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Abstract

We propose a novel MRF-based model for deformable image matching (also known
as registration). The deformation is described by a field of discrete variables, rep-
resenting displacements of (blocks of) pixels. Discontinuities in the deformation are
prohibited by imposing hard pairwise constraints in the model. Exact maximum
a posteriori inference is intractable and we apply a linear programming relaxation
technique.

We show that, when reformulated in the form of two coupled fields of x- and
y- displacements, the problem leads to a simpler relaxation to which we apply
the TRW-S (Sequential Tree-Reweighted Message passing) algorithm [Wainwright-
03, Kolmogorov-05]. This enables image registration with large displacements at
a single scale. We employ fast message updates for a special type of interaction
as was proposed [Felzenszwalb and Huttenlocher-04] for the max-product Belief
Propagation (BP) and introduce a few independent speedups. In contrast to BP, the
TRW-S allows us to compute per-instance approximation ratios and thus to evaluate
the quality of the optimization. The performance of our technique is demonstrated
on both synthetic and real-world experiments.

Key words: Markov random fields, MRF, message passing, TRW-S, energy
minimization, motion estimation, optical flow, image registration.
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1 Introduction

Substantial advances in low-level vision problems like stereo, segmentation,
image de-noising, etc., have been achieved by using random field models such
as Markov Random Fields (MRFs). This is mainly due to new algorithms for
inference in MRFs, in particular algorithms for finding maximum a posteriori
(MAP) configurations. Szeliski et al . [2] gave an experimental comparison of
recent optimization algorithms for popular vision problems. More background
on inference and learning algorithms for MRFs can be found in, e.g ., [3].

In this work, we consider the problem of two-dimensional matching of non-
rigid objects. We model the non-rigid deformation as a random field of dis-
crete displacements with a prior model favoring continuous deformations. The
optimal deformation is sought as a MAP configuration of the random field.
Finding a globally optimal or even a reasonably good suboptimal solution of
this problem is a difficult task. However a potential advantage is that harder
matching problems can be solved thanks to the use of global optimization
techniques. While this approach was investigated by several authors, we focus
on the case where the displacement field vectors have a large admissible range
and optimization is performed at a single scale. By considering an equivalent
reformulation of the MRF model with separated variables and applying the
LP-relaxation technique, we get a simpler relaxed problem. This allows us
to achieve comparable speed to the coarse-to-fine methods while maintaining
the desirable property that the method is a global convex relaxation (with a
proviso that we solve the relaxation problem suboptimally using TRW-S for
the sake of speed). We also discuss a better heuristic for obtaining a discrete
solution from the relaxed problem for this specific application.

1.1 Related Work

Complex random field models for the optical flow problem were proposed as
early as the simplest inference algorithms. Konrad and Dubois [4] and Heitz
and Bouthemy [5] considered models of coupled vector-binary fields, where the
vector field represents motion and the binary field represents motion disconti-
nuities (i.e., some lines along object boundaries). A prior model for discontinu-
ities favors straight lines as object boundaries and prohibits their intersections,
whereas a prior model for motion vector field imposes smoothness constraints
in areas where discontinuities are not present. Zhang and Hanauer [6] consid-
ered an additional component: a binary field describes a segmentation identi-
fying areas of uncovered background, for which no correct motion field can be
computed. The optimization techniques used to derive the MAP solution (or
an approximation to it) range from Iterated Conditional Modes [5] to simu-
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lated annealing [4] and mean field approximation [6]. Even though computing
power has increased significantly and new optimization methods have been
developed, the difficult optimization problem arising in MAP estimation still
represents a bottleneck.

Roy and Govindu [7] modeled orientation and magnitude fields of the flow
as separate MRFs. They first solved for orientation field and then for the
magnitude. Each of these problems is reduced to computation of max-flow
under their model.

Boykov et al . [8] introduced α-β swap algorithm and considered the problem
of 2D motion estimation as an example. Variables in their model take val-
ues from the product set of allowed displacements ∆X ×∆Y . Optimization
by α-β swap algorithm for this MRF becomes quickly intractable for larger
displacements ∆X and ∆Y .

Kumar et al . [9] computed piecewise rigid deformation of consecutive frames
in a video sequence. Deformation was locally described by translation, rota-
tion and scale. The MRF model with states being discretized deformations
and pairwise potentials encouraging rigid motion of fragments was optimized
using the sum-product Belief Propagation algorithm (BP). Due to the large
state-space, a coarse-to-fine approach was applied to reduce memory and com-
putational requirements.

Jiang et al . [10] used linear programming to solve a convexified image matching
problem. Their formulation uses small number of basis matching pairs, which
leads to a small scale linear program, which can be solved by a simplex method.
They iteratively update the convex approximation around the current solution.

Glocker et al . [11,12] applied primal-dual approximation schema [13] based on
the linear programming relaxation technique to the discrete search problem
of finding a better configuration in the vicinity of the current one. This is
efficiently a trust region optimization method where global optimization is
applied in a local neighborhood, which has many advantages over the classical
gradient-based methods. Larger deformations are handled via the coarse-to-
fine scaling technique.

Felzenszwalb and Huttenlocher [14] applied max-product Belief Propagation
to the optical flow problem. Their model had ∆X ×∆Y labels. The efficient
updates and coarse-to-fine message propagation techniques allowed them to
speed-up the computation significantly. We are using a similar algorithm (but
with provable lower bounds and convergence properties). We apply some of
their techniques and introduce additional speed-ups.
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1.2 Outline

In Section 2, we introduce the matching problem, consider the standard ran-
dom field model and the decomposed model [15] and show how the model can
be made more robust by means of hard continuity constraints. Next we discuss
the relaxation technique and the TRW-S algorithm and its efficient implemen-
tation in Section 3. We show how a message passing schedule can be modified
to speed up information propagation in the model and how a suboptimal so-
lution may be obtained by gradual greedy decisions on subsets of variables.
In our experiments, presented in Section 5, we study the performance of the
modified TRW-S algorithm and provide statistics of how well this suboptimal
approach approximates the global optimization problem. Finally we demon-
strate that qualitatively larger displacement ranges are feasible and that the
solution provided is robust to noise and clutter. We conclude with possible
extensions in Section 6.

2 Deformation Model

In this section, we review the simplest MRF model for the 2D deformation,
considered in e.g . [8], and show how it can be alternatively formulated in terms
of separated variables.

2.1 Maximum Likelihood Matching

 

I

J
d

s

t

xs

xt

Fig. 1. A non-symmetric formulation of matching image I to image J . Two neigh-
boring pixels are shown – the interaction potential on the pair of their displacements
is set such that the cost of matching to spaced locations is penalized.

We formulate the image matching problem as a maximum a posteriori infer-
ence in a constructed probabilistic model (see e.g . [16]). Let I and J be two
images to be registered. Let I : T1 → C and J : T2 → C, where T1 and T2 are
sets of locations and C is the set of signals. Let d be a mapping taking pixels
from domain T1 of I to domain T2 of J . We assume that d is an injective
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mapping, meaning that not all pixels from T2 will have a preimage. This is
illustrated in Fig. 1. This non-symmetric formulation is convenient since it
allows image I to be matched to a subregion of J .

Treating images I, J and the mapping d as random variables, we model their
statistical dependence as

p(I, d | J) = p(I | d, J)p(d). (1)

Assuming that pixel signals in I are conditionally independent given d and J ,
we write

p(I | d, J) =
∏
t∈T1

p(It | d, J), (2)

in addition, when pixel t is mapped to pixel d(t), we consider that its signal
It depends only on the corresponding signal Jd(t) and does not depend on the
rest of signals in J . This assumption is expressed probabilistically as

p(It | d, J) = p(It | Jd(t)). (3)

The conditional distribution p(c1|c2) will be assumed fixed and given by, e.g .,
a Gaussian noise model. The prior distribution p(d) expresses which deforma-
tions are more and which are less likely. Here, we model p(d) as a pairwise
MRF and consequently the conditional mode p(I, d|J) is also a pairwise MRF.

2.2 Energy Minimization

Let us review basic definitions of MAP inference in MRF. More background on
graphical models and MRFs can be found in, e.g ., [3,17,18]. Let L = {1 . . . K}
be a set of labels. Let G = (V , E) be a graph, let E ⊆ V ×V be antisymmetric
and antireflexive, i.e., (s, t) ∈ E ⇒ (t, s) /∈ E . We will denote by st an ordered
pair (s, t) ∈ E . Let each graph node s ∈ V be assigned a label xs ∈ L and let
a labeling (or configuration) be denoted as x = {xs | s ∈ V}. Let {θs(i) ∈ R |
i ∈ L, s ∈ V} be univariate potentials (often referred to as data terms) and
{θst(i, j) ∈ R | i, j ∈ L, st ∈ E} be pairwise potentials (or interaction terms).
Let the energy of a configuration x be defined by:

E(x|θ) =
∑
s∈V

θs(xs) +
∑
st∈E

θst(xs, xt) . (4)

The probability distribution defined by p(x|θ) ∝ exp(−E(x|θ)) is Gibbs dis-
tribution which corresponds to a certain MRF. The problem of finding a max-
imum a posteriori configuration of this MRF corresponds to the energy min-
imization, minx E(x|θ).
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2.3 Product Model

Let configuration x with components xs = (xs,1, xs,2), s ∈ V = T1, be a 2D
displacement field over T1. Coordinates xs,1 and xs,2 denote first and second
components of the displacement vector at the pixel s. Let both coordinates
take values from L = {Kmin, . . . , Kmax}, thus variables xs = (xs,1, xs,2) take
their values from the set L = L2. Deformation d maps locations s to locations
t = s + xs, where s + xs is a shorthand for a corresponding location displaced
by xs (see Fig. 1). Let univariate potentials be

θs(xs) = − log p(Is|Jd(s)). (5)

Under the Gaussian noise model it is just the well-known sum of square differ-
ences (SSD) dissimilarity measure, ρ(Is−Js+xs)

2, where ρ is a distance metric
in the color space C.

The usual prior on d in MRF models is set as:

θst(xs, xt) = λ ‖xs − xt‖2 = λ(xs,1 − xt,1)
2 + λ(xs,2 − xt,2)

2, st ∈ E , (6)

where E is the set of all horizontally and vertically neighboring pairs of pixels.
This term penalizes discontinuities in the deformation field x, so that close
pixels are forced to match to close destinations.

2.4 Decomposed Model

We can exploit the property that continuity interaction (6) is separable (rep-
resented as a sum of x- and y- interactions) and reformulate the energy model
(following [15]) as two interacting fields of scalar variables. Graph G in this
model is constructed as follows (see Fig. 2): nodes form two layers V = V1∪V2,
with V1 ∼ V2 ∼ T1 (here, ∼ denotes that sets V1, V2 and T1 are isomorphic,
i.e., copies of each other); edges E = E1 ∪ E2 ∪ E12, where E1 (resp. E2) is the
set of vertically and horizontally neighboring pixel pairs in V1 (resp. V2), and
E12 = {(s1, s2) | s1 ∈ V1, s2 ∈ V2, s1 ∼ s2} is the set of inter-layer edges (here,
s1 ∼ s2 denotes that these elements correspond in the isomorphism ∼). Let
x = {xsi

| si ∈ Vi, i = 1, 2}. The data term in this model is encoded in the
interaction pairs from E12, as

θst(xs, xt) = − log p(Is | Js+(xs,xt)), s ∈ V1, t ∈ V2, st ∈ E12. (7)

The continuity term is set identically for both layers as

θst(xs, xt) = λ(xs − xt)
2, st ∈ Ei, i = 1, 2. (8)
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It can be seen that the resulting energy function E(x|θ) is equivalent to that
of the product model. In order to apply this alternative representation, it is
necessary that the continuity terms are separable into x- and y- components.
Let us also note that this decomposition can be applied also for 3D image
registration, however in this case we would need to use ternary interactions to
encode the local data similarities.

 

s1

s2

V1

V2

xs1

xs2

Fig. 2. Decomposed model. Left: the model consists of two layers V1 and V2, the
neighborhood structure is shown by nodes s1, s2 and edges to their other neighbors
in E . Right: the inter-layer interaction is used to encode the data term. The 2D
displacement of a pixel s is determined by a pair of labels xs1 , xs2 (filled circles)
being the two spatial coordinates; the data fitness term for the displacement is
encoded on the edge (xs1 , xs2) (bold line).

2.5 Block Model with Hard Constraints

It is important in some applications to have hard constraints on the deforma-
tion that ensure its continuity no matter what input image data is used. In
particular, it is important when clutter or unmodelled effects are present in
the images. One of the advantages of the discrete formulation is that certain
hard constraints of this type can be easily incorporated.

Another issue is that keeping a displacement variable for each separate pixel
is usually too wasteful, while decreasing the image resolution is a loss of in-
formation and is undesirable.

We address this two issues by aggregating pixels into blocks and allowing
each block to have displacements with a pixel precision. We do not penalize
relative displacements of ±1 pixels in vertical and horizontal directions, and
completely forbid larger displacements. See Fig. 3 for examples of possible
configurations if 4x4 blocks are considered. Let set T1 be regularly subdivided
into square blocks and let B be a set of these blocks. We assume the horizontal
and vertical neighborhood of the blocks. We let V1 ∼ V2 ∼ B and construct
the graph G as in the decomposed model. The data term will just add up the
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(d)

(b)(a)

(c)

Fig. 3. Block model: (a) two neighboring blocks of 4×4 pixels; (b),(d) examples of
nonpenalized relative displacements. There are nine nonpenalized relative displace-
ments in total.

contribution from individual pixels,

θbb′(xb, xb′) =
∑

s∈b log p(Is, Js+(xb,xb′ )), (9)

where b ∈ V1, b
′ ∈ V2, bb

′ ∈ E12. For all edges bq ∈ E1∪E2, we set the continuity
term to

θbq(xb, xq) = θreg
bq (xb, xq) +

 0, |xb − xq| ≤ 1 ,

∞, |xb − xq| > 1,
(10)

where θreg
bq is a smoothness regularization determined by needs of a particular

application. We currently use θreg
bq = 0 in all our experiments, but as the re-

maining hard constraints basically restrict relative displacements to be within
some intervals, an additional regularization might be needed to have better
registration of textureless areas. The subclass of deformations x of finite en-
ergy naturally incorporates a certain range of affine transformations (e.g ., it
includes scale changes in the range 0.75–1.25 when blocks are 4×4 pixels) and
a certain degree of local flexibility (see Fig. 8 for an example of how rotation
and scaling can be approximated by such block shifts). We can then choose
the appropriate size of blocks, the appropriate allowed relative displacement
in place of 1 in (10) and appropriate regularization θreg at our convenience.

3 Solving the Relaxed Energy Minimization

The problem of minimizing energy (4) is a hard one and we need to resort to
approximate methods. We will follow a linear relaxation approach, in which
energy minimization is formulated as an integer linear programming (ILP)
and integrality constraints are relaxed. See [19,20,17] for details. To solve the
relaxed linear program (suboptimally) we apply the TRW-S algorithm [17,18].
This algorithm operates on the dual LP problem, which can be written as an
unconstrained maximization of a piecewise linear concave function. The TRW-
S algorithm has the same asymptotic behavior as algorithms in [21,19]. It is a
suboptimal method for the LP-relaxation problem, since its stationary points
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satisfy only a necessary optimality condition (studied in [22,19,18]). Yet the
algorithm is very efficient in certain practical applications.

3.1 Review of TRW-S algorithm

We review the algorithm [17,18] with certain simplifications. We assume each
edge is covered by exactly one chain, so edge-wise updates are not needed and
we omit the normalization step. We also assume for simplicity that weights of
all trees in the collection are equal. These choices do not weaken the theoret-
ical properties of the algorithm. The algorithm may be informally described
as follows. It iteratively increases a lower bound on the energy function con-
structed as a combination of tractable subproblems on subtrees of the graph.
When such subproblems share a vertex of the graph, there is a freedom to
transfer univariate weights from one subproblem to another. By doing this,
one can force the optimal configurations of the subproblems to agree about the
assignment of label for the shared vertex. Loosely speaking, the more vertices
are in the agreement across subproblems the tighter the bound is. And the
bound is tight if and only if there exists a configuration which is optimal for
all subproblems.

Lower bounds. Let us consider a collection of parameter vectors θ = {θi ∈
ΩG,L | i ∈ I}, where I is a finite set. For each θ, such that

∑
i θ

i = θ, the
value LB(θ) =

∑
i minx E(x|θi) is a lower bound on the optimal energy:

LB(θ) ≤ min
x

E(x|θ), (11)

which is easily seen as the maximum of a sum is not greater than the sum of
maxima or alternatively from Jensen’s inequality (see [17]). Let T i = (V i, E i)
be a tree subgraph of G, i ∈ I and θi be a tree-structured distribution over
the tree T i:

θi
s = 0 ∀s ∈ V \V i, θi

st = 0 ∀st ∈ E\E i. (12)

Let a collection of trees T = {T i | i ∈ I} form an edge-disjoint cover of G.
It follows from the constraint

∑
i θ

i = θ that only univariate potentials θi
s are

the free variables. Finding the tightest bound w.r.t. these free variables reads

max
{θi

s|i∈I,s∈V}

∑
i

min
x

E(x | θi), s.t.
∑

i

θi
s = θs, (13)

which is known to be a dual of the LP relaxation of energy minimization [17].

Algorithm. The TRW-S algorithm attempts to solve problem (13) by max-
imizing the objective sequentially w.r.t. {θi

s | i ∈ I} for a fixed s ∈ V (a
block-coordinate ascent method). At each step, univariate potentials associ-
ated with one of the vertices are redistributed among subproblems in order
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to make min-marginals of those subproblems equal, which corresponds to a
maximum of the objective w.r.t. these potentials. It was shown [18] that in the
case when all trees are selected to be simply chains, the computation of min-
marginals can be efficiently combined with updating the univariate potentials
(chains must be monotonic w.r.t. a total ordering on V).

Let a total order on V be selected. It is assumed without loss of generality that
the orientation of edges in the graph G matches the order: st ∈ E ⇒ s < t.
Let T be a collection of chains which are monotonic w.r.t. the ordering of V :
st ∈ E i ⇒ s < t, and each edge of G is covered exactly by one chain. Skipping
some derivation, auxiliary variables M fw

st (xt) (forward messages) and Mbw
st (xs)

(backward messages), st ∈ E , xs, xt ∈ L are introduced such that variables θi
s

are represented as

θi
s(xs) =

1

ns

θs(xs) +
∑

t|ts∈Ei

M fw
ts (xs) +

∑
t|st∈Ei

Mbw
st (xs), (14)

where ns is number of chains sharing the node s. The block coordinate descent
on {θi

s | s ∈ V, i ∈ I} is then computed in terms of variables M as follows.

Algorithm 1: TRW-S on monotonic chains (algorithm [18, Fig.3]).

(1) Initialize M fw
st (xt) = 0, Mbw

st (xs) = 0 st ∈ E , xs, xt ∈ L.
(2) Set LB = 0;
(3) For each s ∈ V selected in increasing order perform:

(a) compute average min-marginals:

Φs(xs) = 1
ns

(
θs(xs) +

∑
t|ts∈E

M fw
ts (xs) +

∑
t|st∈E

Mbw
st (xs)

)
;

(b) for all t such that st ∈ E update:
M fw

st (xt) = min
xs
{Φs(xs)−Mbw

st (xs) + θst(xs, xt)}.
(c) LB = LB + nterm minxs Φs(xs);

(4) Reverse the ordering of V , of all edges in E , E i, swap M fw with Mbw and
go to step 2.

Here, nterm is the number of chains for which node s is the last node (i.e., there
is no such t that st ∈ E i). For such chains, the value minxs Φs(xs) correspond
to the summand minx E(x|θi) in (13), as if it was computed after the sweep
in step 3. During the sweep in step 3, only the values M fw are updated, but
after performing step 4, the next sweep will efficiently update values Mbw and
so on.

Finding a Configuration. As an output of the TRW-S algorithm, we ex-
pect a locally consistent set of optimal configurations over the trees (WTA
conditions) [18]. To assess convergence, we measure how much the vector of

10



messages changed during the last iteration. We choose the measure given by

max
st,x

|M fw(k)
st (x)−M

fw(k−2)
st (x)| |E|

LB(k)
, (15)

where k is the iteration number. This expression is meaningful for non-negative
lower bounds and is more or less independent of the graph size and of the
dissimilarity measure scale. Though somewhat weaker convergence properties
are proved for TRW-S [18] and we can not state (15) converges to zero, we
perform iterations until (15) becomes less than a predefined ε0 > 0 or a
prespecified maximal number of iterations is exceeded.

There have been several heuristics proposed to fix a configuration based on the
relaxed dual point. The simplest one is to select xs = argminj Φs(j), which
would be optimal if the bound was tight and these local minimizers were
unique. Generally, such a selection may violate our hard constraints, so we do
not consider it. A more consistent selection [18] fixes variables in the order
of V while propagating the updates to further variables. This can provide a
globally optimal solution in the case when there are ties which can be resolved
by a sequential selection. Generally, resolving the ties is a hard satisfiability
problem.

We found the following greedy approach useful. Having reached ε0 we do not
make the decision about all variables xs immediately, but only about a subset
of them, and continue with updates by Alg. 1 to propagate constraints imposed
by this partial fixation to the rest of the problem. We found it convenient to
split the optimization problem into two independent subproblems by fixing an
optimal configuration in the horizontal (vertical) chain in the middle of the grid
graph. In the next iteration, it is divided into four independent subproblems
and so on. The procedure is accomplished in O(log |V|) splitting steps. Let us
also note that we need to ensure that making greedy decisions on a subset of
variables does not lead to violation of hard constraints. In our model, it is easily
ensured by a single forward-backward pass of the message passing algorithm.
After the first fixation is made, the value LB stops being a lower bound on the
optimal energy. Instead, it becomes a lower bound on the conditional optimal
energy under given fixation. When all variables are fixed to some values, the
conditional LB will coincide with the energy of the fixed configuration.

4 Implementation

Relaxation of the Product Model vs. Decomposed Model. We now
turn to a discussion why we prefer to solve the linear relaxation of the decom-
posed model. Consider the following table:
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Product Model Decomposed Model

Number of discrete variables |V| 2|V|

Number of relaxed dual variables |V||L|2 2|V||L|

Complexity of passing of one message |L|4 |L|2

At a closer look, however, it appears that messages could be passed faster
for certain special types of pairwise interaction functions. In particular, to
compute the update in step 3(b) for the product model in the case of sep-
arable in x- and y- components quadratic functions θst(xs, xt), the distance
transform can be applied (see e.g . [23]) and complexity is then reduces to
O(|L|) = O(|L|2). However for the decomposed model there are two types of
interactions: intra-layer and inter-layer. The complexity of passing a message
is respectively O(|L|2) and O(|L|). So the real difference in speed of updates
for the two models is by a constant factor.

We consider computing the relaxation of the product model to be too memory-
demanding and therefore we prefer the decomposed model. Let us note, how-
ever, that LP relaxation of the decomposed model is weaker than that of
the product model (this is because interactions in the product model couple
(xs,1, xs,2) and (xt,1, xt,2), which introduce in the relaxation efficiently fourtu-
ple constraints if viewed in the decomposed variables, which tighten the re-
laxation, see details in [24]). Nevertheless relaxation of the decomposed model
performs quite well in our experiments.

On the Computation Order. For the graph in the decomposed model, we
suggest selecting set T to be composed of all vertical and all horizontal chains
in both layers, plus all inter-layer chains of length 1 (see Fig. 4). It can be
shown that one can perform several scans of message-passing updates (step
3(a,b)) in one layer without destroying the correctness of the algorithms and
only then switch to the other layer. This achieves faster spatial information
propagation by more frequent cheap updates inside the layers. The speedup
effect of this schedule is demonstrated in experiments.

V1

V2

Fig. 4. Schedule of message-passing for the layered grid graph: messages inside each
of the layers (blue) are updated more often then between layers (red).
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Details. We have implemented Alg. 1 with the schedule of updates set to
perform message updates inside the layers 5 times more often than between
layers. For the data term, we precomputed block dissimilarities (this is not
necessary and the technique can be implemented purely in O(|V||L|) memory
complexity). As a color dissimilarity measure, we used the sum of squared
differences and the sum of absolute differences for experiments with a large
amount of clutter (Fig 5, 11). Block size is a free parameter chosen ac-
cording to the desired flexibility of deformation, ε0 is a “precision” param-
eter. Our C++ implementation with a MATLAB interface is available at
http://cmp.felk.cvut.cz/˜shekhovt/deform-match-mrf.

5 Experiments

The performance of our method builds on two factors: how well the energy
model suits the posed task, and how well the energy is optimized. To assess the
latter we have collected statistics on a large database of natural images. These
statistics determine how close we come to solving the optimization problem
in practical applications.

To see how well our discrete model for image registration performs, we evalu-
ated it quantitavely on a set of synthetically generated instances and qualita-
tively on several illustrative synthetic and real-world instances.

Optimization evaluation. We sampled random deformations and noise ap-
plied to an image and computed different performance statistics. The test
image shown in Fig. 5(a) is of size 160× 140 and with color space [0 1]. First,
it was deformed by a smooth deformation created using uniformly randomly
displaced by up to 10px control points of a regular grid and random global
translation in the range [−5 5]px. Both input images were then perturbed with
noise. We modeled Gaussian N (0, 0.12) noise (exemplified in Fig. 5(b)) and a
clutter-type noise B(σ2) (exemplified in Fig. 5(c)), which generates 100 ran-
dom color spots at random positions. The spots are created by superimposing
random colors with a Gaussian transparency mask. The size of the blobs is
thus controlled by the variance σ of the Gaussian mask. The algorithm was
run with 4×4 blocks, SAD dissimilarity measure and ε0 = 0.005.

At each run, we computed the best TRW-S lower bound LB guaranteed not to
be greater than the quality of an optimal configuration Q∗ [17]. Let the quality
of the found solution be Q. We calculated the per-instance approximation ratio
as

1 + α = Q/LB ≥ Q/Q∗ ≥ 1, (16)

where we refer to α as the approximation error. Let us note that the opti-
mization is invariant to adding a constant to the energy function but not the
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approximation ratio (16). It is specific to our chosen energy function, which,
however, does not include a constant term and is purely the SAD data mea-
sure in this case. Boykov et al . [8] give a theoretic approximation guarantee for
α-expansion algorithm w.r.t. metric energies (which our energy is, if viewed in
the equivalent product model formulation). Unfortunately it does not apply
since our energy contain ∞ edges. The goal is to verify how well the weaker
relaxation of the decomposed model performs and if the proposed labeling
fixation heuristic is indeed important. Results are shown in Fig. 5.

While we have not compared LP relaxation of the decomposed model with
that of the product model, the approximation errors are acceptable, and our
results clearly show that the gradual fixation of labels is a successful and
practical strategy.
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Fig. 5. Approximation error statistics of the optimization scheme on synthetic de-
formations. (a) Original image. (b) Randomly deformed and noised with Gaussian
N (0, 0.12). (c) Deformed noised with B(22) and N (0, 0.12). Image in (a) is also
noised though the examples are not shown. (b′) Estimated probability that the
approximation error α will exceed value a for inputs exemplified in (b). (c′) Sim-
ilar for inputs exemplified in (c). Solid plots correspond to our proposed fixation
strategy (different number of iterations), dashed plots correspond to the single-pass
strategy [18]. Limits on number of iterations were 200, 500 and 1000, the corre-
sponding plots are almost indistinguishable, which indicate that when large enough
this number is not important.
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We compare against the iterative multi-scale discrete search based method of
Glocker et al . [11,12] and elastic method based on free-form deformations using
B-splines and local gradient descent optimization implemented by the Image
Registration Toolkit software (ITK) [25,26]. We run all the three methods with
SSD data measure. The regularization parameters for Glocker et al . and ITK
(only λ1, the smoothness parameter) were set to achieve the smallest maximal
error on independent training samples for each noise level separately. Our
current model uses only the hard regularization, so no learning is applied.
Results of the comparison are proposed in Table 1. Only the errors over the
region of interest (the object) were taken into account. It is seen that on

N (0, 0.022)

Our Glocker et al . ITK (0.000)

AE mean 0.22 0.30 0.19

AE median 0.16 0.22 0.07

AE std 2.05 1.78 2.70

AE max 0.23 0.30 0.35

MOD mean 0.65 0.89 0.53

MOD median 0.54 0.73 0.24

MOD max 3.43 3.42 4.79

MOD std 0.47 0.63 0.75

N (0, 0.052)

Our Glocker et al . ITK (0.000)

AE mean 0.27 0.31 0.25

AE median 0.20 0.22 0.14

AE std 2.09 1.84 2.98

AE max 0.25 0.30 0.36

MOD mean 0.79 0.91 0.71

MOD median 0.68 0.75 0.47

MOD max 3.65 3.54 5.23

MOD std 0.53 0.65 0.76

B(1) and N (0, 0.12)

Our Glocker et al . ITK (0.004)

AE mean 0.51 0.33 0.62

AE median 0.37 0.24 0.45

AE std 3.17 2.10 3.64

AE max 0.49 0.32 0.58

MOD mean 1.46 0.94 1.77

MOD median 1.23 0.78 1.51

MOD max 5.81 3.69 6.24

MOD std 1.00 0.66 1.18

B(22) and N (0, 0.12)

Our Glocker et al . ITK (0.008)

AE mean 0.48 0.33 0.77

AE median 0.34 0.24 0.61

AE std 3.07 2.07 3.59

AE max 0.46 0.33 0.66

MOD mean 1.38 0.96 2.27

MOD median 1.14 0.78 2.09

MOD max 5.73 3.81 6.45

MOD std 0.99 0.69 1.32

Table 1
Statistics of Angular Error (AE, degrees) and Magnitude of Difference (MOD, pix-
els) errors for different amount of noise. For ITK the value in brackets is the best
found value for regularization parameter λ1. The measures reported are averaged
over 100 test samples for each noise level.

this test data the method of Glocker et al . with properly tuned regularization
parameter outperforms other methods. The best value for the regularization
parameter appeared to be stable over the different noise levels. A lower mean
error for this method can be achieved but at the cost of significantly higher
max error. When the amplitude of deformations is smaller, the performance of
ITK is close to that of Glocker et al . with both methods outperforming our’s.
We believe our optimization scheme may be used in conjunction with a spline
model and proper regularization to achieve a better performance.

15



Convergence Speed. The dependence of the performance on the value of
ε0, the threshold at which a greedy fixation is done, is illustrated in Fig. 6 (a).
To determine if it is indeed beneficial to perform updates inside layers more
often, we studied how fast the lower bound was increased with a different
ratio: Fig. 6 (b). Note that plots are time-based rather than iteration-based.
The test problem instance for this experiment is shown in Fig. 10. The image
size is 500×332, blocks are 4×4, the search window is 80×80.
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Fig. 6. (a) Effect of threshold ε0: later greedy fixation normally leads to convergence
at a lower energy. (b) Effect of modified message-passing schedule: progress in the
lower bound for different ratios of within-layer to inter-layer updates. Jumps in the
LB plots indicate places where a greedy fixation of a part of variables was performed.

Visual evaluation of the results. We applied several parametric trans-
formations (Fig. 7) to a natural image to show the flexibility of the defor-
mation field. We searched for a matching subregion to the deformed images
(Figs. 7, 8). We cropped the subregion to ensure that all pixels from T 1 are
matched; however, the algorithm also works well without this cropping. The
chosen subregion does not align with visual edges of the image so the quality
of the matching could be seen visually when superimposed. All images are
300×225 pixels, we used L = {−30 . . . 30} for x and y allowed displacements,
blocks were 4× 4. Computation took ∼40 sec per image, from which 11.2
sec were spent on precomputing block correlations (PIII, 1.5GHz). We keep a
small translation component since the optimization is invariant to translations
provided the search range is wide enough. The robustness to noise is tested
with synthetic Gaussian noise (Fig. 9). Finally, we illustrate how our method
works on real images Fig.10-11.

6 Conclusions

We have designed a novel model for image matching based on the MRF op-
timization framework. Our constraints allow flexible local deformations and
impose a hard penalty on discontinuities. By varying the size of blocks, we can
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Fig. 7. Searched fragment (image I) and its found deformations superimposed onto
target input images (J).
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Fig. 8. (a) Close-up of rotation-scaling deformation shown without fills between
blocks. (b-d) Found deformation field (shown sparse) and a transformed regular
grid w.r.t. Fig. 7.

Fig. 9. (a) Test image perturbed with noise N (0, 0.12) and the matched fragment
superimposed. (b) The same with noise N (0, 0.22).

control the class of allowed deformations and avoid overfitting. We have ap-
plied the TRW-S algorithm to maximize the dual of the linearly relaxed energy
minimization problem. As we have used the structure of the model from [15],
our relaxed optimization problem has a number of variables which scales lin-
early with the search window. This can be contrasted with the commonly
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Fig. 10. Morphing face expressions using found deformation: interpolated interme-
diate frames from top-left image to bottom-right image. The deformation and colors
of pixels in correspondence are linearly interpolated for the intermediate frames.

Fig. 11. Registration of microscopy images. Left: input images, courtesy of the
Institute of Physiology, Academy of Sciences of the Czech Republic (images contain
sections through a middle part of a 21-day-old embryo of a Norway rat; the sections
were created by mosaicing 25 partial fields of view captured by a confocal laser
scanning microscope Leica SP2 AOBS). Right: first image (red) overimposed onto
second (green) before (upper) and after (lower) registration.
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used model where the number of variables scales quadratically. This allows us
to deal with much wider local displacements of the deformation fields than
considered previously feasible within the global optimization framework. Our
experiments demonstrate high visual accuracy within a wide class of continu-
ous deformations and robustness to a high degree of noise.

Extensions. As in stereo, we could possibly use a truncated continuity term
and gradient cues to model piecewise continuous deformations, and a trun-
cated data term to model outliers (clutter, occlusions, etc.). Another option
is to couple our model with other MRF models, e.g ., a segmentation model,
as in [27]. A sparse set of corresponding pixels can be incorporated easily in
the data term as a prior. This is likely to stabilize the result significantly.
One could imagine a user-guided tool for image morphing: first, images are
matched fully automatically, then the user constraints correspondence by a
mouse in one or several places and re-runs. To cope with larger global trans-
lations (or scale, rotation etc.), one may consider adding a common, roughly
discretized, transformation variable. This, however, leads to many ambiguous
solutions so the optimization by TRW-S becomes badly conditioned. Another
related issue is the choice of a solution based on min-marginals. We consider
pairing this algorithm with a local search algorithm, e.g ., graph cuts, so the
latter would have a good initial point to start.
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