; Cost vector f € R
Energy: Ef(x) = > cee folxo)i

Probloem: minyex Ef(x);
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Introduction
Energy Minimization

Example: Potts Model for Object Class Segmentation

@ V - set of pixels; £ C V x V neighboring pixels;
o X, ={1,... K} —class label;

0 Ef(x) =D ey f(xs) + D ee Astlxs # .

Image Ground Truth

sky

ree™ " hyilding|
airplane

(MSRC object class segmentation)

o
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Introduction

Persistncy / Partial Optimality

Example: Potts Model for Stereo
o V - set of pixels; £ C V X V neighboring pixels;
o X, ={1,...K} — disparity value;
o Ef(x) = ZSGV fo(xs) + ZstGE Ast[xs # xt].

Stereo Reconstruction Partial Optimality
(Method of Kovtun (2003))
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Introduction

Development of Partial Optimality Methods

Graph cut - based LP - based
Courtesy of Kovtun [5] Instance used by Alahari et al. [2]}|]Shekhovtsov [6] | Our: 225, 96.7% strong
93.6% (instance not available) Kovtun’s method: 1s, 87.6% LP-windowing: 1.5h, 94%

3 L N\ y b

A
¥

. = t ‘

lKovlun's method: 1s, 02%] [Kohli etal. [3] (MQPBO)] [Swoboda etal. [7] (PBP oplimal)]

Potts Model
Amin(1, v, —x,])

'Our: 16s, 99.94% su'ong'

41s,0.2% 27min, 89.8%

Truncated Model
Wi min(2, [x, — %))

@ Model 1 (Kovtun'03, Alahari et al."10): Potts, strong unaries with window
aggregation

o Model 2 (Szeliski et al., 2008): Nearly Potts, per-pixel unaries
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The Problem

Maximum Persistency Problem
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The Problem

Improving Mapping (substitution of labels)

Du: Xy — Xy Dy p: X — X node-wise

Definition

Mapping p is improving if

‘0

(‘5 c° ) x Er(p(x)) < Er(x).
e
(@]

A
e =
1A

| [
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The Problem

Improving Mapping (substitution of labels)

Put Xy — Xy Du p: X = X node-wise
e o Definition
(. s 0 N \ Mapping p is improving if
| ¢ Vx Ef(p(x)) < E¢(x).
L e
O o Remark: no distinction between

strict /non-strict in this talk!
@ If x is optimal then p(x) is optimal. Search space can be reduced.

A
e =
1A

.

m N\
N
S

|
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The Problem
Equivalent Transformations

Ef(x) = Y oee fo(xc). Cost vectors f,g € RT equivalent when Er = E,.

fia(xe) = fhla,x) +H0e)
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The Problem
Equivalent Transformations

Ef(x) = Y oee fo(xc). Cost vectors f,g € RT equivalent when Er = E,.

......
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The Problem

Equivalent Transformations

Ef(x) = Y oee fo(xc). Cost vectors f,g € RT equivalent when Er = E,.

fi2(z1,22)

& fa(x2) - —
VO ) fobaa) = )+ H(x)

fa,3.4(x2, 23, 24) o

| | O 1012
1o {0
o Affine space: g~ h~f _ F'(x1) + 0 + ' (x2)

= Eag+(1—a)h = Er.
ofrg & (Fp)g=f-ATp.
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The Problem

Equivalent Transformations

Ef(x) = Y oee fo(xc). Cost vectors f,g € RT equivalent when Er = E,.

fi2(z1,22)

falaa) SN
&@ o f12(X1,X2) =

fa,3.4(x2, 23, 24) o

I | Ol ©
1 o {0
o Affine space: g~ h~f _ F'(x1) + 0 + ' (x2)

= Eag+(1—a)h - Ef-
° . . .
o f ~ g = (3()0) g = fF_ ATLp. Equivalent Transformations, Shlezinger (1976)
@ Reparametrization, Wainwright et al. (2003)

@ Equivalence Preserving Transformations in WCSP
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify

@ Locally improving: (VC € &€,Vx: € Xc) fu(pe(xc)) < fo(xc)
— easy to verify.
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
@ Locally improving: (VC € &€,Vx: € Xc) fu(pe(xc)) < fo(xc)
(Pc(Xc

sufficient for Z fo ) < Z fo(xc)

ceE ce&
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
@ Locally improving: (VC € &€,Vx: € Xc) fu(pe(xc)) < fo(xc)
(Pc(Xc

sufficient for Z fo ) < Z fo(xc)

ce& ceg
o Equivalent Transformations 4+ Locally Improving:
fe . =f— AT<p
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
@ Locally improving: (VC € &€,Vx: € Xc) fu(pe(xc)) < fo(xc)
(Pc(Xc

sufficient for Z fo ) < Z fo(xc)

ce& ceg
o Equivalent Transformations 4+ Locally Improving:
fe . =f— AT<p

Definition

Mapping p: X — X is relaxed-improving if
(Fp) (Vo € &,Vxe € Xo) fF(po(xc)) < £ (xc);

A system of linear inequalities in ¢.
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The Problem

Sufficient Conditions for Peristency (Dual)

o Improving mapping: (Vx € X') E¢(p(x)) < E¢(x) — NP hard to verify
@ Locally improving: (VC € &€,Vx: € Xc) fu(pe(xc)) < fo(xc)
(Pc(Xc

sufficient for Z fo ) < Z fo(xc)

ce& ceg
o Equivalent Transformations 4+ Locally Improving:
fe . =f— AT<p

Definition

Mapping p: X — X is relaxed-improving if
(Fp) (Vo € &,Vxe € Xo) fF(po(xc)) < £ (xc);

A system of linear inequalities in ¢.
In matrix form: (o) PTF¥ < ¥

(3¢) (I — PT)(f — ATy) > 0 - Linear program in ¢.
PT: (PTf)e(xc) = fo(pe(xc))-
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The Problem
LP Relaxation

o Energy: Ef(x) =fz + >,y flx) +...
o Linearize: Ef(x) = (f, p)
(fore + 32, Yiex, flDue(i) +-..)

o 1 = 8§(x) € RT - indicator vector of costs selected by x.

o Constraints:

we {0,1}%

hey =1

> pu(i) = 1 — normalization

i tuv(i, j) = py(j) — marginalization
@ LP relaxation:  min{f, u)

Au=20
o =1
u=>0
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The Problem
LP Relaxation

On a higher level:

Embedding: 6: X — R7;

Linearization: Ef(x) = (f,d(x));

miny E¢(x) > mingea(f, n);

Polytope: A = {u|Ap =0, pug =1, p >0} D o(X);

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



Relaxed Improving Mapping

e Mapping p: X — X can be represented in the space R”:

p

Pt

Wl

>

3

(R ¢

Definition

4

mapping 0

P: RT — R” is a linear extension of p: X — X if
(vx € X) 8(p(x)) = Po(x)

@ An oblique projection in R,

A. Shekhovtsov, P. Swoboda, B. Savchynskyy
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The Problem

Sufficient Conditions for Persistency (Primal)

@ Recall: p: X — X is improving if (Vx € X) E¢(p(x)) < E(x)
@ In the embedding: (Vu € (X)) (f, Pu) < (f,u);

Definition

Mapping p: X — X is relaxed-improving if
(Ve N) (f, Pu) < (f,p);
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The Problem

Sufficient Conditions for Persistency (Primal)

@ Recall: p: X — X is improving if (Vx € X) E¢(p(x)) < E(x)
@ In the embedding: (Vu € (X)) (f, Pu) < (f,u);

Definition

Mapping p: X — X is relaxed-improving if
(Ve N) (f, Pu) < (f,p);

e A sufficient condition since A D §(X)
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The Problem

Sufficient Conditions for Persistency (Primal)

@ Recall: p: X — X is improving if (Vx € X) E¢(p(x)) < E(x)
@ In the embedding: (Vu € (X)) (f, Pu) < (f,u);

Definition

Mapping p: X — X is relaxed-improving if
(Ve N) (f, Pu) < (f,p);

e A sufficient condition since A D §(X)

@ Linear program in u: (Y € A) (f, (I — P)u) > 0;
i I —P)u)y >0
min{f, (I = P)u) =
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The Problem

Sufficient Conditions for Persistency (Primal)

@ Recall: p: X — X is improving if (Vx € X) E¢(p(x)) < E(x)
@ In the embedding: (Vu € (X)) (f, Pu) < (f,u);

Definition

Mapping p: X — X is relaxed-improving if
(Ve N) (f, Pu) < (f,p);

e A sufficient condition since A D §(X)

@ Linear program in u: (Y € A) (f, (I — P)u) > 0;
i I —P)u)y >0
min{f, (I = P)u) =

Primal and Dual sufficient conditions are equivalent

(by LP strong duality and substitution)
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Generality of Sufficient Conditions

Theorems (Shekhovtsov (2014, 2015))

Relaxed-improving condition with natural (local) relaxations are satisfied for a.o.f.:
Simple DEE (Goldstein, 1994) v
03 MQPBO (Kohli et al., 2008) v
§ % Kovtun (2003) one-agains-all v
'i_g Kovtun (2011) iterative v
Swoboda et al. (2014)* v
= | Rl QPBO Hammer et i (i968) | v
5 < | Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) | FLP
'g cg Bisubmodular relaxations (Kolmogorov, 2010)** BLP
5 -5 | Generalized Roof Dualilty (Kahl and Strandmark, 2011) | FLP
& § Persistency by Adams et al. (1998) FLP
T4

BLP = Basic LP Relaxation Werner (2007); Thapper and Zivny (2013);
FLP = Full Local LP Relaxation, equivalent to Sherali and Adams (1990);
*Swoboda et al. (2014) is higher order but the comparison proof is for pairwise case. **Result holds for sum

of bisubmodular functions over the same hypergraph as the BLP relaxation:
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The Problem
Maximum Persistency

o Given that verification problem is polynomially solvable,
@ which method is better?

Proposition

Pose "the best partial optimality” as optimization problem
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The Problem
Maximum Persistency

o Given that verification problem is polynomially solvable,
@ which method is better?

Proposition
Pose "the best partial optimality” as optimization problem

Maximum Persistency Problem

Find the mapping p: X — X that delivers the maximum problem reduction:

i X, .t. p is relaxed-improving,
Ir"rélgl;)m( w)| s.t. pis relaxed-improving

P - class of mappings.
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The Algorithm
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Restricted Class of Mappings

Let ju be a solution to LP-relaxation: ji € argmin,ca(f, 1) and p: X — X be
(strictly) relaxed-improving. Then Pu =

1
o 3lels o
L e o ~e-
\Lw No
O E L 4 \ 4
o o o
o Fix a test labeling y from p and try substitute
° o °
Y o ® o
( o AT A%
\ ¢ ¢
0 ‘o X

other labels with it.
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Restricted Class of Mappings

Still Covers

Simple DEE (Goldstein, 1994)
9 ;'; MQPBO (Kohli et al., 2008)
B Kovtun (2003) one-agains-all
'EE Kovtun (2011) iterative

Swoboda et al. (2014)*
sl ool alel] QLSO Wemmer o 2l ((1085)

5 5 | Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) | FLP
'g m? Bisubmodular relaxations (Kolmogorov, 2010)** BLP
5 3 | Generalized Roof Dualilty (Kahl and Strandmark, 2011) | FLP
) § Persistency by Adams et al. (1998) FLP
< o
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Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y
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Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f
@ Check relaxed-improving conditions by solving LP dual:
?
maxgs > 0
%)

(Ve €&, Vxo) gf(xc) >0
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Discrete Cutting Plane

Algorithm

o Start with a mapping p that substitutes everything with y

o Auxiliary problem g = (I — PT)f
@ Check relaxed-improving conditions by solving LP dual:
?
maxgs > 0
%)
(Ve €&, Vxo) gf(xc) >0

o If not satisfied, determine active (blocking) constraints on nodes
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Discrete Cutting Plane

o o
(w °®
G G

Algorithm

o Start with a mapping p that substitutes everything with y
e Auxiliary problem g = (I — PT)f
@ Check relaxed-improving conditions by solving LP dual:
max g5 é 0
®
(Ve €&, Vxo) gf(xc) >0

If not satisfied, determine active (blocking) constraints on nodes

Release blocking constraints by pruning some maps
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Discrete Cutting Plane

o o
(w -°®
G G

Algorithm

o Start with a mapping p that substitutes everything with y
e Auxiliary problem g = (I — PT)f
@ Check relaxed-improving conditions by solving LP dual:
max g5 é 0
®
(Ve €&, Vxo) gf(xc) >0

If not satisfied, determine active (blocking) constraints on nodes

Release blocking constraints by pruning some maps
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Discrete Cutting Plane

Algorithm
o Start with a mapping p that substitutes everything with y
o Auxiliary problem g = (I — PT)f

@ Check relaxed-improving conditions by solving LP dual:
?
maxgs > 0
%)
(Ve €&, Vxo) gf(xc) >0

If not satisfied, determine active (blocking) constraints on nodes

Release blocking constraints by pruning some maps
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Correctness and Optimality

Properties:

Runs in polynomial time;

Solves the maximum persistency problem exactly when the dual is solved
exactly and the solution is a strict relative interior optimal (e.g. interior point
method);

Returns an improving mapping even when the dual is solved sub-optimally —
can use fast dual solvers, we used TRW-S by Kolmogorov (2006).

Generalizes LP approach by Shekhovtsov (2014) and pruning Swoboda et al.
(2014) (CVPR'14).
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Algorithm

Efficiency

- solving relaxed inference approximately even once is slow

- TRW-S is not finitely converging

How can we iterate such relaxed inference?
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Algorithm

Efficiency

- solving relaxed inference approximately even once is slow

- TRW-S is not finitely converging

How can we iterate such relaxed inference?

Fast implementation with TRW-S

@ Incremental: reuse reparametrizations ¢

o Guaranteed to prune something even after 1 iteration of TRW-S (there is a
blocking constraint not yet pruned)

@ An optimal pruning is often possible before the dual is solved (cuts)

@ Problem reductions preserving the sufficient condition

o Fast message passing for (I — PT)f with reductions

Instance Initialization Extra time for persistency

(1000 it.) | nospeedups | +reduction |+node pruning|+labeling pruning| +fast msgs
Protein folding 1CKK 8.5s 268s (26.53%) |168s (26.53%) | 2.0s (26.53%) | 2.0s (26.53%) |2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%)|230s (93.41%) | 85s (93.41%) | 76s (93.41%) | 19s (93.41%)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



Algorithm Video
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pfau-demo.avi
Media File (video/avi)


Algorithm Output

Proved optimal part Reminder

T - *
.y . " e 10

9

8

6

5

2

; ,

number of labels remained
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Algorithm

Evaluation: Random Problems

CVPR'14 Comparison L1 vs. new algorithm using TRW-S
Potts model
100 100
95% I =3 %0 95%
| | I 70% I <=4 - 70%
80 80 . 0
- I 50% I «=5 . 50%
?,; mean - K=10 i 70 mean
8 1]
% 60 £ 60
%- [ ié- 50
5 g
S a0t c 40
S H 2
5 é 30
o
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@ Algorithm using TRW-S performs closely to maximum persistency
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OpenGM Benchmark

ColorSegmentation (N8)

J. Lellmann et.al.
converted by J. Lellmann and J.H. Kappes

ColorSegmentation
K. Alahari et.al.

| converted by J H. Kappes

Chinese Characters

oo
B
b

MRF Stereo
R. Szeliski et.al.

converted by J.H. Kappes

Object Segmentation
K. Alahari et.al.

converted by J.H. Kappes n
MRF Photomontage
R. Szeliski et.al.

converted by J.H. Kappes

MREF Inpainting
R. Szeliski et.al.

converted by J.H. Kappes

Scene Decomposition

8

s i Protein Folding
L) §;7vle\/lrgd',zyo§’zofig2nd‘l. H. Kappes ggg{gfy@i{;@mzm and J H Kappes f‘:\ . : iﬁ,‘gig?f J?e{.gi; -
&
Brain 3mm Geometric Surface Labeling (3)
J. H. Kappes et.al. Gallagher et.al.
converted by J. H. Kappes converted by D. Batra and J. H. Kappes
Problem family #1 #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS | Our-TRWS
mrf-stereo 3 16-60 > 100000 i i 2.5h 13% | 117s 73.56%
mrf-photomontage 2 5-7 <514080| 93s 22%| 866s 16% 3.7h 16% | 483s 41.98%
color-seg 3 3-4 <424720| 228  11%| 87s 16%|0.3s 98% | 1.3h  >99% |61.8s 99.95%
color-seg-n4 9 3-12 < 86400 22s 8% | 398s 14% |0.2s 67% | 321s 90% | 4.9s 99.26 %
ProteinFolding 21 <483 < 1972|685s 2% |2705s 2% i 48s 18% | 9.2s 55.70%
object-seg 5 4-8 68160 | 3.2s 0.01% i 0.1s 93.86% | 138s 98.19% | 2.2s 100%
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OpenGM Benchmark: Easy Examples

@ Some problems are easy (TRWS finds optimal solution or near)

Object Segmentation

°99.99%
:2.8s

3
2
1
o
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OpenGM Benchmark: Hard Examples

TRW-S
62s

5

+180s| |
75%]|
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OpenGM Benchmark: Very Hard Examples

Panorama Stitching
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Algorithm
Conclusion

o New general sufficient condition (local 4 equivalent transforms)
o Covers many methods in the literature (! does not imply it is very powerful)
@ Developed an efficient algorithm (implementation available, matlab interface)

@ Algorithm can be understood as converting a method without guarantees
(TRW-S) into a method with guarantees at a reasonable overhead

@ What are these guarantees useful for further? Model verification? Learning?

Thank You!
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