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Persistency

ILP LP
min cTx

Ax ≤ b

x ∈ {0, 1}n

min cTx

Ax ≤ b

x ∈ [0, 1]n

1 When the solution to LP is integer?
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Persistency

ILP LP
min cTx

Ax ≤ b

x ∈ {0, 1}n

min cTx

Ax ≤ b

x ∈ [0, 1]n

1 When the solution to LP is integer?

x = (0, 1, 1, 0, 1
2 ,

1
2 ,

1
3 , 1, 0, . . . )

2 Is the integer part of an optimal solution to LP optimal for ILP?

3 Is any part of an optimal solution to LP optimal for ILP?

4 Sufficient conditions for a part of an optimal solution to LP to be optimal for
ILP?

5 Find the largest part of LP solution satisfying 4.
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Vertex Packing / Maximum Independent Set

Minimum Vertex Cover

Maximum Independent Set

= Maximum Vertex Packing

Maximum Weighted Vertex Packing

(V, E) – an undirected graph;

Vertex Packing is a subset P ⊂ V for which u, v ∈ P ⇒ (u, v) 6∈ E ;

Weights c : V → R;

Problem: max
x

∑
v∈V

cvxv (VP)

(∀uv ∈ E) xu + xv ≤ 1,

(∀v ∈ V) xv ∈ {0, 1}.
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Vertex Packing / Maximum Independent Set

Relaxing the integrality constraints:

max
µ

∑
v∈V

cvµv (VPL)

(∀uv ∈ E) µu + µv ≤ 1,

(∀v ∈ V) µv ≥ 0.

Theorems

(Balinski, 1965; Lorentzen, 1966): Any basic feasible solution to (VLP) is
{0, 1

2 , 1}-valued.

(Edmonds and Pulleyblank) (VLP) reduces to a maxflow problem on a
related symmetric bipartite graph;

(Nemhauser and Trotter, 1975): Variables which assume binary values in an
optimum (VLP) solution retain the same values in an optimum (VP) solution.

(Picard and Queyranne, 1977): There exists a unique maximum set of
variables that are integer valued in an optimal solution to (VLP).
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QPBO

Quadratic pseudo-Boolean Optimization (QPBO)

(V, E) – an undirected graph;

Weights a : V ∪ E → R;

Problem: min
x

∑
v∈V

avxv +
∑
uv∈E

auvxuxv

(∀v ∈ V) xv ∈ {0, 1}.

Generalizes Vertex Packing (let auv = B, a big number; a = −cv ).
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QPBO

Natural linear relaxation: xs → µs ∈ [0, 1], xsxt → µst ∈ [0, 1];

min
µ : V∪E→[0,1]

∑
v∈V

avµv +
∑
uv∈E

auvµuv s.t. (LP)

(∀uv ∈ E) µu + µv − 1 ≤ µuv ≤ min(µu, µv ).

Theorems

(?): Each extreme point of the feasible set is {0, 1
2 , 1}-valued.

(Hammer et al., 1984; Boros et al., 1991): LP reduces to a maxflow problem;

Weak Persistency (Hammer et al., 1984): Variables µv which assume binary
values in an optimum (LP) solution retain the same values in an ILP solution.

Strong Persistency (Hammer et al., 1984): Variables µv which assume
binary values in all optimal (LP) solutions retain the same values in all
optimal ILP solutions.
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0-1 Polynomial Programming

v1

e1 v2 v3

v5
v6

v7

v4

e2

e4
e3 A hypergraph (courtesy of wikipedia).

0-1 Polynomial Programming / pseudo-Boolean Optimization

(V, E) – a hypergraph, E ⊂ 2V ;

Weights f : E → R;

Problem: min
x∈{0,1}V

∑
c∈E

fc
∏
v∈c

xv . (PP)

Any pseudo-Boolean function can be represented as a multilinear polynomial.
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0-1 Polynomial Programming

Relaxation of Sherali and Adams (1990)

− optimal solutions are not half-integral in general;
− no combinatorial method to solve;
− does not possess persistency in general;
+ Tightest ”local” relaxation

(Bi)submodular relaxations (Kolmogorov, 2012)

+ extreme feasible solutions are half-integral;
+ reduces to sum of (bi)submodular functions minimization;
+ possess persistency;
− Weaker than relaxation of Sherali and Adams (1990);

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Energy Minimization

v1

e1 v2 v3

v5
v6

v7

v4

e2

e4
e3 � f3,5,6 (x3, x5, x6)

fuv(xu, xv)

fv(xv)

xu xv

Energy Minimization / Weighted Constraint Satisfaction

(V, E) - a hypergraph;

Xv - a finite set of labels, v ∈ V;

Costs fc :
∏

v∈c Xv → R; Cost vector f ∈ RI .

Energy: Ef (x) =
∑

c∈E fc(xc);

Probloem: minx∈X Ef (x);
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Energy Minimization

Example: Potts Model for Object Class Segmentation

V - set of pixels; E ⊂ V × V neighboring pixels;

Xs = {1, . . .K} – class label;

Ef (x) =
∑

s∈V fs(xs) +
∑

st∈E λst [[xs 6= xt ]].

Image Ground Truth

(MSRC object class segmentation)

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Persistncy / Partial Optimality

Example: Potts Model for Stereo

V - set of pixels; E ⊂ V × V neighboring pixels;

Xs = {1, . . .K} – disparity value;

Ef (x) =
∑

s∈V fs(xs) +
∑

st∈E λst [[xs 6= xt ]].

Stereo Reconstruction Partial Optimality
(Method of Kovtun (2003))

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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Development of Partial Optimality Methods
Maximum Persistency via Iterative Relaxed Inference with Graphical Models

Alexander Shekhovtsov1, Paul Swoboda2, Bogdan Savchynskyy2,3

1TU Graz, Austria. 2Heidelberg University, Germany. 3TU Dresden, Germany.
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Kovtun’s method: 1s, 0.2% Kohli et al. [3] (MQPBO)
41s, 0.2%

Swoboda et al. [7] (PBP optimal)
27min, 89.8%

Our: 16s, 99.94% strong

Figure 1: Progress of partial optimality methods. Top line corresponds to a stereo model with Potts interactions and large aggregating windows for unary
costs used in [2, 5] (instance published by [2]). Bottom line is a more refined stereo model with truncated linear terms [8] (instance in [1]). Hashed
area indicates that the optimal persistent label in the pixel is not found (but some non-optimal labels might have been eliminated). Solution completeness
is given by the percent of persistent labels. Graph cut based methods are fast but only efficient for strong unary terms. LP-based methods are able to
determine a larger persistent assignments but are extremely slow, prior to this work. Note, our method is set up to determine strong persistency, a partial
assignment that holds for all optimal solutions, while other methods here find a part of any optimal solution.

We consider the NP-hard problem of MAP-inference for graphical mod-
els. We propose a polynomial time practically efficient algorithm for finding
a part of its optimal solution. Specifically, our algorithm marks each label in
each node of the considered graphical model either as (i) optimal, meaning
that it belongs to all optimal solutions of the inference problem; (ii) non-

optimal if it provably does not belong to any solution; or (iii) undefined,
which means our algorithm can not make a decision regarding the label.
The labels that we proved optimal or non-optimal are called persistent.

Key ideas:

• We build on the Maximum Persistency [6] framework, which proved
that most of the existing methods for partial optimality can be ex-
plained by a simple local domination condition if only one supplies
the right reparametrization of the energy function.

• Finding the maximum subset of persistent labels can be formu-
lated [6] as a big linear program that optimizes over reparametriza-
tions and a subset of labels deemed persistent at the same time. It is a
challenging problem and large scale instances can only be addressed
by a windowing technique [6] – a semi-local condition.

• We solve the same maximum persistency problem instead by itera-
tively solving standard LP relaxation for a series of auxiliary energy
problems, similarly to the approach in [7]. We thus unite [6] and [7].

Key features of our approach:

• Invariant to reparametrization and order of labels.
• Fast approximate dual solvers can be employed without compromis-

ing correctness and global persistency guarantees.
• Requires an approximate solution to LP relaxation as a starting point.
• Can be viewed as making an approximate solver for LP-relaxation to

be able to prove optimality of a part of its solution.
More specifically, we demonstrated our approach using TRW-S [4] for solv-
ing auxiliary subproblems.

Properties when subproblems are solved with TRW-S:

• Closely approximates maximum persistency LP (evaluated on small
random problems).

• Fast message passing transfers to auxiliary problems.
• The method is correct using a finite number of TRW-S iterations.
• Subproblems can be solved incrementally, reusing the messages.

[1] OpenGM benchmark. http://hci.iwr.uni-heidelberg.

de/opengm2/?l0=benchmark.
[2] Karteek Alahari, Pushmeet Kohli, and Philip H. S. Torr. Reduce, reuse

& recycle: Efficiently solving multi-label MRFs. In CVPR, 2008.
[3] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P. Torr. On

partial optimality in multi-label MRFs. In ICML, 2008.
[4] V. Kolmogorov. Convergent tree-reweighted message passing for

energy minimization. PAMI, 28(10), October 2006. doi: 10.
1109/TPAMI.2006.200. URL http://dx.doi.org/10.1109/

TPAMI.2006.200.
[5] I. Kovtun. Partial optimal labeling search for a NP-hard subclass of

(max, +) problems. In DAGM-Symposium, pages 402–409, 2003.
[6] A. Shekhovtsov. Maximum persistency in energy minimization. In

CVPR, 2014.
[7] P. Swoboda, A. Shekhovtsov, J. H. Kappes, C. Schnörr, and B. Savchyn-

skyy. Partial optimality by pruning for MAP-inference with general
graphical models. ArXiv e-prints, Oct 2014.

[8] Richard Szeliski, Ramin Zabih, Daniel Scharstein, Olga Veksler,
Vladimir Kolmogorov, Aseem Agarwala, Marshall Tappen, and Carsten
Rother. A comparative study of energy minimization methods for
Markov random fields with smoothness-based priors. PAMI, 30(6):
1068–1080, 2008. ISSN 0162-8828.

This is an extended abstract. The full paper is available at the Computer Vision Foundation webpage.

Model 1 (Kovtun’03, Alahari et al.’10): Potts, strong unaries with window
aggregation

Model 2 (Szeliski et al., 2008): Nearly Potts, per-pixel unaries
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Maximum Persistency Problem

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



12/36

Introduction The Problem Algorithm References

Improving Mapping (substitution of labels)

pu : Xu ! Xu pv p : X → X node-wise

Definition

Mapping p is improving if
∀x Ef (p(x)) ≤ Ef (x).

Remark: no distinction between
strict/non-strict in this talk!

If x is optimal then p(x) is optimal. Search space can be reduced.

X p(X )
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Equivalent Transformations

Ef (x) =
∑

c∈E fc(xc). Cost vectors f , g ∈ RI equivalent when Ef = Eg .

v1 v2

v3
v4

f1,2(x1, x2)

f2,3,4(x2, x3, x4)

f2(x2)

2

3

1

1

2

1

1

f12(x1, x2) = f ′12(x1, x2) + f ′2 (x2)

1

2

= f ′′1 (x1) + 0 + f ′′2 (x2)Affine space: g ∼ h ∼ f
⇒ Eαg+(1−α)h = Ef .

f ∼ g ⇔ (∃ϕ) g = f −ATϕ. Equivalent Transformations, Shlezinger (1976)

Reparametrization, Wainwright et al. (2003)

Equivalence Preserving Transformations in WCSP

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



13/36

Introduction The Problem Algorithm References

Equivalent Transformations

Ef (x) =
∑

c∈E fc(xc). Cost vectors f , g ∈ RI equivalent when Ef = Eg .

v1 v2

v3
v4

f1,2(x1, x2)

f2,3,4(x2, x3, x4)

f2(x2)

2

3

1

1

2

1

1

f12(x1, x2) = f ′12(x1, x2) + f ′2 (x2)

1

2

= f ′′1 (x1) + 0 + f ′′2 (x2)

Affine space: g ∼ h ∼ f
⇒ Eαg+(1−α)h = Ef .

f ∼ g ⇔ (∃ϕ) g = f −ATϕ. Equivalent Transformations, Shlezinger (1976)

Reparametrization, Wainwright et al. (2003)

Equivalence Preserving Transformations in WCSP

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



13/36

Introduction The Problem Algorithm References

Equivalent Transformations

Ef (x) =
∑

c∈E fc(xc). Cost vectors f , g ∈ RI equivalent when Ef = Eg .

v1 v2

v3
v4

f1,2(x1, x2)

f2,3,4(x2, x3, x4)

f2(x2)

2

3

1

1

2

1

1

f12(x1, x2) = f ′12(x1, x2) + f ′2 (x2)

1

2

= f ′′1 (x1) + 0 + f ′′2 (x2)Affine space: g ∼ h ∼ f
⇒ Eαg+(1−α)h = Ef .

f ∼ g ⇔ (∃ϕ) g = f −ATϕ.

Equivalent Transformations, Shlezinger (1976)

Reparametrization, Wainwright et al. (2003)

Equivalence Preserving Transformations in WCSP

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



13/36

Introduction The Problem Algorithm References

Equivalent Transformations

Ef (x) =
∑

c∈E fc(xc). Cost vectors f , g ∈ RI equivalent when Ef = Eg .

v1 v2

v3
v4

f1,2(x1, x2)

f2,3,4(x2, x3, x4)

f2(x2)

2

3

1

1

2

1

1

f12(x1, x2) = f ′12(x1, x2) + f ′2 (x2)

1

2

= f ′′1 (x1) + 0 + f ′′2 (x2)Affine space: g ∼ h ∼ f
⇒ Eαg+(1−α)h = Ef .

f ∼ g ⇔ (∃ϕ) g = f −ATϕ. Equivalent Transformations, Shlezinger (1976)

Reparametrization, Wainwright et al. (2003)

Equivalence Preserving Transformations in WCSP

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



14/36

Introduction The Problem Algorithm References

Sufficient Conditions for Peristency (Dual)

Improving mapping: (∀x ∈ X ) Ef (p(x)) ≤ Ef (x) – NP hard to verify

Locally improving: (∀c ∈ E ,∀xc ∈ Xc) fc(pc(xc)) ≤ fc(xc)

Equivalent Transformations + Locally Improving:
f ϕ := f − ATϕ

Definition

Mapping p : X → X is relaxed-improving if
(∃ϕ) (∀c ∈ E ,∀xc ∈ Xc) f ϕc (pc(xc)) ≤ f ϕc (xc);

A system of linear inequalities in ϕ.
In matrix form: (∃ϕ) PTf ϕ ≤ f ϕ

(∃ϕ) (I − PT)(f − ATϕ) ≥ 0 – Linear program in ϕ.

PT : (PTf )c(xc) = fc(pc(xc)).

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency
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LP Relaxation

Energy: Ef (x) = f∅ +
∑

v∈V fv (xv ) + . . .

Linearize: Ef (x) = 〈f , µ〉
(f∅µ∅ +

∑
v

∑
i∈Xu

fv (i)µv (i) + . . . )

µ = δ(x) ∈ RI - indicator vector of costs selected by x .

µuv (i , j)

v

µv (j)µu(i)

u

0

1

0

0

0

1Constraints:
µ ∈ {0, 1}I
µ∅ = 1∑

i µu(i) = 1 – normalization∑
i µuv (i , j) = µv (j) – marginalization

LP relaxation: min〈f , µ〉
Aµ = 0

µ∅ = 1

µ ≥ 0
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LP Relaxation

On a higher level:

Embedding: δ : X → RI ;

Linearization: Ef (x) = 〈f , δ(x)〉;
minx Ef (x) ≥ minµ∈Λ〈f , µ〉;
Polytope: Λ = {µ |Aµ = 0, µ∅ = 1, µ ≥ 0} ⊃ δ(X );

M

y
mapping ±

s t

0

1

x

z
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Relaxed Improving Mapping

Mapping p : X → X can be represented in the space RI :

M

p s p t

mapping ± P(M)

Definition

P : RI → RI is a linear extension of p : X → X if
(∀x ∈ X ) δ(p(x)) = Pδ(x)

An oblique projection in RI .
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Sufficient Conditions for Persistency (Primal)

Recall: p : X → X is improving if (∀x ∈ X ) Ef (p(x)) ≤ E (x)

In the embedding: (∀µ ∈ δ(X )) 〈f ,Pµ〉 ≤ 〈f , µ〉;

Definition

Mapping p : X → X is relaxed-improving if
(∀µ ∈ Λ) 〈f ,Pµ〉 ≤ 〈f , µ〉;

A sufficient condition since Λ ⊃ δ(X )

Linear program in µ: (∀µ ∈ Λ) 〈f , (I − P)µ〉 ≥ 0;

min
µ∈Λ
〈f , (I − P)µ〉 ≥ 0.

Theorem

Primal and Dual sufficient conditions are equivalent.

(by LP strong duality and substitution)
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Generality of Sufficient Conditions

Theorems (Shekhovtsov (2014, 2015))

Relaxed-improving condition with natural (local) relaxations are satisfied for a.o.f.:

p
a

ir
w

is
e

m
u

lt
il
a

b
el

Simple DEE (Goldstein, 1994) X
MQPBO (Kohli et al., 2008) X
Kovtun (2003) one-agains-all X

Kovtun (2011) iterative X
Swoboda et al. (2014)* X

h
ig

h
er

or
d

er
p

se
u

d
o

-B
o

o
le

a
n Roof dual / QPBO Hammer et al. (1984) X

Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) FLP

Bisubmodular relaxations (Kolmogorov, 2010)** BLP

Generalized Roof Dualilty (Kahl and Strandmark, 2011) FLP

Persistency by Adams et al. (1998) FLP

BLP = Basic LP Relaxation Werner (2007); Thapper and Živný (2013);
FLP = Full Local LP Relaxation, equivalent to Sherali and Adams (1990);
*Swoboda et al. (2014) is higher order but the comparison proof is for pairwise case. **Result holds for sum

of bisubmodular functions over the same hypergraph as the BLP relaxation.
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Maximum Persistency

Given that verification problem is polynomially solvable,

which method is better?

Proposition

Pose ”the best partial optimality” as optimization problem

Maximum Persistency Problem

Find the mapping p : X → X that delivers the maximum problem reduction:

min
p∈P

∑
u∈V
|p(Xu)| s.t. p is relaxed-improving,

P - class of mappings.
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The Algorithm
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Restricted Class of Mappings

Theorem

Let µ be a solution to LP-relaxation: µ ∈ argminµ∈Λ〈f , µ〉 and p : X → X be
(strictly) relaxed-improving. Then Pµ = µ.

µ

1

2

1

2

Fix a test labeling y from µ and try substitute other labels with it.

y

A. Shekhovtsov, P. Swoboda, B. Savchynskyy Maximum Persistency



23/36

Introduction The Problem Algorithm References

Restricted Class of Mappings

Still Covers
p

a
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w
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b
el

Simple DEE (Goldstein, 1994)

MQPBO (Kohli et al., 2008)

Kovtun (2003) one-agains-all

Kovtun (2011) iterative

Swoboda et al. (2014)*
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n Roof dual / QPBO Hammer et al. (1984)

Reductions: HOCR (Ishikawa, 2011), (Fix et al., 2011) FLP

Bisubmodular relaxations (Kolmogorov, 2010)** BLP

Generalized Roof Dualilty (Kahl and Strandmark, 2011) FLP

Persistency by Adams et al. (1998) FLP
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Discrete Cutting Plane

Algorithm

Start with a mapping p that substitutes everything with y

Auxiliary problem g = (I − PT)f

Check relaxed-improving conditions by solving LP dual:

max
ϕ

gϕ∅
?
≥ 0

(∀c ∈ E , ∀xc) gϕc (xc) ≥ 0

If not satisfied, determine active (blocking) constraints on nodes

Release blocking constraints by pruning some maps
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Correctness and Optimality

Properties:

Runs in polynomial time;

Solves the maximum persistency problem exactly when the dual is solved
exactly and the solution is a strict relative interior optimal (e.g. interior point
method);

Returns an improving mapping even when the dual is solved sub-optimally –
can use fast dual solvers, we used TRW-S by Kolmogorov (2006).

Generalizes LP approach by Shekhovtsov (2014) and pruning Swoboda et al.
(2014) (CVPR’14).
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Efficiency

- solving relaxed inference approximately even once is slow

- TRW-S is not finitely converging

How can we iterate such relaxed inference?

Fast implementation with TRW-S

Incremental: reuse reparametrizations ϕ

Guaranteed to prune something even after 1 iteration of TRW-S (there is a
blocking constraint not yet pruned)

An optimal pruning is often possible before the dual is solved (cuts)

Problem reductions preserving the sufficient condition

Fast message passing for (I − PT)f with reductions

Instance Initialization Extra time for persistency
(1000 it.) no speedups +reduction +node pruning +labeling pruning +fast msgs

Protein folding 1CKK 8.5s 268s (26.53%) 168s (26.53%) 2.0s (26.53%) 2.0s (26.53%) 2.0s (26.53%)
colorseg-n4 pfau-small 9.3s 439s (88.59%) 230s (93.41%) 85s (93.41%) 76s (93.41%) 19s (93.41%)

Table 4. Exemplary evaluation of speedups: from left to right we add techniques described in §5. 1CKK: an example when the final time
for persistency is only a fraction of the initialization time. pfau-small: an example when times for initialization and persistency are
comparable; speedups also help to improve the persistency as they are based on exact criteria.

Instance #L #V [29]-CPLEX [29]-TRWS Our-CPLEX Our-TRWS
1CKK  445 38 2503s 0% 46s 0% 2758s 27% 8.5+2s 26.53%
1CM1  350 37 2388s 0% 51s 0% 4070s 34% 9+3.9s 29.97%
1SY9  425 37 1067s 0% 67s 0% 2629s 51% 11+4.2s 57.98%
2BBN  404 37 9777s 0% 5421s 0% 9677s 9% 16+4.3s 14.17%
PDB1B25  81 1972 325s 22% 120s 22% 1599s 84% 4.3+7.3s 87.84%
PDB1D2E  81 1328 483s 59% 83s 59% 154s 98% 1.6+1.8s 98.25%

Table 5. Comparison to [29] using exact and approximate LP solvers. Examples of hard ProteinFolding instances [16, 36]. For
Our-TRWS the initialization + persistency time is given. Better persistency by Our-TRWS vs. Our-CPLEX in some cases can be explained
by selecting the test labeling y in Our-TRWS using the (sequential) rounding scheme [12] (unlike in Table 1).

Benchmark Problems. Table 2 summarizes average per-
formance on the OpenGM MRF benchmark [10, 9]. The
dataset include previous benchmark instances from com-
puter vision [31] and protein structure prediction [16, 36]
as well as other models from the literature. Details per in-
stance are given in the supplementary §E.

Speedups. In this experiment we report how much speed
improvement was achieved with each subsequent technique
of §5. The evaluation in Table 4 starts with a basic imple-
mentation using a warm start (a comparison to the cold start
is indeed pointless). The solver is allowed to run at most
50 iterations in the partial optimality phase until pruning is
attempted. We expect that on most datasets the percentage
of persistent labels improves when we apply the speedups
(since they preserve maximality, unlike the general pruning
based on approximate solvers).

Discussion. Tables 1 and 5 demonstrate that Our-TRWS,
which is using a suboptimal dual solver, closely approxi-
mates maximum persistency [25]. The proposed method is
significantly faster and scales much better. The method of
Swoboda et al. [29] is the closest contender to our method
in terms of algorithm design. Tables 1, 2 and 5 clearly
show that our method determines a larger set of persistent
variables. This holds true with exact (CPLEX) as well as
approximate (TRWS) solvers. We believe that both the
stronger persistency criterion and the possibility to elimi-
nate individual labels contribute to this result. Although our
method searches over a significantly larger space of possi-
ble eliminations (which would normally require more outer
iterations), it finishes significantly faster due to speedups.
The reported runtimes must be taken with some caution: all
evaluated methods including ours admit some further opti-
mization. Nevertheless, it is clear that the proposed method
is much more practical than [29] and [25] and gives signifi-

cantly better results than other techniques.

7. Conclusions and Outlook
We presented an approach to find persistencies for a cer-

tain class of NP-hard problems employing only a solver
for a convex relaxation. Using a suboptimal solver for
the relaxed problem, we still correctly identify persisten-
cies while the whole approach becomes scalable. Our
method with an exact solver matches the maximum per-
sistency [25] and with a suboptimal solver closely approx-
imates it, outperforming state of the art persistency tech-
niques [29, 11, 15]. The speedups we have developed allow
to achieve this at a reasonable computational cost making
the method much more practical than the works [25, 29] we
build on. In fact, our approach takes an approximate solver,
like TRW-S, and turns it into a method with partial optimal-
ity guarantees at a reasonable computation overhead.

We believe that many of the presented results can be
extended to higher order graphical models and tighter re-
laxations. Practical applicability with other approximate
solvers can be explored. A further research direction that
seems promising is mixing different optimization strategies
such as persistency and cutting plane methods.
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Algorithm Video
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Algorithm Output
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Evaluation: Random Problems

CVPR’14 Comparison L1 vs. new algorithm using TRW-S
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Algorithm using TRW-S performs closely to maximum persistency
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OpenGM Benchmark

Problem family [29]-CPLEX [29]-TRWS "-L1[25] Our-CPLEX Our-TRWS
10x10 Potts-3 0.18s 58.46% 0.05s 58.38% 0.05s 72.27% 0.18s 72.27% 0.04s 72.21%
10x10 full-3 0.24s 2.64% 0.09s 1.22% 0.06s 62.90% 0.24s 62.90% 0.05s 62.57%
20x20 Potts-3 3.25s 73.95% 0.21s 68.49% 0.87s 87.38% 2.43s 87.38% 0.06s 87.38%
20x20 full-3 2.81s 0.83% 0.37s 0.83% 0.95s 72.66% 3.03s 72.66% 0.07s 72.31%
20x20 Potts-4 12.45s 23.62% 0.39s 18.43% 19.40s 74.28% 8.56s 74.28% 0.08s 73.63%
20x20 full-4 3.96s 0.01% 0.39s 0.01% 21.08s 6.28% 12.41s 6.58% 0.08s 6.58%

Table 1. Performance evaluation on random instances of [25]. For each problem family (size, type of potentials and number of labels)
average performance over 100 samples is given. To allow for precise comparison all methods are initialized with the same test labeling y
found by LP relaxation. Our-TRWS closely approximates Our-CPLEX, which matches "-L1[25], and scales much better.

Problem family #I #L #V MQPBO MQPBO-10 Kovtun [29]-TRWS Our-TRWS
mrf-stereo 3 16-60 > 100000 † † † 2.5h 13% 117s 73.56%
mrf-photomontage 2 5-7  514080 93s 22% 866s 16% † 3.7h 16% 483s 41.98%
color-seg 3 3-4  424720 22s 11% 87s 16% 0.3s 98% 1.3h >99% 61.8s 99.95%
color-seg-n4 9 3-12  86400 22s 8% 398s 14% 0.2s 67% 321s 90% 4.9s 99.26%
ProteinFolding 21  483  1972 685s 2% 2705s 2% † 48s 18% 9.2s 55.70%
object-seg 5 4-8 68160 3.2s 0.01% † 0.1s 93.86% 138s 98.19% 2.2s 100%

Table 2. Average performance on OpenGM benchmarks. Columns #I,#L,#V denote the number of instances, labels and variables respec-
tively. † – result is not available (memory / implementation / other reason).

Our-CPLEX Our Algorithm 1 (Iterative Relaxed Infer-
ence) using CPLEX [8].

Our-TRWS Our Algorithm 2 using TRW-S [12]. Initial
solution uses at most 1000 iterations (or the
method has converged). All speedups.

[29]-CPLEX Method of Swoboda et al. [29, 30] with
CLPEX.

[29]-TRWS Method [29, 30] with TRW-S.
"-L1[25] Single LP formulation of the maximum

strong persistency [25] solved with CPLEX.
Kovtun One-against-all method of Kovtun [15].
MQPBO Multilabel QPBO [11].

MQPBO-10 MQPBO with 10 random permutations, ac-
cumulating persistency.

Table 3. List of Evaluated Methods

number of labels [5]. Is this advantage preserved if we con-
sider the cost vector g = (I�P )

Tf or even ḡ (13)? It turns
out that the answer in both cases is positive, we give details
in §D.3.

Summary of Speedups. We apply the techniques described
in this section in the loop of Algorithm 2 as follows.
Attempt a single node pruning for all nodes u 2 V and
all labels i 2 Y

v

. Run the dual solver (line 4) on the re-
duced problem ḡ (13) using warm start from the current
reparametrization ' until either of the following:

1. it has found a primal solution x such that: hḡ, �(x)i 
0 and p(x) 6= x;

2. iteration limit was exceeded or the solver has con-
verged.

In the first case, apply the pruning negative labeling tech-
nique to x. Otherwise, perform step 7. If the dual solver

has converged, Lemma 4.4 guarantees either correct termi-
nation or that further pruning is possible. At the same time,
warm start allows the solver to converge eventually despite
the iteration limit. Details of implementation and a proof of
finite termination with TRW-S specifically are given in §D.

6. Experimental Evaluation
In the experiments we study how well we approximate

the maximum persistency [25], give a direct comparison to
the most relevant scalable method [29]3, illustrate the con-
tribution of different speedups and give an overall perfor-
mance comparison to a larger set of relevant methods. As
a measure of persistency we use the percentage of labels
eliminated by the improving mapping p

P
v2V |X

v

\p
v

(X
v

)|P
v2V(|X

v

|�1) 100%. (15)

Random Instances. Table 1 gives comparison to [29] and
[25] on random instances generated as in [25] (small prob-
lems on 4-connected grid with uniformly distributed inte-
ger potentials for “full” model and of the Potts type for
“Potts” model, all not LP-tight). It can be seen that our
exact Algorithm 1 performs identically to the "-L1 formu-
lation [25]. Although it solves a series of LPs, as opposed
to a single LP solved by "-L1, it scales better to larger in-
stances. Instances of size 20x20 in the "-L1 formulation are
already too difficult for CPLEX: it takes excessive time and
sometimes returns a computational error. The performance
of the dual Algorithm 2 confirms that we loose very little in
terms of persistency but gain significantly in speed.

3Note, [30] points out that numerical results published in [29] were
incorrect due to an implementation error, the results that we report are
consistent with [30].
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OpenGM Benchmark: Easy Examples

Some problems are easy (TRWS finds optimal solution or near)

Object Segmentation
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OpenGM Benchmark: Hard Examples

TRW-S
62s

+180s
75%
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OpenGM Benchmark: Very Hard Examples

Panorama Stitching
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Panorama Stitching with Constraints
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Conclusion

New general sufficient condition (local + equivalent transforms)

Covers many methods in the literature (! does not imply it is very powerful)

Developed an efficient algorithm (implementation available, matlab interface)

Algorithm can be understood as converting a method without guarantees
(TRW-S) into a method with guarantees at a reasonable overhead

What are these guarantees useful for further? Model verification? Learning?

Thank You!
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