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Abstract

We propose a novel MRF-based model for image matching. Given two images, the task
is to estimate a mapping from one image to another, in order to maximize the match-
ing quality. We consider mappings defined by discrete deformation field constrained to
preserve 2-dimensional continuity. We approach the corresponding optimization prob-
lem by the TRW-S (sequential Tree-reweighted message passing) algorithm [11, 5]. Our
model design allows for a considerably wider class of natural transformation and yields a
compact representation of the optimization task. For this model TRW-S algorithm demon-
strated nice practical performance in experiments. We also propose a concise derivation
of the TRW-S algorithm as a sequential maximization of the lower bound on the energy
function.

Keywords: optical flow, registration, Energy minimization, MRF, message pass-
ing, early vision, graphical models.

1. Introduction

In many applications a flexible 2-dimensional deformation is highly desirable. In par-
ticular, to model flexible appearance, one incorporate such deformation as a component
for joint segmentation-deformation [4] or joint segmentation-classification [13], where it
serves to describe nonrigid motions (people, etc.), inclass variations (different cars), or
both. The only natural constraint on the deformation field is that it has to be (piecewise)
continuous. Applications also include computation of optical flow to estimate motion of a
3d scene, registration of images taken from different measuring devices, tracking in video
sequences, etc. Great advance in early vision problems, like stereo, segmentation, image
restoration and more, has been achieved due to models, based on the Markov Random
Fields (MRFs), and development of global optimization algorithms. Recent compari-
son of optimization algorithms for popular vision problems can be found in [10]. More
background on inference and learning algorithms for MRFs is given in [3].

Inspired by development of optimization algorithms for MRFs, we model the deforma-
tion as a discrete field and impose continuity constraints on it by means of interaction
potentials. The corresponding problem of finding best deformation field is difficult and
has not been addressed much (to our knowledge) in a global optimization framework.
In [8] MRF model was applied to the optical flow problem. Flow orientation field and
flow magnitude field are modeled as separate MRFs. It is first solved for orientation
field and then for the magnitude. Each of these problems is reduced to computation of
max-flow under their model. In [1] two-dimensional deformation field was modeled (as
an example to α-β swap algorithm) as an MRF with unary variables taking values from
the product set ∆X×∆Y . Optimization by α-β swap algorithm for this MRF quickly
becomes intractable as ∆X and ∆Y grows, moreover, as a local search algorithm it could
perform poorly without good initial guess. In [7] an algorithm is proposed for finding
a guaranteed persistent part of optimal solutions. The approach was applied also to
2D deformation. The work suggests a more compact MRF model which we refer to as
decomposed model and will discuss in more detail in the sequel. Experiments on real
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images in [7] showed that it is hard to find a reasonably large persistent part of optimal
solutions.

Our model is based on the model [7], we extend its flexibility by the use of blocks and
special type of continuity constraints (Sect. 2). We apply recently developed [11, 5] TRW-
S algorithm to our model. It is a variational optimization algorithm designed to solve
certain LP-relaxation of the discrete energy minimization problem (this LP-relaxation
was studied in e.g. original paper [9], review [12]). We rederive TRW-S in a concise way
as a coordinate ascent algorithm for the dual to the LP relaxation problem (Sect. 3). The
algorithm possess the same asymptotic behavior as algorithms in [6, 12], it may not solve
the LP-relaxation problem, since its stationary points satisfy only a necessary optimality
condition (studied in [9, 12, 5]). Yet it is very efficient in certain practical applications.
We achieve significant improvement in the deformable image matching problem, as we
show in our experiments (Sect. 4), demonstrating wide search range of pixel displacements
(60×60 px range) and robustness to deformations and noise. We conclude with possible
extensions in Sect. 5. Appendix A suggests a comparison of our decomposed relaxation
to standard one.

2. Deformation model

In this section we consider previously used MRF models for the 2-dimensional defor-
mation and introduce our block model. We discuss two important aspects of these models.
First, their demands w.r.t TRW-S algorithm: number of variational variables (all com-
ponents of all messages) and the complexity of passing of one message. Second, their
modeling power to describe continuous deformations. We start with defining standard
Energy minimization framework, following the notation of [11, 5]. For more background
on graphical models and MRFs we refer to [3, 11].

2.1. Energy minimization

Let L = {1 . . . K} be a set of labels. Let G = (V , E) be a graph with E ⊆ V × V
antisymmetric and antireflexive, i.e. (s, t) ∈ E ⇒ (t, s) /∈ E . In what follows we will
denote by st an ordered pair (s, t) ∈ E . Let each graph node s ∈ V be assigned a
label xs ∈ L and let a labeling (or configuration) be defined as x = {xs | s ∈ V}. Let
{θs(i) ∈ R | i ∈ L, s ∈ V} be univariate potentials and {θst(i, j) ∈ R | i, j ∈ L, st ∈ E}
be pairwise potentials. Let energy of a configuration x be defined by:

E(x|θ) =
∑
s∈V

θs(xs) +
∑
st∈E

θst(xs, xt) , (1)

where θs(·) is also referred to as data term and θst(xs, xt) as pairwise interaction term.
The probability distribution defined by p(x|θ) ∝ exp(−E(x|θ)) is a Gibbs distribution,
corresponding to a certain Markov Random Field. The problem of finding maximum a
posteriori (MAP) of this MRF corresponds to energy minimization: minx E(x|θ). Terms
θs(xs), s ∈ V can be viewed as vectors in RL and terms θst(xs, xt), st ∈ E as vectors in
RL×L. The concatenated vector θ ∈ R(V×L)∪(E×L2) is called a parameter vector.
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2.2. Product model

Let T 1, T 2 be sets of pixels and I1 : T 1 7→ [0, 1]3, I2 : T 2 7→ [0, 1]3 be two images.
We start with the simplest model for a 2D deformation which was considered in e.g . [1].
Let configuration x with components xs = (x1

s, x
2
s), s ∈ V = T 1, be a 2D displacement

field over T 1. Coordinates x1
s and x2

s denote x- and y- displacements of the pixel s.
Let mapping Dx from image I2 to image I1 be defined by (DxI)s = Is+xs . Let both
coordinates take values from L = {Kmin, . . . , Kmax}, thus variables xs = (x1

s, x
2
s) take

their values from the set L2.
Let θs(xs) = (I1

s − I2
s+xs

)2/2σ2
I . This term corresponds to the statistical assumption

of p ((DxI
2)s − I1

s | x) ∝ N 3(0, σ2
I ), s ∈ V , which means that the deformed image DxI

2

is a noisy observation of image I1 under fixed x assuming Gaussian noise in each color
component has variance σ2. The usual setting for the interaction potential is: θst(xs, xt) =
‖xs − xt‖2 /2σ2

x = (x1
s − x1

t )
2/2σ2

x + (x2
s − x2

t )
2/2σ2

x, st ∈ E , where E is the set of all
horizontally and vertically neighboring pairs of pixels. This term penalizes discontinuities
in the deformation field x, so that close pixels are forced to go to close destinations (see
Fig. 1).

pixel s

pixel t
(x1

t , x
2
t )

(x1
s, x

2
s)

Figure 1. Deformation as pairwise MRF: data terms penalize color deviation of singe pixels
from hypothesized destination, pairwise terms penalize spatial deviations.

Minimizing energy, defined by θ, is not known to be polynomially solvable problem
for a general input(also, taking into account particular graph structure and particular
interaction terms we do not have a proof that it is NP-hard). A message-passing algorithm
for this problem (TRW-S, BP) would require keeping O(|V||L|2) variational variables –
this is a number of variables in the dual of the LP-relaxation of the energy minimization.
Also such algorithms would require O(|L|4) operations for an elementary message update,
which however may be reduced to O(|L|2) if the special form of functions θst is exploited,
applying technique of [2].

2.3. Decomposed model

The model, proposed in [7], represents x and y displacements by two interacting fields
which we refer to as layers. Graph G in this model is constructed as follows (see Fig. 2):
nodes V = V1 ∪ V2, with V1 ∼ V2 ∼ T 1 (here, ∼ denotes that sets V1, V2 and T 1 are
isomorphic, i.e., copies of each other); edges E = E1 ∪ E2 ∪ E12, where E1 (resp. E2)
is the set of vertically and horizontally neighboring pixel pairs in V1 (resp. V2), and
E12 = {(s1, s2) | s1 ∈ V1, s2 ∈ V2, s1 ∼ s2} is the set of intra-layer edges (here, s1 ∼ s2

denote that these elements correspond in the isomorphism ∼). Let x = {xsi | si ∈ V i,
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i = 1, 2}. The data term in this model is encoded in the interaction pairs form E12, as
θst(xs, xt) = (I1

s − I2
s+(xs,xt)

)2/2σ2
I , s ∈ V1, t ∈ V2, st ∈ E12. The continuity term is set

identically for both layers: θst(xs, xt) = (xs − xt)
2/2σ2

x, st ∈ E i, i = 1, 2. It can be seen
that the resulting energy function E(x|θ) is equivalent to that of the product model.

For this model we need to keep only O(|V||L|) variational variables, with complexity
of elementary update of O(|L|2) for pairs st ∈ E12 and O(|L|) for pairs st ∈ E1 ∪ E2 (the
latter is due to special form of interactions, (xs−xt)

2, [2]). Let us however note, that the
LP relaxation of the decomposed model is weaker then that one of the product model,
see Appendix A.

s2

V1
V2

s1
xs1

xs2

Figure 2. Decomposed model. Left: model consist of two layers V1 and V2, the neighborhood
structure is shown by nodes s1, s2 and interaction edges to their neighbors in E . Right: inter-
layer interaction is used to encode data term – 2D displacement of a pixel s is determined
by pair of labels xs1 , xs2 (shown black) being the two coordinates; data fitness term for the
displacement is encoded on edge (xs1 , xs2) (shown bold dashed).

2.4. Block model

A drawback of the two above models is that the continuity term ‖xs − xt‖2 /2σ2
x as-

signs a nonzero penalty also to affine transformations, unless it is a pure translation,
in particular, scaling is poorly handled. It results in undesirable tradeoff between data
term and continuity term: either the model will not follow the deformation observed by
the data term, either it will allow discontinuities when the noise is present. We partially
weaken the continuity term to allow for more flexibility and preserve overall continuity.
We want the deformation field to be locally (in some small regions of pixels) affine. As
we consider discrete models, in fact, we want the deformation field to be locally described
by translations. We propose to group pixels in blocks and allow each block to have pixel
wise displacements. We do not penalize relative displacements of ±1 px in vertical and
horizontal directions, and assign a large penalty to bigger displacements, see Fig. 3. Let
the set T 1 be regularly subdivided into square blocks and let B be a set of these blocks.
We assume the horizontal and vertical neighborhood of the blocks. We let V1 ∼ V2 ∼ B
and construct the graph G as in the decomposed model. We define the data term as

θst(xs, xt) = 1
2σ2

I
Sim(I1

s , I2
s+(xs,xt)

)2, s ∈ V1, t ∈ V2 : st ∈ E12, (2)

where I1
s is a fragment of image I1 on block s; s + (xs, xt) is block s shifted by (xs, xt),

and Sim(·, ·) is a “correlation”, here the sum of squared differences across pixels of the
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(d)

(b)(a)

(c)

Figure 3. Block model: (a) two neighboring blocks of 4×4 pixels; (b)-(d) examples of nonpe-
nalized relative displacements. There is 9 nonpenalized relative displacements total.

corresponding image fragments. For all st ∈ E1 ∪ E2 we set the continuity term to

θst(xs, xt) = max(c1(|xs − xt| − 1), c2|xs − xt|), (3)

where 0 < c2 � c1, see Fig. 4. The subclass of transformations with low penalty (of factor
of c2) naturally incorporate certain range of affine transformations (e.g. it include scale
changes in the range 0.75–1.25, when blocks are 4×4 px) and a certain degree of local
flexibility, as could be seen from our experiments. Also, when the relative displacement
of neighboring blocks equals −1 in one or both of the coordinates (e.g. Fig. 3(d)), the
blocks overlap and we count overlapping pixels twice. We choose to neglect this wrong
counting, also treating it correctly would require using interactions of the 4th order.

−1 0 1
0

|x
s
−x

t
|

θ st
(x

s,x
t)

Figure 4. Continuity term of Eq. (3): shifts of ±1px are penilized by small regularization
constant.

3. Optimization

In this section we give a compact review of the TRW-S algorithm developed in [11, 5].
We rederive it as as (block-) coordinate ascent algorithm for maximization of the lower
bound on the energy function, which is dual to the LP relaxation (originally, TRW
algorithm was inferred [11] from necessary conditions of the maximum). This gives
additional insight on the kind of suboptimality it possess w.r.t. the LP relaxation. We
avoid using reparameterizations and max-marginal factorization in our inference and
we use a simpler inequality for lower bounds, which is without coefficients of convex
combination, as suggested for edge-based bound in [9, 12].

Let us consider graph G = (V , E) and energy function of the from (1). Let ΩG,L =
R(V×L)∪(E×L2) be a state space of parameter vectors θ, as defined in Sec. 2. Let E(x|θ)
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be expressed as a scalar product in the space ΩG,L: E(x|θ) = 〈θ, µ(x)〉, where φ : LV 7→
ΩG,L is a mapping defined by [µ(x)]s (x) = δ{xs=x}, s ∈ V , x ∈ L; [µ(x)]st (x, x′) =
δ{xs=x}δ{xt=x′}, st ∈ E , x, x′ ∈ L, where δ{A} is 1 if A is true and 0 otherwise.

Lower bounds. Let us consider a collection of parameter vectors θ = {θi ∈ ΩG,L |
i ∈ I}, where I is a finite set. For each θ, such that

∑
i θ

i = θ, the value LB(θ) =∑
i minx〈θi, µ(x)〉 is a lower bound on the optimal energy:

LB(θ) ≤ min
x
〈θ, µ(x)〉. (4)

Proof. min
x
〈θ, µ(x)〉 = min

x
〈
∑
i

θi, µ(x)〉 = min
x

∑
i

〈θi, µ(x)〉 ≥
∑
i

min
x
〈θi, µ(x)〉. Alter-

natively could be seen from the Jensen’s inequality as in [11] and linearity of 〈·, µ(x)〉.

Tree structured distributions. The computation of LB(θ) is tractable if all the
problems minx〈θi, µ(x)〉 are tractable. For this purpose, each θi can be chosen to define a
tree-structured distribution [11]. Let ∀i ∈ I: T i = (V i, E i) be a tree-structured subgraph
of G. Let set ΩT i,L define the subspace of parameter vectors over the tree T i, that is

ΩT i,L = {θ̃ ∈ ΩG,L | θ̃u;xu = 0,∀u ∈ V\V i; θ̃uv;xuv = 0,∀uv ∈ E\E i}. Let θi ∈ ΩT i,L, the
minimization problem minx〈θi, µ(x)〉 is tree structured and therefore is tractable.

Constraints
∑

i θ
i = θ require that trees T = {T i | i ∈ I} fully cover graph G:⋃

i∈I T i = G. For each particular set of trees T and choice of θ satisfying constraints, the
lower bound LB(θ) can be easily computed. Consider finding the tightest bound over
possible choices of θ:

LB = max
θ={θi| i∈I}

LB(θ)
(
≤ min

x
〈θ, µ(x)〉

)
.

s.t.

{
θi ∈ ΩT i,L, i ∈ I;∑

i θ
i = θ.

(5)

Function LB(θ) is a concave function of θ, as it is a sum of minima of linear functions.
Therefore maximization task (5) is a concave maximization. It was shown in [11] that
dual problem to (5) constitutes an LP relaxation of the original energy minimization,
independently of the trees T chosen. Strong duality holds, therefore (5) does not depend
on the choice of trees T as well. This gives us a freedom to choose the trees in a convenient
way.

We let collection T = {(V i, E i) | i ∈ I} to form an edge-disjoint cover of G, namely
E i ∩ E j = ∅, i, j ∈ I;

⋃
i∈I T i = G. In this case for each edge uv ∈ E there is a single

nonzero term in the LHS of the constraint
∑

i θ
i
uv = θuv – it is the term θi

uv for which
uv ∈ E i. Therefore θi

uv = θuvδ{uv∈Ei} and we can rewrite constraints of (5) as follows:

LB = max
θ

LB(θ), s.t.


θi

s = 0, s ∈ V\V i, i ∈ I∑
i∈Is

θi
s = θs, s ∈ V

θi
uv = θuvδ{uv∈Ei}, uv ∈ E

. (6)

Coordinate ascent. Let Is = {i | s ∈ V i} be the set of trees sharing the node s ∈ V .
Let us fix some s ∈ V and consider maximization of LB(θ) in (6) with respect to the
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subset of variables θs = {θi
s | i ∈ I}, while keeping the rest of variables, refered to as

θV\s, fixed:

LBs(θV\s) = max
θs

∑
i

min
x
〈θi, φ(x)〉, s.t.

{
θi

s = 0, i ∈ I\Is∑
i∈Is

θi
s = θs

. (7)

Iterative update of variables θs for each s ∈ V yields a coordinate ascent algorithm,
which builds a sequence of monotonically nondecreasing lower bounds. Generally, it
does not converge to the optimal bound (5) (because function LB(θ), to which we apply
sequential maximization is not smooth). We now derive the TRW-S algorithm as follows:
we rearrange (7) as

max
θs

∑
i

min
xs

Φi
s(xs), s.t.

{
θi

s = 0, i ∈ I\Is∑
i∈Is

θi
s = θs

, (8)

where values Φi
s(xs) = min

xT\s

〈θi, φ(x)〉 = θi
s(xs) + min

xT\s

(
∑

t∈Vi|t6=s θi
t(xt) +

∑
s̃t∈Ei θs̃t(xs̃, xt̃))

are the min-marginals [11] of the tree-structured energy 〈θi, φ(x)〉. Let us introduce also
the incomplete min-marginals Ψi

s(xs) = Φi
s(xs) − θi

s(xs), which do not depend on θi
s.

Using incomplete min-marginals and incorporating constraints θi
s = 0, i ∈ I\Is, we can

express (8) as follows:

max
{θi

s| i∈Is}

∑
i∈Is

min
xs

(
θi

s + Ψi
s

)
(xs) +

∑
j∈I\Is

Φj, s.t.
∑
i∈Is

θi
s = θs , (9)

where values Φj = minxs Φj
s(xs), j ∈ I\Is do not depend on the variables {θi

s | i ∈ Is}.
To find a maximizer of (9) we apply inequality:

∑
i∈Is

min
xs

(
θi

s + Ψi
s

)
(xs) ≤ min

xs

∑
i∈Is

(
θi

s + Ψi
s

)
(xs) = min

xs

(
θs +

∑
i∈Is

Ψi
s

)
(xs), (10)

where we used
∑

i∈Is
θi

s = θs. The special case when (10) is satisfied with equality is
when all min-marginals Φi

s = (θi
s + Ψi

s) are equal, which can be easily achieved by the
following proposition:

Min-marginal averaging. To make all min-marginals Φi
s equal for a fixed s, set

θi
s = 1

|Is|

(
θs +

∑
j∈Is

Ψj
s

)
−Ψi

s, i ∈ Is. (11)

It is straightforward to verify that constraint
∑

i∈Is
θi

s = θs is satisfied and that resulting

min-marginals Φi
s = θi

s +Ψi
s = 1

|Is|

(
θs +

∑
j∈Is

Ψj
s

)
do not depend on i and therefore (10)

holds with equality, which means that maximum in (9) is attained. Now we are ready to
formulate the TRW-S algorithm.

7



Algorithm 1: Simple TRW-S.

1. Initialize θi
s = 1

|Is|θs, i ∈ I.

2. For each s ∈ V sequentially perform:

(a) compute incomplete min-marginals Ψi
s, i ∈ Is by dynamic programming on

the tree T i;

(b) update θi
s = 1

|Is|

(
θs +

∑
j∈Is

Ψj
s

)
−Ψi

s, i ∈ Is.

3. Compute the actual lower bound LB(θk) =
∑

i minx〈θi, φ(x)〉.

4. Check stopping condition, based on convergence of LB(θk). If not satisfied go to
step 2.

The fixed point condition is characterized by all min-marginals {Φi
s | i ∈ Is} being equal.

This allows one to choose a solution x by local minimizers xs ∈ arg minL Φi
s(·), i ∈ Is. If

all local minimizers are unique1, configuration x is guaranteed to be optimal [11].
The stopping condition can be based on the convergence of LB(θ). The efficient imple-
mentation with chains [5] is as follows. Let T i be a chain. Its min-marginals can be

computed dynamically as Φi
s =
−→
Ψ i

s + θi
s +
←−
Ψ i

s, where
−→
Ψ i

s(xs) = minxt{
−→
Ψ i

t(xt) + θi
t(xt) +

θi
st(xs, xt)}, if t is the node previous to s in the chain T i and

−→
Ψ i

s(xs) = 0, if s is the first

element of the chain. Analogously, values
←−
Ψ i

s = minxt{θi
st(xs, xt) + θi

t(xt) +
←−
Ψ i

t(xt)}, if t

is next to s in the chain T i and
←−
Ψ i

s = 0 if s is the last in the chain. This computation
can be efficiently combined with step 2(b) by substituting step 2(b) into the expression

for
−→
Ψ i

s, which gives us the following update equation, known as message passing [5]:

−→
Ψ i

s(xs) = minxt{ 1
|It|

(
θt(xt) +

∑
j∈It

[
−→
Ψ j

t(xt) +
←−
Ψ j

t(xt)]
)
−
←−
Ψ i

t(xt) + θst(xs, xt)}. (12)

Computation order must guarantee that dependent values
−→
Ψ j

t are computed earlier. It is
possible when the computation order matches orderings ”previous to”(t, s) in the chain
T i for all i ∈ I. In this case2 chains T are said to be monotonic [5] w.r.t. ordering on V .

Convergence issues. Let Algorithm 1 build a sequence {θk}∞k=0. The algorithm
performs sequential maximization of LB(θ) w.r.t. variables {θi

s | i ∈ Is}, therefore
sequence {LB(θk)}k does not decrease. Since we have LB(θk) ≤ minx〈θ, φ(x)〉 ≤ ∞, the
sequence converges to some LB∗.

Fixed points of the algorithm posses the property: (∃Oi ⊂ arg minx〈θi, µ(x)〉, Oi 6= ∅,
i ∈ I): ∀s ∈ V : ∀i, j ∈ Is: {xs | x ∈ Oi} = {xs | x ∈ Oj}, called WTA conditions in [5] or

1The initial problem is NP-complete in general, therefore we can not hope to have unique local
minimizers and solve it to optimality.

2For the grid graph the natural choice is horizontal and vertical chains and row-major ordering on
V. Also it is satisfied for any graph and chains of length 1 w.r.t. any ordering, however the efficiency
improvement is lost.
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local consistency in [9, 12]. If this property does not hold for a point θk, the lower bound
LB(·) is guaranteed to improve in finite number of iterations [5]. Continuity of the LB(θ)
and boundedness [5] of θk implies that there exist a convergent subsequence {θkj}j, with
limit point satisfying WTA. Based on this condition local minimizers xs can be chosen
from {x̃s | x̃ ∈ Oi}, since these sets coincide for all i ∈ Is.

4. Implementation and Experiments
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Figure 5. Firts row: initial picture, rotation+scaling, twirl, twirl + projective transform. Sec-
ond row: searched fragment and its found transformations overlayed (with increased contrast)
onto corresponding inputs. Third row: found deformation field (shown sparse) and a trans-
formed regular grid. Forth row: noised (0.1 gaussian) image of row 1d with overlayed contour of
the searched fragment(see text), matched fragment, more noised (0.2 gaussian) image, matched
fragment. See http://cmp.felk.cvut.cz/ ~shekhovt/deform-match-mrf/ for more exam-
ples and animated transformations.

Implementation. We have implemented TRW-S as suggested in [5] and described
above. Our tree decomposition T consists of all vertical and horizontal chains in layers V1

and V2 plus one-edge chains, corresponding to inter-layer edges E12. For intra-layer (edges
from E1, E2) updates, corresponding to continuity term (3), we used O(L) method [2].
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As inter-layer (E12) updates are considerably slower, we modified the sequential schedule
to perform more intra-layer iterations (this is compatible with constraints of TRW-S on
the order of updates). For the data term we precompute block correlations. To speed up
their computation we first cluster image color space and precompute the table of color
comparisons. Also we stretched the quadratic form (F ) of the color comparison model
along the (1, 1, 1) direction in the RGB space to improve robustness against brightness
changes. We assess convergence based on WTA conditions,specifically we iterations when
WTA conditions are satisfied with some precision ε, this is a good heuristic for our
application.

Constants. We represent color space as [0, 1]3 and compute color correlation using
stretched quadratic form F with eigenvalues (1, 1, 0.1). Then we compute Sim(x, y) as
1
N

∑N
i=1 F (xi, yi), where xi, yi are colors of pixels in correspondence. We set σI = 1,

c1 = 10, c2 = 0.01 – c1 weights “hard” continuity terms, σ2
I weights data term and c2

weights regularization term. When a pixel is mapped out of the field of view we assign
it a penalty of 0.1. Experimental results were rather insensitive to these parameters, in
fact any choice c1 � 1/σ2

I � c2 is good.
Experiments. We propose synthetic experiments. To show the flexibility of the

deformation field we applied several parametric transformations to an image (Fig.5) and
searched for a matching of its subregion3 to the deformed images. The chosen subregion
does not align with visual edges of the image so the quality of the matching could be
seen when overlayed. All images are 300×225 px, we used L = {−30 . . . 30} for x and
y allowed displacements, blocks were 4× 4. Computation took ∼40 sec./ image, from
which 11.2 sec were spent on precomputing block correlations. We keep small translation
component, since the optimization is invariant to it, as far as the search range is wide
enough. We illustrate this on noisy images, for which finer components of the matching
are less accurate. We also demonstrate how our method works on real images Fig.6-8.

5. Conclusion

We designed a novel model for image matching, based on the MRF optimization frame-
work. Our constraints allow flexible local deformations and impose hard penalty on dis-
continuities. We apply the TRW-S algorithm to maximize the the dual of the linearly
relaxed energy minimization problem. We gave an additional insight on the TRW-S al-
gorithm by interpreting it as a coordinate ascent to maximize the dual and proposed
its short derivation. As we inherit the structure of the model from [7], our variational
optimization problem possess the number of variables, which is linear in the sizes of the
search window (not quadratic as it would be with the commonly used model). This al-
lows us to deal with much wider deformation fields compared to considered previously in
the global optimization framework. Our experiments demonstrates high visual accuracy
within wide class of continuous deformations and robustness to a high degree of noise.

As in stereo, we could possibly use truncated continuity term. However, as we are tied
to blocks, the discontinuity boundary would be poorly modeled in this case. Another
option is to combine our model with segmentation, as it is done in [13]. We actually could
incorporate pixel-wise segmentation, while keeping the deformation model operating with

3We need the subregion to assume that all pixels from T 1 have their correspondences in T 2
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Figure 6. Morphing face expressions using found deformation: interpolated intermediate frames
from top-left image to bottom-right image. For the intermediate frames the deformation and
colors of pixels in correspondence are linearly interpolated.

Figure 7. Morphing a rumpled newspaper: interpolated intermediate frames from top-left image
to bottom-right image. For the intermediate frames the deformation and colors of pixels in
correspondence are linearly interpolated.

blocks. To cope with larger global translations (or scale, rotation etc.) one may consider
adding a common, roughly discretized, transformation variable. This however leads to
multiple ambiguous solutions in our model so the optimization by TRW-S becomes badly
conditioned. Another related issue is the choice of a solution based on min-marginals,
if it is done by local minimizers, it might happen that output solution will violate hard

11



Figure 8. Deformation for face expression: interpolated intermediate frames following the found
deformation from top-left image to bottom-right image.

continuity constraints. We consider pairing this algorithm with a local search algorithm
e.g. graph cuts, so the latter would have a good initial point to start.

Appendix A: Weaker Relaxation

Consider graph G = (V , E) and energy function E(x|θ) as defined in Sec. 2. The
LP-relaxation of energy minimization is the following lower bound:

min
x∈LV

E(x|θ) = min
x∈LV
〈θ, µ(x)〉 = min

µ∈MG,L
〈θ, µ〉 ≥ min

µ∈ΛG,L
〈θ, µ〉, (13)

where MG,L = conv{µ(x) | x ∈ LV} is a marginal polytope and ΛG,L ⊇ MG,L is a local
polytope defined as a set of locally compatible unary and pairwise distributions:

ΛG,L =

µ ∈ ΩG,L

∣∣∣∣∣∣∣∣
µst(xs, xt) ≥ 0, st ∈ E , xst ∈ L2∑

xt∈L µst(xs, xt) = µs(xs) st ∈ E , xs ∈ L∑
xs∈L µst(xs, xt) = µt(xt) st ∈ E , xt ∈ L∑
xs∈L µs(xs) = 1 s ∈ V , xs ∈ L

 (14)

We show below that whereas LHS in (13) is preserved when the problem is reformulated
via decomposed model, the RHS is not, so the LP-relaxation of the decomposed model
is weaker then that of product model.

Energy equivalence

Let L = L × L. Let xs = (x1
s, x

2
s) ∈ L × L, s ∈ V , st ∈ E . Let θst(xs, xt) =

θ1
st(x

1
s, x

1
t )+θ2

st(x
2
s, x

2
t ).
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Recall the construction of decomposed model (Sec. 2). Let us denote the graph of decom-
posed model as G̃ = (Ṽ , Ẽ), with set of vertices Ṽ = Ṽ1∪Ṽ2, where Ṽ1 ∼ Ṽ2 ∼ V and set of
edges Ẽ = Ẽ1 ∪ Ẽ2 ∪ Ẽ12, where Ẽ1 ∼ Ẽ2 ∼ E , Ẽ12 = {(s1, s2) | s1 ∈ Ṽ1, s2 ∈ Ṽ2 : s1 ∼ s2}.
Let x̃ = {x̃s | s ∈ Ṽ} ∈ LṼ be a configuration in the decomposed model. Clearly
{(x̃s1 , x̃s2) | s ∈ V} ∈ LV is then a configuration in the product model, we will say that
x ≡ x̃ when (x1

s, x
2
s) = (x̃s1 , x̃s2) for all s1 ∼ s2 ∼ s ∈ V .

The parameter vector θ̃ of the decomposed model is defined as follows: for all i, j ∈ L:

θ̃s(i) = 0, s ∈ Ṽ
θ̃s1s2(i, j) = θs((i, j)), s1 ∼ s2 ∼ s ∈ V
θ̃s1t1(i, j) = θ1

st(i, j), s1 ∼ s, t1 ∼ t, st ∈ E
θ̃s2t2(i, j) = θ2

st(i, j), s2 ∼ s, t2 ∼ t, st ∈ E

(15)

Energy function in the decomposed model Ẽ(x̃|θ̃) = 〈θ̃, µ̃(x̃)〉 is easily seen to be equal
to E(x|θ) for all x ≡ x̃. However LP-relaxations of these energies do not necessarily
coincide, science they depend on the underlying graph. Indeed, we have:

min
x∈LV

E(x|θ) ≥ min
µ∈ΛG,L

〈θ, µ〉 and min
x̃∈LṼ

E(x̃|θ̃) ≥ min
µ̃∈ΛG̃,L

〈θ̃, µ̃〉 (16)

Weaker relaxation

We will show that in general the LP-relaxation of Ẽ is weaker:

min
µ∈ΛG,L

〈θ, µ〉 ≥ min
µ̃∈ΛG̃,L

〈θ̃, µ̃〉 (17)

Proof. We prove “≥” by constructing a mappings: ΛG,L → ΛG̃,L preserving the equality

〈θ, µ〉 = 〈θ̃, µ̃〉. Then we provide a counterexample showing that in general equality is
not attained.

• Mapping ΛG,L → ΛG̃,L. Let µ ∈ ΛG,L is fixed. We chose µ̃ ∈ ΛG̃,L as follows:

µ̃s1s2(i, j) = µs((i, j)), s1 ∼ s2 ∼ s ∈ V
µ̃s1t1(i, i

′) =
∑

j,j′∈L

µst((i, j), (i
′, j′)), s1 ∼ s, t1 ∼ t, st ∈ E

µ̃s2t2(j, j
′) =

∑
i,i′∈L

µst((i, j), (i
′, j′)), s2 ∼ s, t2 ∼ t, st ∈ E

µ̃s1(i) =
∑
j∈L

µs((i, j)), s1 ∈ Ṽ1

µ̃s2(j) =
∑
i∈L

µs((i, j)), s2 ∈ Ṽ2

(18)

Now we verify that µ̃ ∈ ΛG̃,L. In particular all the following marginalization con-
straints must hold:

µ̃s1(i) =
∑

j∈L µ̃s1s2(i, j), s1 ∈ V1, s1s2 ∈ Ẽ12 (a)

µ̃s1(i) =
∑

i′∈L µ̃s1t1(i, i
′), s1t1 ∈ Ẽ1 (b)

µ̃s2(j) =
∑

i∈L µ̃s1s2(i, j), s2 ∈ V2, s1s2 ∈ Ẽ12 (c)

µ̃s2(j) =
∑

j′∈L µ̃s2t2(j, j
′), s2t2 ∈ Ẽ2 (d)

(19)
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Case (a) follows from the definition of µ̃s1(i). Case (b) is verified as follows:∑
i′∈L

µ̃s1t1(i, i
′) =

∑
i′∈L

∑
j,j′∈L

µst((i, j), (i
′, j′)) =

∑
j∈L

∑
i′,j′∈L

µst((i, j), (i
′, j′)) =

∑
j∈L

µs((i, j)) =

µ̃s1(i). Cases (c) and (d) are analogous to (a) and (b). Other constraints of ΛG̃,L

are straightforward.
The equality 〈θ, µ〉 = 〈θ̃, µ̃〉 is shown as follows:

〈θ, µ〉 =
∑
s∈V

∑
(i,j)∈L

θs((i, j))µs((i, j)) +
∑
st∈E

∑
(i,j)∈L
(i′,j′)∈L

θst((i, j), (i
′, j′))µst((i, j), (i

′j′))

=
∑

s1s2∈Ẽ12

∑
i∈L

θ̃s1s2(i, j)µ̃s1s2(i, j) +
∑

st∈Ẽ1

∑
i,i′∈L

θ1
st(i, i

′)µ̃st(i, i
′) +

∑
st∈Ẽ2

∑
j,j′∈L

θ2
st(j, j

′)µ̃st(j, j
′)

=
∑
st∈Ẽ

∑
i,j∈L

θst(i, j)µ̃st(i, j) = 〈θ̃, µ̃〉

(20)

• Example of a gap. Because we represent each interacting pair (xs, xt), st ∈ E as a
four tuple (x̃s1 , x̃s2 , x̃t1 , x̃t2) in the decomposed model, it is easy to see that there
exists an example for which LP-relaxation on this four tuple is not tight, see Fig. 9.

s1

s2 t2

t1

Figure 9. Part of decomposed graph for interacting pair st: a four tuple µ̃s1s2 , µ̃s1t1 , µ̃s2t2 , µ̃t1t2

is shown (having value 1
2 on bold edges and nodes), which can not be represented as marginals

of a valid distribution µst((xs1 , xs2), (xt1 , xt2)) over the four tuple.

14



References

[1] Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph
cuts. PAMI, 23(11):1222–1239, Nov. 2001.

[2] P. F. Felzenszwalb, D. P. Huttenlocher, and J. M. Kleinberg. Fast algorithms for large-
state-space HMMs with applications to web usage analysis. In Advances in Neural Infor-
mation Processing Systems, 2003.

[3] N. Jojic. A comparison of algorithms for inference and learning in probabilistic graphical
models. IEEE Trans. PAMI., 27(9):1392–1416, 2005. Senior Member-Brendan J. Frey.

[4] A. Kannan, N. Jojic, and B. Frey. Generative model for layers of appearance and defor-
mation. In AI and Statistics (AISTATS’05), pages 166–173, 2005.

[5] V. Kolmogorov. Convergent tree-reweighted message passing for energy minimization. In
AI and Statistics (AISTATS’05), pages 182–189, 2005.

[6] V. Kovla and M. Schlesinger. Two-dimensional programming in image analysis problems.
Automatics and Telemechanics, 2:149–168, 1976. In Russian.

[7] I. Kovtun. Image segmentation based on sufficient conditions of optimality in NP-complete
classes of structural labelling problem. PhD thesis, IRTC ITS National Academy of Science
Ukraine, 2004. In Ukrainian.

[8] S. Roy and V. Govindu. MRF solutions for probabilistic optical flow formulations. In
ICPR’00, pages Vol III: 1041–1047, 2000.

[9] M. Schlesinger. Syntactic analysis of two-dimensional visual signals in noisy conditions.
Kibernetika, Kiev, 4:113–130, 1976. In Russian.

[10] R. Szeliski, R. Zabih, D. Scharstein, O. Veksler, V. Kolmogorov, A. Agarwala, M. Tappen,
and C. Rother. A comparative study of energy minimization methods for markov random
fields. In ECCV, volume 1, 2006.

[11] M. Wainwright, T. Jaakkola, and A. Willsky. Exact MAP estimates by (hyper)tree agree-
ment. In Advances in Neural Information Processing Systems 15, pages 809–816. 2003.

[12] T. Werner. A linear programming approach to max-sum problem: A review. Research
Report CTU–CMP–2005–25, Center for Machine Perception, Czech Technical University,
Dec. 2005.

[13] J. Winn and N. Jojic. Locus: Learning object classes with unsupervised segmentation. In
ICCV, volume 1, pages 756–763, 2005.

15


