Computer Vision Winter Workshop 2008, Janez Pers (ed.)
Moravske Toplice, Slovenia, February 4—6
Slovenian Pattern Recognition Society, Ljubljana, Slovenia

A Lower Bound by One-against-all Decomposition for Potts Model Energy
Minimization

Alexander Shekhovtsov and Vaclav Hlavac

Czech Technical University, Prague
Faculty of Electrical Engineering, Department of Cybernetics
Center for Machine Perception
shekhovt@cmp.felk.cvut.cz, hlavac @fel.cvut.cz

Abstract Energy minimization in computer vision can be
formulated as minimizing a separable function of discrete
variables. Such formulation arises, in particular, in Gibbs
probabilistic models, which are suitable for many low-level
image processing tasks. A special type of this probabilistic
model, the Potts model, was successfully applied in segmen-
tation, stereo and image denoising. Importantly, the Potts
model is general enough to incorporate difficult problems:
the energy minimization remains NP-hard.

In this paper, we investigate a new linear relaxation for
the Potts model. The relaxation is obtained by considering a
family of decompositions of the energy function in the fash-
ion of one label vs. all other. The tightest lower bound in the
family constitutes a linear maximization program, for which
we propose a coordinate ascent method. We show that our
bound is dual to the known LP-relaxation of energy mini-
mization, for which several dedicated solvers are available.
Our new formulation could lead to more efficient algorithms
(this was not confirmed yet) and to new per-variable-label
bounds. The letter should allow to reject some selections
which are not optimal. These bounds may be used efficiently,
e.g., in branch and bound algorithm.

1 Introduction

We are interested in solving energy minimization problems
in computer vision. There exist well-established approaches
to the related hard discrete minimization problems, like the
MAX-CUT problem. However, the scale of the tasks arising
in computer vision is such that these techniques do not ap-
ply. In particular, one cannot imagine solving a semidefinite
relaxation of a discrete minimization problem involving a
million of variables. Even the Linear Programming (LP) re-
laxation is not within common computational resources yet.
There were many efforts in designing dedicated algorithms
for solving the LP-relaxation, which would efficiently ex-
ploit the separable structure of the problem, such as: Aug-
menting DAG [10, 15], TRW-S [13, &].

Our study of the Potts model was motivated also by the
following, often applied, heuristic to the multi-class seg-
mentation problem. Instead of solving the multi-class prob-
lem, a series of two-class problems is solved to decide for
one of the classes versus all others at a time. A solution

of the multi-class problem is then combined somehow from
these simpler problems. A less straightforward heuristic was
proposed by Lu et al. [9]. They showed that energy function
of a multi-label segmentation problem can be represented
as a sum of solvable auxiliary binary subproblems. If solu-
tions of these auxiliary subproblems are consistent, then it
is guaranteed that a global optimum is found. However if
they are consistent only for a subset of pixels, the proposi-
tion in et al. [9] to fix the segmentation of this subset as an
optimal choice seems to be wrong (we will present a coun-
terexample). We note that the auxiliary subproblems may
serve to compute exact lower bounds, on basis of which the
optimality can be decided. We also show how weights of the
subproblems should be selected to force the consistency of
decisions. Finally, we show that optimal selection of these
weights is equivalent to the well-known LP-relaxation ap-
proach.

The LP-relaxation [10, 6, 13] is obtained by reformu-
lating the energy minimization as 0-1 integer program
and by relaxing the integrality constraints. There are tight
correspondences between this LP-relaxation, equivalent
reparametrizations of the energy [I0] and decomposi-
tions of the energy into a collection of tree-structured
subproblems [13]. In this paper, we take the view of
decompositions. The basic idea is to represent the energy
function as a sum of auxiliary energy functions and then
to lower bound the minimum of the energy by the sum of
minima of auxiliary functions. The trick then is to be able
to compute minima of the auxiliary functions and try to find
the tightest bound. In the case of tree-structured subprob-
lems, the tightest bound problem is a dual to the standard LP
relaxation [13]. Another family of decompositions is into
sum of a submodular and a supermodular problems [I1],
which yields a different bound. Interestingly, this bound,
while generally being weaker, can be computed more easily
and provides certain optimality guarantees.

We introduce another decomposition applicable for the
Potts model (see, e.g., [5]). It uses auxiliary binary sub-
problems, which are solvable due to constraints of the Potts
model. The tightest bound obtained by these decomposi-
tions is shown to be equivalent to the standard LP-relaxation.
The useful outcomes of this construction are 1) the novel al-
gorithm for the problem and 2) per-node bounds, which al-
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low to reject many non-optimal nodes in the case when opti-
mal solution cannot be obtained. We call a node a pair (vari-
able, label). This latter property is very useful practically:
(a) to use the part of variables for which optimal labels are
found in further steps of a computer vision application, (b)
to constrain the search space and apply some other energy
minimization method, and (c) to use the per-node bounds in
the branch and bound approach.

QOutline. We introduce the energy minimization prob-
lem in Section 2 and review the decomposition approach
of [13] in Section 3. Our new decomposition and the as-
sociated tightest lower bound is proposed in Section 4. Our
algorithm is based on necessary conditions of the optimal-
ity, Sections 5,6. Per-node lower bounds and equivalence
to the standard LP-relaxation are considered in Sections 7,8.
Experiments are summarized in Section 9. Discussion and
conclusions are in Section 10.

2 Energy Minimization

We consider the following problem illustrated in Fig. 1. Let
= {1...K} be a set of labels. Let G = (V,&) be a
graph with £ C V x V antisymmetric and antireflexive, i.e.,
(s,t) € € = (t,s) ¢ £. In what follows, we will denote by
st an ordered pair (s,t) € £. Letalso £ = EU{ts|st € £}.
Let each graph node s € V be assigned a label z; € £ and
let a labeling (or configuration) be defined as x = {z; |s €
V}. Let {05(i) € R|i € L s € V} be univariate potentials
and {0s.(4,7) € R|i,5 € L st € £} be pairwise potentials.
Let all potentials be concatenated into a single vector 6 €
Q = RZ, where set of indices T = {(s,i) |s € V,i €
L}y U {(st,ij)|st € €, 1,5 € L}. Let in addition feonst be
a constant term, and let a concatenated vector of potentials,
including the constant term, be denoted as 0 = (0,60const) €
Q2 = Q x R. Let energy of a configuration x be defined by:

X‘e Ze .1?5 + Z 952& $5,$t +900n5t (1)

seV ste€

It is conveniently written using scalar product in ) as
E(x|0) = (1(x),0) + Oconst » where p: LY — Q is a map-
ping defined by [u(x)], (k) = 0fz.=k}» s € V., k € L;
[M(X)]St (k, k') = 6{13:k}6{mt:k/}» st € & k k' € L,
where 074y is 1 if A is true and O otherwise. Thus, the
problem of energy minimization can be shortly written using
scalar product in € as

min <,UJ( ) 9> + oconst- (2)
xeLY

We restrict our attention to energy functions of simpler
form, known as Potts model. Vector 6 will be called a Potts
model if for all st € £

est(iaj):07 27&]

0.(i,j) <0, i=j. ®

Even with restriction to models of this type, the energy min-
imization (2) is still an NP-hard problem, closely related to
multiway cut problem as was pointed by [5].

INotation {zs|s € S} (bold brackets), where S is a finite set, will
stand for the concatenated vector of variables xs, rather than the set of
their values.
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Figure 1: Energy minimization: each node s of the graph is as-
signed a discrete variable x5, depicted by a box with labels. Labels
in the box represent values which discrete variable may attain. A
labeling x is shown by black circles and black solid lines.

Example 1 (A segmentation model). Consider the follow-
ing instance of the Potts model. Let set V be set of pixels
and set £ — pairs of neighboring pixels (e.g. horizontally and
vertically neighboring). Each pixel is to be assigned a label
x, from the set of labels £. Two neighboring pixels are ex-
pected to have identical labels, which is achieved by setting

07 Ts = Tt

Cst, Ty # Ty,

Hst(xm xt) = { “4)
where cg; is a positive penalty paid when neighboring pixels
s and t are assigned different labels. Univariate potentials
s(xs) are set according to the local likelihood of assigning
label x, to pixel s. This model is easily convertible to the
form satisfying (3) by subtracting a constant from all 6, and
adding the equivalent sum to f.opst-

3 Lower Bounds by Decompositions

Let us consider a collection of parameter vectors 6 = {9’
Q| i € I'}, where I is a finite set. Collection 6 will be called
a decomposition of 0, if

E(x]0) =Y E(x|6)

el

Vx e LY, (5)

i.e. £ can be represented as a sum of the subproblems. In
particular, Oisa decomposition of 0 if Do 0t = 6.

Statement 1 ([13]). For any decomposition 6 value
B(0) = Y, miny (6, ju(x)) + Oconst constitutes a lower
bound on the optimal energy:

LB(B) < min(@, /L(X)> + econst- (6)

Proof. min<0 w(x)) = mln(Z 0%, u(x)) =
man(é)l,,u( )y > me(@l,u( )) Alternatively

could be seen from the Jensen’s inequality as in [13] and
linearity of (-, u(x)). O

The computation of LB() is tractable if all the problems
min, (6%, u(x)) are tractable. For this purpose, each 6 can
be chosen to define a tree-structured distribution [13]. For
a chosen collection of trees covering the graph G there is
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still a linear subspace of possible selections of values 0i(-),
such that constraints ), §' = 0 are satisfied. Finding the
tightest lower bound over all possible decompositions from
this subspace is a dual problem to the LP-relaxation [13].
However there are other possibilities.

Another family of lower bounds can be obtained by con-
sidering decompositions of 6 into sum of submodular and
supermodular problems [11]. For a bipartite graph G (like
the grid graph in Fig. 1) both subproblems are solvable and
the tightest lower bound of the family can be expressed as
a specific linear program. Also this lower bound is gener-
ally much weaker than the one obtained from tree decom-
positions, it can be computed by a max-flow algorithm and
provides certain theoretical guarantees.

We consider yet another family of decomposition, yield-
ing easily computable lower bounds.

4 One-against-all Decomposition

In the one-against-all decomposition, each §° will represent
a sub-problem with binary decision variables, where deci-
sion is made between label 7 and all other labels in each
node. This is illustrated in Fig. 2.

]oo*o\

o

Figure 2: One vs. all decomposition. Top: in the multi-label prob-
lem, E(x|0), for each ¢ € £ nodes and arcs associated with label
i are used to construct auxiliary problem E’(z|0"). Bottom: The
decision variables of the auxiliary problem E*(z|0") are the indica-
tors of whether to select the label ¢ or some other. A reweightening
of the auxiliary problems aims at achieving agreement of these de-
cision variables.
Formally, let I = {1... K}, let 0° satisfy:
05(5) =0,
azt (.] ) k) = 07

VieLl:j#i 7
Vi ke L:jFiork#i.

In this case, energy function can be written as
E' (X|éi =

29 6{909—2} + Z 9 (2, 5{%—1}6{% iy T econst
seyY ste&
®)

or introducing auxiliary binary decision variables z; =
5{15:1‘}’ as

|92 Zﬁl 1)zs + Z 0%, (i,1) 252t + 0.t (9)

seVy ste&

Further on, let collection {6%]i € I'} satisfy:

0, (i,1) = 05(i, 1), VsteE, ieLl
QZ(Z) = es(i)_QSa VseV,ie Ll
eéonst = 9C0nst + % ZSEV ds

(10)

where ¢g; € R|s € V are free variables.

Statement 2. A C(gllection 0 satisfying (7) and (10) forms a
decomposition of 6.

Indeed, substituting (7), (10) into 3", E¥(x|6%) verifies
that it equals E(x|6).

For a given decomposition we are interested in comput-
ing the lower bound LB(6) = ), miny Ei(x]6%). Due
to representation (9), auxiliary problem min, E*(x|0?)
is a binary minimization problem, and under constraints
0i,(i,i) < 0, st € V (which are valid in the Potts model)
it is submodular and therefore can be minimized by a
max-flow algorithm [2, 4].

We are interested in finding the tightest lower bound in
the family, which means solving the following maximization
problem:

LB = max min E (x]6%),

s.t. (7) and (10). (11)
{as]s€V} x

Our next step is to show that (11) can be written as a
linear program and therefore it is practical to compute. To
see this we first rewrite each subproblem min, E*(z|0%) as a
linear program [2, 1]:

min Z (92( ) )VS + Z ast(z Z)VSt + oconst

Voosev ste€
€ [0,1], seV (12)
s.t. S v € 10, 1], ste &
Vs < min(vs, 1), stef.

Problem (12) is a linear relaxation of the binary minimiza-
tion min, E%(z|0*), but because the latter problem is sub-
modular the relaxation is tight (see,e.g., [1]). Let us shortly
denote problem (12) as

min E*(v|d"), (13)

where E*(v \01) represents the objective of (12), which is
linear in v and 6 and A5 is the constraint polytope of (12).
This allows us to rewrite (11) as follows

LB = maXZ min E*(v]6%)

vEA2

= ma min

El Z 02
ax i Z | (14)
= inf

E'(v 91
{vieAqliel} qui: |

where the last equality holds due to linearity of objec-
tive and convexity of constraint sets. Expanding E°, it is

>, Ei(v]6h) =
Z(a +Zest 1,1 Vst+zq8+0C0nht

S, st,i

= <Va0 + Zq(s(l - ZVZ) + Oconst-
s 4 (15)

3



A Lower Bound by One-against-all Decomposition for Potts Model Energy Minimization [«]

Finally, substituting (15) into the supremum in (14) it is
seen, that the optimal value of (11) equals

min(v, 0) + Oconst
ot vt e Ay, icl (16)
T vi=1, Vse.

In the linear program (16), the objective is the same as that of
original problem (2). Only the constraint is a convex poly-
tope with number of inequality constraints proportional to
the number of variables. Unfortunately, state of the art lin-
ear programming solvers are too much memory and com-
putation demanding for instances of energy minimization of
any reasonably large size.

5 Conditions of the Optimality

We will propose an algorithm, to solve (16) suboptimally,
so that it will satisfy certain necessary conditions of the op-
timality, derived in this section. As these conditions are not
sufficient for the optimality, the outcome of the algorithm
will be not the tightest lower bound, but a somewhat weaker
lower bound.

We propose the following necessary conditions of the op-
timum of (11). Let ®! , = min,, —, E*(2]0"), a € {0,1},
s € V be a collection of min-marginals of subproblem 6°.
Let AD! = & | — i .

Statement 3. In the optimum of (11) the following condi-
tions are satisfied

VseV, diel A‘Pégo _ a7
VseV, Vi,je L AdL>0o0r AdJ > 0.

This conditions are naturally interpreted in terms of
agreement of sets of optimal configurations for the subprob-
lems. Namely, at least one of the subproblems 6¢ must al-
low its label ¢ as optimal. And if a subproblem i selects
label i strictly in some s, then no other subproblem can se-
lect strictly a label j # 4. Thus, subproblems are forced to
share a solution x optimal for all of them simultaneously.

Proof.

e Assume the first part of_(17) is violated. Then ds € V
such that ¢ = min; A®? > 0. Then increasing ¢, by ¢
will increase the value of LB(0) by e.

Indeed, weight 6, (i) — g5 will decrease only by &, and the
value min, E*(z|%) will increase by = for each i € L.

e Assume the second part of (17) is violated. Namely, ds €
V Ji,j € L such that A®. < 0 and A®J < 0. Let
e = max(A®L, A®J) > 0. Then decreasing g5 by ¢ will
increase the LB(0) by at least .

Indeed, weight 0,(i) — gs will increase by ¢, therefore
values min, E*(z|0?) will increase by €. Thus LB(6)
will increase at least by 2e —e = «.

O

6 Algorithm

Our algorithm is designed to satisfy necessary condi-
tions (17). Each time they are found violated, the correction
is made and the LB(#) is increased. Only one variable
¢s 1s modified in each step, thus it is a coordinate ascent
algorithm. As is usual for coordinate ascent maximization
of a non-smooth function this algorithm may get stuck
in a point fare from the optimum. Indeed, we observed
it happens on practice. We will discuss this issue in the
conclusion.

Algorithm 1: One-against-all Reweightening Coordinate|
Ascent

1. Initialize g, = 0, s € V and 6° by (10).
2. Forall s € V do

(a) compute values ®% .7 € L, a € {0,1} by fast reuse

of residual networks in max-flow [7].

(b) Check conditions (17). If not satisfied, increase the
LB(0) by appropriate change of ¢;.

3. Repeat step 2 while LB(0) is improving.

Note, that when run in the problems with integer
weights 6, each step of the algorithm is guaranteed to
increase the lower bound at least by one. So in this case it
is finitely converging.

7 Per-node Bounds

Aside from the value LB computed by (11), which is a lower
bound on the quality of the optimal solution, we are inter-
ested in obtaining per-node bounds LB; ; on the quality of
the optimal solution under fixation of x5 = <.

We construct these per-node bounds as:

LB(0) =

)

min E’(x[6) < min E(x|f). (18)

— x|zs=1 x|zs=i

These bounds of course hold for any decomposition 6 but
they are tighter, when 0 is a solution of (11). Indeed, it is
seen that LB(#) < min; LBSJ;(é) for all s € V, and thus
the larger the bound LB(é), the larger are per-node bounds
LB; ;(0).

Recall that computation of miny|, —; £’ (x]67) reduces
to problem with binary variables, min,|., s, B’ (z)69).
As was noted [3, 7], solutions for all s € V can be computed
cheaply by reusing the residual network in the max-flow al-
gorithm.

Suppose, we have a good guess of solution x, then by
comparing LB, ; with E(x|0) we can reject some nodes as
being certainly not optimal. Indeed, let LB;; > E (x|6),
then no configuration x’ with fixation =/, = i can be better
then x, and therefore node (s, ) can be safely rejected.
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8 Equivalence of Relaxations

In this section, we show that our new bound is in fact equiv-
alent to the well known LP-relaxation approach.
The LP-relaxation of (2) is constructed as follows [6, 13,
]: for each discrete variable x; a group of relaxed vari-
ables ug(i) € [0,1], ¢ € L is introduced and required to
satisfy normalization constraints
Z us(i) =1, VseV (19)
i€L
for each pair (z,, ), st € € relaxed variables s (i,7) €
[0,1], 4,7 € L are introduced and must satisfy marginaliza-
tion constraints:

Z Mst(iaj/) = /”'S(’L)? Vst € 87 Vi € ‘Cy

iEE . . (20)

Zﬁust(%ﬁj) =pm(j), Vst€ €&, VjeL.

i€
Concatenated vector . € € satisfying these constraints is
called a relaxed labeling. Whenever p has all components
integral, it uniquely represents a labeling x by the relation
1 = p(x). By dropping the integrality constraints the fol-
lowing relaxation of (2) is obtained:

/Lgll\lcr:l,g </J'7 9> + econstu (21)
where Ag,r = {1 € Q4 [Ap = 0, B = 1} is called
local [13] polytope of graph GG. Here set (1, denotes vec-
tors from (2 with all components nonnegative, equalities
Ap = 0 express marginalization constraints (20) and equal-
ities Bu = 1 express normalization constraints (19).

Statement 4. Let 6 be a parameter vector of Potts model.
Then linear program (16) is equivalent to the standard LP-
relaxation (21) in the sense that their optimum values coin-
cide and optimal solutions are convertible.

Proof.

e Let 1 be optimal to (21). A feasible solution v to (16)
preserving the objective can be constructed as follows.

Objective of (21) for Potts model expresses as
</,L, 9) + econst =
ZQS(Z)MS(Z) + Zest(ia Z)Mst(lvl) + 9C0nst- (22)
S,

st,i
Letting
vio= (i), seV,iel
v = ua(ii), stegicL )

it is seen that v is feasible to (16) and gives the same
value of the objective. Feasibility constraints ), v% = 1
follow from (20) and constraints v?, < min(v?, v}) from
(19) and nonnegativity of 1.

e Let v be optimal to (16). A feasible solution p to (21)
can be constructed as follows:

s (4) :V;, seV,iel
Mst(ivi) :V;ty_ ste&, iel
pst (4, 5) Z% ste &, i,j€L:iH#],

(24)

where Ay, = Y, min(v, v}) and

Si (i : )
Uy —Vs_—mln(ys_,ut_), ste&, i€ L;
5 —_ X3 3 3 X3 >

Vi, =wv; —min(v,v}), steé&, ie L.

(25)

It its seen that values p are nonnegative. Noting that
vl vy, = 0forall i € £,st € £ marginalization con-
straints are verified as:

. N | . j
;ﬂst(ld) = min(v;, v;) + Vﬁtm ; U
YE)

N |
min(vg, v¢) + Vﬁtm

min(v?, v}) 4

min(v?, 1)) 4+ vl — min(v:, 1) = VL.

(26)

Thus p is feasible to (21) and the value of the objective is
preserved.

O

Example 2 (Non-optimal agreement for Potts model). As a
common case in integer programs, even the variables which
appear to be integral in the solution of the relaxed problem
need not be a part of an optimal assignment. Consider the
Potts model in Fig. 3. Parameters 6;(-) are shown in the top
figure. Values 0,;(i,7) = —d;—;; for all edges st. Value
Oconst = 0. R

Energy of the optimal relaxed labeling p is E(u|0) =
—5. Energy of optimal integral configuration x is F'(x|6) =
0. Energy of the best integral labeling passing through the
node (s1,4) is +1. Thus it is seen that node (s1,4) can not
be taken as optimal.

According to our equivalence result, this counterexam-
ple applies also to one-against-all decompositions, and it
shows that even for the decomposition 8 which maximizes
the lower bound, agreement on one pixel does imply the op-
timality.

9 Experiments

So far only experiments with artificial random problems are
proposed. We generate random instances of a Potts model
on a grid graph of size 10x 10 with 5 labels. Weights 6,(-)
are sampled uniformly in {0, 1 ... 10} (integral weights) and
weights 04 (-, -) uniformly in {0, —1- - -—5} (because in this
graph cost of a labeling include twice more costs of edges
than nodes).

For such sampled problems the algorithm converges in a
small number of steps. Necessary conditions are not enough
to guarantee that it reaches the solution of (11) and a signif-
icant gap is observed in experiments (we compared against
MATLAB’s LP-solver). However it can be still efficient in
the rejection of non-optimal labels.

For each sampled problem, 6, we measure the percent-
age of the nodes, (), which can be rejected as being non-
optimal based on our per-node bounds,

_ _Trejected
alf) = 7|V|(K —0) 100, 27)

5
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Figure 3: Example of Potts model, where optimal relaxed vari-
ables for node s; are integral, but do not correspond to the opti-
mum of the discrete energy. Top: parameters 65(-). Crosses in-
dicate some large big numbers, say 10. Bottom: optimal relaxed
labeling (solid lines) and optimal integral labeling (dashed). Num-
bers show values of non-zero relaxed variables ps(-) associated to
nodes.

where we divide over (K — 1), because if only one node
in a vertex s is not rejected — then it is the only optimal
solution in that vertex. Thus «(f) = 100 means that an
unique globally optimal solution was found. If there remain
ambiguous nodes we say that we solved «(6) percents of the
problem.

By sampling many random problems, we computed an
empirical estimate of the probability of a random problem
being solved up to a percents, P{a(8) > a}. The plot of
this empirical probability estimate from 10000 samples is
shown in Fig. 4.

P{a(6)= a}

Figure 4: Empirical probability of solving a percents of a random
problem. Estimated from 10000 uniform samples.

The estimate P{«(#) > a} is computed from the sam-
ples as follows. W calculate standard empirical pdf of the
samples (with 100 bins), compute its cumulative distribu-
tion function, P{a(f) < a}, and find P{a(d) < a} =

6

1— P{a(f) <a}.

It is seen from the figure that there are about 10 per-
cents of the problems, for which we cannot reject any of the
nodes, and there are about 20 percents, for which we found
the unique global minimum. Of course in practical applica-
tions the situation will be different, and we expect that real
problems are much easier than random ones.

10 Conclusions

We showed that one vs. all label decompositions of Potts
model gives rise to new family of lower bounds for energy
minimization. The tightest lower bound is dual to a linear
program, which we proved equivalent to the standard LP-
relaxation. On the one hand, we cannot hope to achieve bet-
ter results than a general LP-solver. On the other, we hope
that this new formulation can yield a more efficient algo-
rithm. So far, the algorithm we proposed is prone to certain
stationary points which are not global minima of the relaxed
problem. This behavior is similar to TRW-S and augment-
ing DAG algorithms: as their stationary points only satisfy
necessary conditions of the optimum. Still, when general
LP-solvers are not applicable, these suboptimal algorithms
are of much use.

As a by-product of our algorithm, we obtain a collec-
tion of per-variable-label bounds, which can be used to re-
ject some of non-optimal selections. This is of big advan-
tage in applications: we often do not want to have very pre-
cise boundaries of the segmentation, efc. On the other hand,
these bounds may be used to construct an efficient branch
and bound algorithm to find the global optimum of the prob-
lem.

For each relaxation there are several ways it could be
used in solving the initial discrete minimization problem.
One of such possibilities is to construct a primal-dual inte-
ger method. This is likely to give another derivation of the
popular expansion-move algorithm.
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