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Abstract

We address the problem of energy minimization, which is (1) generally NP-complete and (2)
involves many discrete variables – commonly a 2D array of them, arising from an MRF model.

One of the approaches to the problem is to formulate it as integer linear programming and relax
integrality constraints. However this can be done in a number of possible ways. One, widely applied
previously (LP-1) [19, 13, 4, 22, 9, 23], appears to lead to a large-scale linear program which is not
practical to solve with general LP methods. A number of algorithms were developed which attempt
to solve the problem exploiting its structure [14, 23, 22, 9], however their common drawback is that
they may converge to a suboptimal point. The other LP relaxation we consider here is constructed
by (1) reformulating the optimization problem in the form of a function of binary variables [18], and
(2) applying the roof duality relaxation [6] to the reformulated problem. We refer to the resulting
relaxation as LP-2. It is different from LP-1 in many respects, and this is the main question of our
study. Most importantly, it is possible to apply an efficient, fully combinatorial, algorithm to solve
the relaxed problem.

We also derive the following relations: a) LP-1 is generally a tighter relaxation than LP-2, b)
LP-2 provides constraints on optimal integer configurations, which allows one to identify “a part” of
an optimal solution, c) a subclass of problems can be identified for which LP-2 is as tight as LP-1
providing additional characterization of solutions of LP-1 for this subclass.

Our last contribution is providing an alternative formulation of LP-2: we prove that it is equivalent
to computing a decomposition of the energy into submodular and supermodular parts so that the sum
of the lower bounds for each part is maximized.

1 Introduction
Outline. The energy minimization problems is introduced in Sect. 2, its natural linear programming
relaxation is reviewed in Sect. 3. Transformation into energy minimization with binary variables is
reviewed in Sect. 5. Then we show how the known results from operations research (in particular per-
sistencies) can be interpreted in terms of the original multi-label problem in Sect. 6. The LP-relaxation
of the binarized problem is studied in more detail in Sect. 8, and the subclass of problems is studied
for which this relaxation coincides with LP-1. Sect. 9 relates persistency properties derived from LP-2
with active constraints in the solution of LP-1. Sect. 10 is devoted to the submodular-supermodular de-
composition approach, and it shows that the approach is equivalent to the LP-2 relaxation. In appendix
we consider an order-independent reduction to binary variables and show that its linear relaxation is
degenerate.

Notation
R will denote set of reals, R+ set of non-negative reals, B = {0, 1} set of “booleans”, where we adopt
0 =false and 1 =true.
δ{R(x)} will denote the function:

δ{R(x)} :=

{
1, R(x) = true
0, R(x) = false,
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where R(x) is a boolean predicate (e.g. “x ≥ 0”).

Ordered pair (s, t) of entities will be shorthanded by st. In particular, in notation θst it is understood
that θ is indexed by an ordered pair (s, t).

Euclidean scalar product of x, y ∈ Rd will be denoted by 〈x, y〉. In vector expressions 0 and 1 will
denote vectors of appropriate length of zeros and ones respectively.

Notation {xs | s ∈ S}, where S is a finite set, will stand for the concatenated vector of variables xs

(rather that for the set of their values, which is denoted by {xs | s ∈ S}).

2 Energy Minimization Problem
We consider the following problem illustrated in Fig. 1. Let L = {1 . . . K} be set of labels. Let
G = (V , E) be a graph with E ⊆ V × V antisymmetric and antireflexive, i.e. (s, t) ∈ E ⇒ (t, s) /∈ E .
In what follows we will denote by st the ordered pair (s, t) ∈ E . Let also Ē = E ∪ {ts | st ∈ E} denote
set of all directed edges and their reverse. Let each graph node s ∈ V be assigned a label xs ∈ L and
let a labeling (or configuration) be denoted as x = {xs | s ∈ V}. Let {θs(i) ∈ R | i ∈ L s ∈ V} be
univariate potentials and {θst(i, j) ∈ R | i, j ∈ L st ∈ E} be pairwise potentials. Let in addition θconst

be a constant term (meaning it is a constant function of labeling).
Let all potentials, including the constant term, be concatenated into single vector θ ∈ Ω = RI × R,

where set of indices I = {(s, i) | s ∈ V , i ∈ L} ∪ {(st, ij) | st ∈ E , i, j ∈ L} correspond to univariate
and pairwise terms. Notation θI will thus refer to all components of θ but the constant term.

Let energy of a configuration x be defined by:

E(x|θ) =
∑
s∈V

θs(xs) +
∑
st∈E

θst(xs, xt) + θconst. (1)

It is conveniently written using scalar product in Ω as E(x|θ) = 〈µ(x), θ〉, where µ(x) ∈ Ω is defined by
[µ(x)]s(i) = δ{xs=i}, [µ(x)]st(i, j) = δ{xs=i}δ{xt=i} and [µ(x)]const = 1.

 

 

s t

xs xt

Figure 1: Energy minimization: each node s of the graph is assigned a discrete variable xs, depicted by
a box with labels. Labels in the box represent values which discrete variable may attain. A labeling x is
shown by black circles and black solid lines.
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3 LP-relaxation
The main subject of our analysis is the linear programming relaxation of energy minimization. The
natural relaxation, studied e.g. by [19, 4, 22, 23] is obtained by reformulating the problem in terms of 0-1
integer variables and then relaxing integrality constraints. In this section we review this construction, the
Lagrangian dual problem and the closely related notion of equivalent reparametrizations of the energy
function.

Minimization of (1) can be written as:

min
µ∈{µ(x) | x∈LV}

〈µ, θ〉, (2)

where objective function is linear and therefore minimization can be performed over the convex closure
of the constraint set:

(2) = min
µ∈MG,L

〈µ, θ〉, (3)

where MG,L = conv{µ(x) | x ∈ LV} is marginal polytope [22].
We consider the relaxation of (3) (see [4, 23, 22]), defined as:

min
µ∈ΛG,L

〈µ, θ〉, (4)

where ΛG,L =
{
µ ∈ Ω+ |AµI = 0, BµI = 1, µconst = 1

}
is the local polytope of graph G. Set Ω+

denotes vectors from Ω with all components nonnegative. Equalities AµI = 0 express m1 = 2|E||L|
marginalization constraints: ∑

j′∈L
µst(i, j

′) = µs(i), ∀st ∈ E , ∀i ∈ L∑
i′∈L

µst(i
′, j) = µt(j), ∀st ∈ E , ∀j ∈ L,

(5)

where A is m1 × |I| matrix. Equalities BµI = 1 express m2 = |V| normalization constraints:∑
i∈L

µs(i) = 1, ∀s ∈ V , (6)

where B is m2 × |I| matrix. Polytope ΛG,L inherits all linear equality constraints of MG,L but keeps
only a small number of inequality constraints (only the constraint µ ∈ Ω+), therefore it makes an outer
approximation to MG,L [22].

Equivalent reparametrizations (see [23, 9] and references therein). We say that θ1 ∈ Ω and θ2 ∈ Ω
are equivalent, which is denoted by θ1 ≡ θ2, if 〈µ, θ1〉 = 〈µ, θ2〉 holds for all µ ∈ ΛG,L.

It can be shown that that the statement 〈µ, φ〉 = 0 ∀µ ∈ ΛG,L is equivalent to 〈µ, φ〉 = 0 ∀µ ∈MG,L.
Therefore θ1 ≡ θ2 iff E(x|θ1) = E(x|θ2) ∀x ∈ LV , so our definition of equivalent problems coincides
with the usual one [23, 22]. This fact follows from that aff ΛG,L = affMG,L (in other words ΛG,L is
tight by equalities outer approximation to MG,L).

Consider the set of zero problems defined as

Ω0 =
{

φ ∈ Ω | φI= ATy+BTz,
φconst= −〈1,z〉 , y ∈ Rm1 , z ∈ Rm2

}
. (7)

Problems from this set and only they have the property E(x|φ) = 0 for all x ∈ LV .
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Statement 1. It is θ1 ≡ θ2 iff θ1 − θ2 ∈ Ω0.

Proof. Clearly, the statement can be reformulated as φ ≡ 0 iff φ ∈ Ω0.
• For any φ ∈ Ω0 and any µ ∈ ΛG,L it is 〈µ, φ〉 = 〈µI , ATy +BTz〉− 〈1, z〉 = 〈AµI , y〉+ 〈BIµ, z〉−
〈1, z〉 = 〈1, z〉 − 〈1, z〉 = 0.
• Let 〈φ, µ〉 = 0 holds for all µ ∈ ΛG,L. Then it holds also for all µ ∈ aff ΛG,L = {µ ∈ Ω |AµI =
0, BµI = 1, µconst = 1}. Which means that the equation φTµ = 0 is a linear combination of equations
AµI = 0, BµI = 1 and µconst = 1. That is ∃y ∈ Rm1 , z ∈ Rm2: φI = ATy+BTz, φconst =−〈1, z〉.

Often it is useful to consider the explicit form of elements φ ∈ Ω0. When matrices A and B are
substituted, it takes the form [19, 23, 9]:

φst(i, j) = yst(i) + yts(j), ∀st ∈ E , i, j ∈ L
φs(i) = −

∑
t|st∈Ē yst(i) + zs, ∀s ∈ V , i ∈ L

φconst = −
∑

s∈V zs,
(8)

where it is understood that y ∈ Rm1 has components {yst(i) | st ∈ Ē , i ∈ L} and z ∈ Rm2 has compo-
nents {zs | s ∈ V}. In [19, 23] it is shown that when graph G is connected and only problems with zero
constant term are considered, the space Ω0 can be parametrized without variables z. Indeed, in this case
it is {BTz | z ∈ Rm2 , 〈1, z〉 = 0} ⊆ {ATy | y ∈ Rm1}.

LP-dual. We write dual of (4) as follows (standard LP dual with y, z being dual variables):

min〈µI , θI〉+ θconst =
AµI = 0
BµI = 1

µI ≥ 0

max〈1, z〉+ θconst.
y ∈ Rm1

z ∈ Rm2

ATy + BTz ≤ θI

(9)

Introducing auxiliary variables θ′ ∈ Ω, (9) can be written as:

= max θ′const

θ′I = θI − ATy −BTz
θ′const = θconst + 〈1, z〉
θ′I ≥ 0

= max θ′const .
θ′ ≡ θ
θ′const ∈ R
θ′I ≥ 0

(LB)

The weak duality theorem implies that for any θ′ feasible to the dual problem, the dual cost, θ′const is
a not grater then the primal cost, 〈µ, θ〉, ∀µ ∈ ΛG,L. That is θ′const is a lower bound on 〈µ, θ〉 and, in
particular, on E(x|θ) = 〈µ(x), θ〉.

The final expression LB can be seen to have similar form to the problem of maximizing the constant
term of a posiform [1]. More precisely this relation can be expressed by the following statement.

Statement 2. When |L| = 2, bound LB coincides with the roof-dual bound [1]. In this case optimization
problem LB can be efficiently solved by a max-flow algorithm [2].
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4 Binary Energy Minimization
Energy minimization problems with 2 labels are conveniently described in terms of 0-1 integer variables,
which will be called binary throughout this paper.

Let L = B = {0, 1}, then each variable xs is 0 or 1. Univariate and pairwise terms of (1) may be
written as

θs(xs) = θst(1)xs + θst(0)(1− xs),
θst(xs, xt) = θst(1, 1)xsxt + θst(0, 1)(1− xs)xt

+θst(1, 0)xs(1− xt) + θst(0, 0)(1− xs)(1− xt).
(10)

Expanding braces in (10) it is clear that (1) may be written in the form:

E(x|η) =
∑

s

ηsxs +
∑
st

ηstxsxt + ηconst, (11)

which is a quadratic polynomial in binary variables xs. Functions of the form BV 7→ R are called
pseudo-Boolean [1] and minimization (or maximization) of (11) is called quadratic pseudo-Boolean
optimization.

Calculating coefficients η form θ is equivalent to choosing the reparametrization θ̂ ≡ θ with the
non-zero elements being only θ̂s(1), θ̂st(1, 1) and θ̂const.

5 Transformation to Binary Variables
Minimization of energy (1) can be always formulated as a MIN-CUT problem. Energies which corre-
spond to polynomially solvable MIN-CUT (with all weights nonnegative) include energies with convex
pairwise potentials [8] and, more generally, submodular pairwise potentials of binary [7, 11] or multi-
label [20, 16, 10] variables. Reversely, any MIN-CUT problem can be formulated as energy minimiza-
tion with 2 labels.

As there are simple transitions between MIN-CUT problem, quadratic pseudo-Boolean optimization
and energy minimization with 2 labels it is not very important to which of them energy minimization
with many labels will be reduced. The construction [8, 16, 18] adopted to our notation of binary energies
is as follows.

Transformation L → B. First, we construct θ̂ ≡ θ satisfying the following:

θ̂st(1, j) = θ̂st(i, 1) = 0 st ∈ E , i, j ∈ L
θ̂s(1) = 0 s ∈ V .

(12)

It is constructed as follows:

θ̂st(i, j) = θst(i, j)− θst(i, 1)− θst(1, j) + θst(1, 1), st ∈ E , i, j ∈ L;

θ̂s(i) = θs(i) +
∑

t| st∈E

θst(i, 1) +
∑

t| ts∈E

θts(1, i)− θs(1)−
∑

t| st∈E

θst(1, 1)−

−
∑

t| ts∈E

θts(1, 1), s ∈ V , i ∈ L;

θ̂const = θconst +
∑
st∈E

θst(1, 1) +
∑
s∈V

θs(1).

(13)
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It is easy to verify that condition (12) holds for θ̂ and that θ̂ ≡ θ. Note, that in the case of two labels,
reparametrisation θ̂ immediately provide coefficients for (11). In more general case it is useful because
of possibility to apply the next lemma.

Lemma 1 (Cumulative sum). Let f : {1 . . . K} 7→ R, let f(1) = 0. Then the following representation
holds for f :

f(i) =
∑

2≤i′≤i

Di′f i = 1 . . . K, (14)

where Dif = f(i) − f(i − 1), i = 2 . . . K, is the discrete derivative of f in i, and the result of the
summation is assumed to be 0 if there is no summands (when i = 1).
Analogously, for a function g : {1 . . . K}2 7→ R with g(·, 1) = g(1, ·) = 0 it holds:

g(i, j) =
∑

2≤i′≤i
2≤j′≤j

Di′j′g i, j = 1 . . . K, (15)

where Dijg = g(i, j) + g(i− 1, j − 1)− g(i, j − 1)− g(i− 1, j), i, j = 2 . . . K.

 

 
s t

xs

xt

1

2

3

(s,2)

(s,3)

(s,4)

4

(t,2)

(t,3)

(t,4)

x z

∞

∞

∞

∞

Figure 2: Transformation L 7→ B. Left: an interaction pair st ∈ E ; a labeling x is shown by black
circles; lowest labels are dashed since all weights in θ̂ associated with them are 0. Right: binary variables
z(s,i), z(t,j); labeling z(x) is shown by black circles; dashed lines marked with ∞ show hard constraints.
Shaded areas show the set {(s, i) | i ≤ xs, s ∈ V , i ∈ L̃}.

Let a tuple (L, G, θ) define the energy minimization problem. Let L̃ = {2 . . . K}. Then components
of the equivalent binary energy minimization problem are as follows (Fig 2):

I. Graph N = (V, A), where V = V×L̃ and A = AE∪AV . AE =
{
((s, i), (t, j)) | st ∈ E , i, j ∈ L̃

}
.

AV =
{
((s, i), (s, i− 1)) | s ∈ V , i ∈ 3̃ . . . K

}
.

II. Binary configuration z ∈ BV . For a configuration x ∈ LV the corresponding binary configuration
z(x) is defined by

z(x)(s,i) = δ{i≤xs}, (s, i) ∈ V. (16)

III. Binary energy function

E(z|η) =
∑
u∈V

ηuzu +
∑

uv∈AE

ηuvzuzv + ηconst + H(z), (17)
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where weights η are constructed as

η(s,i)(t,j) = Dij θ̂st = Dijθst st ∈ E , i, j ∈ L̃
η(s,i) = Diθ̂s s ∈ V , i ∈ L̃
ηconst = θ̂const;

(18)

and hard constraints read
H(z) =

∑
uv∈AV

h(zu, zv), (19)

where h(z(s,i), z(s,i−1)) = 0 if z(s,i) ≤ z(s,i−1) and ∞ otherwise, i = 3 . . . K. Hard constraints
ensure that any z with finite energy is in the form (16).

IV. For a binary configuration z of finite energy the corresponding configuration x, denoted as x(z), is
found as

xs = 1 +
∑
i∈L̃

z(s,i). (20)

Statement 3. Constructed binary energy is equivalent to the original multi-label energy: For all x ∈ LV
it is E(z(x)|η) = E(x|θ).

Proof. Let z = z(x). Using (16) and applying Lemma 1 pairwise terms in (17) expand as∑
uv∈AE

ηuvzuzv =
∑
st∈E

∑
i,j∈L̃

η(s,i)(t,j)z(s,i)z(t,j) =

=
∑
st∈E

∑
2≤i′≤xs

2≤j′≤xt

Di′j′ θ̂st =
∑
st∈E

θ̂st(xs, xt),
(21)

and univariate terms as: ∑
u∈V

ηuzu =
∑
s∈V

∑
2≤i′≤xs

Di′ θ̂s =
∑
s∈V

θ̂s(xs). (22)

Therefore E(z(x)|η) = E(x|θ̂) = E(x|θ).

5.1 Dependence on the Label Order
The construction [8, 16, 18] outlined above depends on the ordering of the set of labels L (separate label
sets Ls with different order for each node s can be considered). While for all discrete configurations the
binarized problem is equivalent to the multi-label problem, the linear relaxation of it is not. Thus all the
results derived in the sequel will depend on the selected order of labels, which is a significant limitation.
Note that there is a combinatorial number of such orderings and solving all of the obtained in such way
relaxations does not seem feasible.

An order-independent reduction to binary variables can be obtained by introducing binary variables
as z(s,i) = δ{i=xs}, (s, i) ∈ V . It is possible to construct weights of the binary problem in such a way
that optimal binary configurations z corresponds to optimal configurations x of the multi-label problem.
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It is achieved by enforcing constraint
∑

i z(s,i) ≤ 1 via K(K − 1)/2 hard pairwise terms and constraints∑
i z(s,i) >= 1 by adding sufficiently large negative value to all unary terms. Unfortunately, this many

hard constraints lead to full loss of tightness of the LP relaxation. We show in the appendix that this LP
relaxation is degenerate.

6 Optimality Properties
Finding a minimizer of a function E : BV 7→ R is generally NP-complete, however it is often possible
to find certain constraints on the set of minimizers. In particular, if for some element u ∈ V and some
α ∈ B it is known that any minimizer z must satisfy zu = α, then it is said that strong persistency[1, 3]
holds for (u, α) or that (u, α) provides part of optimal solution. It is easy to see that all constraints of
this form may be expressed as:

zmin ≤ z ≤ zmax, (23)

where zmin, zmax ∈ BV and inequalities are component-wise (e.g., 0 ≤ zs ≤ 1 means no constraints on
zs, whereas 0 ≤ zs ≤ 0 means zs is constrained to be 0). We will say that pair (zmin, zmax) defines strong
(resp. weak) persistency if (23) holds for all (resp. for some) minimizers of E. Following [3] we will
distinguish the notion of autarkies.

Let z ∨ z′ denote component-wise maximum of z and z′, let z ∧ z′ denote component-wise minimum
of z and z′. We will say that pair (zmin, zmax) is strong (resp. weak) autarky for E if inequality

E((z ∨ zmin) ∧ zmax) < E(z) (24)

(resp. E((z ∨ zmin) ∧ zmax) ≤ E(z) ) (25)

holds for all z ∈ BV , z 6= (z ∨ zmin) ∧ zmax. It is easy to see that if (zmin, zmax) is strong (resp. weak)
autarky for E then it also implies strong (resp. weak) persistency. Generally, not all persistencies can be
derived via autarkies but we will consider only such type of persistencies since network flow model [2]
efficiently computes strong (resp. weak) autarky (zmin, zmax) as a pair of “extreme” (resp. arbitrary)
minimum cuts.

We will consider now the form which persistencies and autarkies take when transfered to multi-label
setting by mapping x(z) defined by (20). For simplicity we will show only strong properties.

Statement 4. Let (G,L, θ) define a multi-label energy minimization problem. Let (N, B, η) define
the corresponding binary energy minimization problem and let (zmin, zmax) define strong persistency for
E(·|η) such that E(zmin) < ∞ and E(zmax) < ∞. Then any optimal configuration x ∈ argminLV E(·|θ)
must satisfy

xmin ≤ x ≤ xmax, (26)

where xmin = x(zmin), xmax = x(zmax).

Proof. Let us first note that conditions E(zmin) < ∞, E(zmax) < ∞ are needed in order that xmin and
xmax are correctly defined. If they are not satisfied we can easily find tighter constraints (zmin, zmax)
which does satisfy them.
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Let us show that xmin ≤ x. Configuration zmin satisfies hard constraints, therefore for xmin = x(zmin)
it holds E(xmin|θ) = E(zmin|η). Let z = z(x), then z is optimal for E(·|η) and therefore (23) holds. We
then verify that

z(s,i) ≥ zmin
( s,i ),

1 +
∑
i∈L̃

z(s,i) ≥ 1 +
∑
i∈L̃

zmin
( s,i ),

x ≥ x(zmin).

Constraint x ≤ x(zmax) is verified similarly.

x
max

x
min

x

x∗

Figure 3: Strong autarky (xmin, xmax): if a labeling x (thin dashed) does not satisfy constraints (26) then
labeling x∗ = (x ∨ xmin) ∧ xmax (thick dashed) does satisfy them and it posseses a lower energy.

Statement 5. Let (zmin, zmax) be a strong autarky for E(·|η) such that E(zmin) < ∞ and E(zmax) < ∞.
Then

E((x ∨ xmin) ∧ xmax|θ) < E(x|θ)
∀x ∈ LV , x 6= (x ∨ xmin) ∧ xmax,

(27)

where xmin = x(zmin), xmax = x(zmax).

Proof. Let x ∈ LV and let z = z(x). We will show that (x∨xmin)∧xmax = x((z∨zmin)∧zmax), then the
statement will follow by equivalence of energies E(·|θ) and E(·|η). Let us show that for any z, z′ ∈ BV

it is x(z ∨ z′) = x(z) ∨ x(z′), indeed

x(z ∨ z′)s = 1 +
∑
i∈L̃

max(z(s,i), z
′
(s,i)) =

1 +
∑
i∈L̃

δ{i≤x(z)s} ∨ δ{i≤x(z′)s} =

max(x(z)s, x(z′)s).

(28)

Similarly, we can verify that for any z, z′ ∈ BV it is x(z ∧ z′) = x(z) ∧ x(z′).

The statement shows how a strong autarky for binary energy is interpreted for multi-label energy, this
interpretation is illustrated by Fig. 3.
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7 Submodular Energy Minimization
Let x ∨ x′ denote component-wise maximum and x ∧ x′ component-wise minimum of x and x′. Let us
introduce the mapping S : LV 7→ 2V defined as

S(x) = {(s, i) | s ∈ V , 2 ≤ i ≤ xs}, (29)

see Fig. 2. Union S(x) ∪ S(x′) corresponds to S(x ∨ x′) and intersection S(x) ∩ S(x′) to S(x ∧ x′).
Thus a set of subsets U = {S(x) | x ∈ LV} is closed under union and intersection. A function of subsets
E ′ : U 7→ R is called submodular if E ′(A ∪B) + E ′(A ∩B) ≤ E ′(A) + E ′(B) for all A, B ⊆ U .

It is seen therefore that certain energies E(x|θ) may be identified with submodular set functions via
E ′(S(x)) = E(x|θ). The submodularity of E(x|θ) is then expressed as: E(x ∨ x′) + E(x ∧ x′) ≤
E(x) + E(x′) ∀x, x′ ∈ LV . Vector θ in this case will be also called submodular and the condition may
be expressed simpler (e.g. [23] ) as:

θst(xst)+θst(yst) ≥ θst(xst∧yst)+θst(xst∨yst) ∀xst, yst ∈ L2 ∀st ∈ E , (30)

which means that all pairwise terms θst are submodular.
It can be seen (e.g. [5, 15]) that θst satisfies (30) iff

Dijθst ≤ 0, ∀i, j ∈ {2 . . . K}. (31)

We see now that when θ is submodular then pairwise coefficients of binary energy (17) calculated by (18)
are not positive which is precisely the condition when binary energy is submodular and can be minimized
exactly by max-flow.

Let Ωsub denote the set of submodular vectors θ, let Ωsup = −Ωsub denote set of supermodular vectors.
Submodularity and supermodularity will play important role in our analysis. Note that for φ ∈ Ω0 it is
E(·|φ) ≡ 0 therefore Ω0 ⊆ Ωsub ∩ Ωsup.

8 LP-relaxation of Binary Energy
We will construct a linear relaxation of minz E(z|η) explicitly. Also it will coincide with LP-relaxation
as was defined by (4), a part of variables related by equality constraints will be excluded. In this form it
is also easily identified with the linearization approach in quadratic pseudo-Boolean optimization [1].
Let us replace each variable zu by a relaxed variable νu ∈ [0, 1] and each product zuzv, where uv ∈ AE ,
by a relaxed variable νuv ∈ [0, 1]. We restrict relaxed variables to satisfy the following constraints:

0 ≤ νu ≤ 1 ∀u ∈ V,
max(0, νu+νv−1) ≤ νuv ≤ min(νu, νv) ∀uv ∈ AE ,

(32)

which hold automatically for all 0-1 assignments νuv = zuzv, νu = zu, νv = zv. Moreover, for pairs
uv ∈ AV the inequality zu ≤ zv imposed by hard constraints (19) must hold, therefore corresponding
relaxed variables νu, νv must satisfy:

ν(s,i) ≤ ν(s,i−1) ∀s ∈ V i = 3 . . . K. (33)
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Accordingly, we defile local polytope as

Λ̂N,B = {ν ∈ RV ∪AE∪{const}
+ | (32) and (33) hold for ν; νconst = 1}. (34)

LP-relaxation takes the form:

min
ν∈Λ̂N,B

[ ∑
u∈V

ηuνu +
∑

uv∈AE

ηuvνuv + ηconstνconst

]
. (35)

 
 

ηu ηv

v=(t,j)u=(s,i)

ηu ηv
ηuv

u=(s,i) v=(s,i−1)

∞

νu

1−νu

νv

1−νv

νuv

νu−νuv νv−νuv

νu

1−νu

νv

1−νv

νu

0 νv−νu

1−νv1−νu−νv+νuv

uv ∈ AE uv ∈ AV

Figure 4: Simplifying LP relaxation of binary energy: equivalent assignment of η̃ and ν̃ is shown for
graph edges uv ∈ AE (left) and uv ∈ AV (right). Thin dashed lines have associated values zero.

Statement 6. Problem (35) can be equivalently written in the form (4) as minν̃∈ΛN,B〈ν̃, η̃〉 (see Fig. 4).

Proof. Let η̃ be defined as:1

η̃u = (0, ηu), u ∈ V

η̃uv =
0 0
0 ηuv

, uv ∈ AE

η̃uv =
0 0
∞ 0

, uv ∈ AV

η̃const = ηconst

(36)

1We write functions f : B 7→ R as (f(0), f(1)) and functions g : B2 7→ R as
g(0, 0) g(0, 1)
g(1, 0) g(1, 1)

.
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Let a relaxed labeling ν̃ ∈ ΛN,B has finite energy: 〈ν̃, η̃〉 < ∞. By exploiting equality constraints of
ΛN,B we verify that any such ν̃ can be written in the form:

ν̃u = (1− νu, νu), u ∈ V

ν̃uv =
1−νu−νv+νuv νv − νuv

νu−νuv νuv
, uv ∈ AE

ν̃uv =
1−νv νv−νu

0 νu
, uv ∈ AV

(37)

which provides a one-to-one mapping of relaxed labellings ν̃ ∈ ΛN,B of finite energy and relaxed la-
bellings ν ∈ Λ̂N,B. Note that constraints ν̃st ≥ 0 are equivalent to (32). It is seen that under such defined
mapping it holds 〈ν̃, η̃〉 = 〈ν, η〉.

It was observed that LP-relaxation of binary energy minimization always has a half-integral optimal
solution, i.e. with ν ∈ {0, 1

2
, 1}V ∪AE∪{const} [1, 23].

Let ν ∈ Λ̂N,B be an optimal half-integral relaxed labeling. Under constraints (33) it implies that for
all s ∈ V components {ν(s,i) | i ∈ L̃} are in the form

(1 . . . 1︸ ︷︷ ︸
n1

, 1
2
, . . . , 1

2︸ ︷︷ ︸
n2

, 0 . . . 0︸ ︷︷ ︸
n3

), (38)

where n1, n2, n3 ≥ 0, n1+n2+n3 = |L̃|. Further on, under constraints (32) for all st ∈ E components
{ν(s,i)(t,j) | i, j ∈ L̃} are in the form (i-row, j-column):

1 . . . 1 1
2
. . . 1

2
0 . . . 0 ν(t,j)

1
...
1

1 1
2

0

1
2
...
1
2

1
2

{0, 1
2
} 0

0
...
0

0 0 0

ν(s,i)

(39)

where corresponding values ν(s,i) and ν(t,j) appearing in constrains (32) are shown on the sides of the
table. For example, constraints max(0, 1

2
+ 1− 1) ≤ x ≤ min(1

2
, 1) imply x = 1

2
. In the central part of

the table values νuv with marginals νu = νv = 1
2

are restricted to be in the set {0, 1
2
}.

Statement 7. Let θst be a submodular (resp. supermodular) pairwise term of the multi-label energy
minimization problem. Let {ν(s,i)(t,j) | i, j ∈ L̃} be associated values of the relaxed labeling in the
binarized problem. Then an increase (resp. decrease) of ν(s,i)(t,j) does not lead to an increase of the
associated part of objective (35),

∑
i,j∈L̃

η(s,i)(t,j)ν(s,i)(t,j).

12



Proof. It is η(s,i)(t,j) = Dijθst ≤ 0 (resp. ≥ 0). Therefore an increase (resp. decrease) of any of ν(s,i)(t,j)

does not increase the objective.

Statement 7 implies that for problems where each interaction term θst is either submodular or super-
modular there exists an optimal solution ν∗ of (35) with central part of ν∗uv set to 1

2
for submodular θst

and to 0 for supermodular θst.
More generally, for arbitrary v ∈ Λ̂N,B let us introduce two mappings projecting pairwise components

of ν on the corresponding side of the constraints (32):

U : Λ̂N,B 7→ Λ̂N,B, defined by


Uu(ν) = νu, u ∈ V

Uuv(ν) = min(νu, νv), uv ∈ AE

Uconst(ν) = 1;

(40)

L : Λ̂N,B 7→ Λ̂N,B, defined by


Lu(ν) = νu, u ∈ V

Luv(ν) = max(0, νu + νv − 1), uv ∈ AE

Lconst(ν) = 1.

(41)

Clearly, mapping U preserves the optimality of the solution for submodular problems, while mapping
L preserves optimality of solutions for supermodular problems. Another important property of these
mappings is given by the following statement.

Statement 8. Result of the mapping ν∗ = U(ν) (resp. ν∗ = L(ν)) satisfy supermodularity constraints:

ν∗(s,i)(t,j) + ν∗(s,i−1)(t,j−1) − ν∗(s,i)(t,j−1) − ν∗(s,i−1)(t,j) ≥ 0 ∀st ∈ E , ∀i, j = [3 . . . K]. (42)

Proof.

Let us fix arbitrary st ∈ E . Under constraints (33) on ν it is νs,i ≤ νs,i−1 and νt,j ≤ νt,j−1.

U: Without loss of generality, let νs,i ≤ νt,j . Then it is also νs,i ≤ νt,j−1 and (42) reduces to

νsi + min(νs,i−1, νt,j−1) ≥ νsi + min(νs,i−1, νt,j), (43)

which follows now from νt,j−1 ≥ νt,j and that min(a, ·) is a monotonous non-decreasing function.

L: Inequality (42), when mapping L is substituted, can be expressed as

max(1− νt,j, νs,i)+max(1− νt,j−1, νs,i−1) ≥ max(1− νt,j−1, νs,i)+max(1− νt,j, νs,i−1). (44)

Under constraints (33) it is νs,i ≤ νs,i−1 and 1 − νt,j ≥ 1 − νt,i−1. Consider now three possible
cases:

1. 1− νt,j ≤ νs,i ≤ νs,i−1, then (44) reduces to

νs,i + νs,i−1 ≥ νs,i + νs,i−1. (45)
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2. νs,i ≤ νs,i−1 ≤ 1− νt,j , then (44) reduces to

1− νt,j + max(1− νt,j−1, νs,i−1) ≥ max(1− νt,j−1, νs,i) + 1− νt,j, (46)

which follows now from νs,i−1 ≥ νs,i and that max(c, ·) is a monotonous non-decreasing
function.

3. νs,i ≤ 1− νt,j ≤ νs,i−1, then (44) reduces to

1− νt,j + νs,i−1 ≥ max(1− νt,j−1, νs,i) + νs,i−1, (47)

which follows from 1− νt,j ≥ 1− νt,j−1 and the assumption.

Statement 9 (A reduced submodular linear program). Let (G,L, θ) define a submodular multi-label en-
ergy minimization problem. Let (N, B, η) define a corresponding binary energy minimization problem.
Then LP-relaxation (35) can be reduced to

min〈η, ν〉
νu ∈ [0, 1], ∀u ∈ V
νuv ≤ min(νu, νv), ∀uv ∈ AE

(48)

Proof. Let ν be optimal to (48). Then making a correction of ν by setting νuv := min(νu, νv), ∀uv ∈
AE will not increase the objective (as implied by Statement 7) and gives a solution which is feasible
to (35).

While it is always possible to map a relaxed labeling µ ∈ ΛG,L to a relaxed binary labeling ν ∈ Λ̂N,B
such that costs 〈µ, θ〉 and 〈ν, η〉 are equal, the reverse mapping is not always possible. This is why
LP-2 is weaker than LP-1. To construct the reverse mapping we will need the following extended
supermodularity constraints on ν:

Di j

 1 νt 0
νs νst 0
0 0 0

 ≥ 0, i, j = 2 . . . K + 1; (49)

Accordingly we define additionally constrained polytope

Λ̂sup
N,B = {ν ∈ Λ̂N,L | ν satisfies (49)}. (50)

Proposition 1 (Mapping of relaxed labelings). Let mapping Π : ΛG,L 7→ Λ̂sup
N,B defined as follows:

[Πµ]si′ = Πi′µs =
∑

i′≤i≤K

µs(i), i′ ∈ L̃, s ∈ V ;

[Πµ]si′,tj′ = Πi′j′µst =
∑

i′≤i≤K
j′≤j≤K

µst(i, j), i′j′ ∈ L̃, st ∈ E ;

[Πµ]const = 1.

(51)

Proof. We need to verify that ν = Πµ obeys constraints of Λ̂sup
N,B.
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• Constraint νs,i ≤ νs,i−1, i ∈ L̃ follows from nonnegativity of µ.

• Constraint νs,i ∈ [0, 1] follows from nonnegativity of µ and normalization constraints (6).

• Constraints νu,v ≤ min(νu, νv), uv ∈ AE are verified as follows. Let us show e.g. νu − νuv ≥ 0.
Substituting (51) and using marginalization constraints (5), it is

νs,i′ − νsi′,tj′ =
∑

i′≤i≤K
1≤j≤K

µst(i, j)−
∑

i′≤i≤K
j′≤j≤K

µst(i, j) =
∑

i′≤i≤K
1≤j<j′

µst(i, j) ≥ 0. (52)

• Constraints 0 ≤ νuv follow from nonnegativity of µ.

• Constraints νuv ≥ νu + νv − 1 are verified as follows. Substituting (51) they read∑
i′<i≤K
j′<j≤K

µst(i, j)−
∑

i′≤i≤K

µs(i)−
∑

j′≤j≤K

µt(j) + 1 ≥ 0. (53)

Using marginalization constraints (5), the LHS equals to∑
i′≤i≤K
j′≤j≤K

µst(i, j)−
∑

i′≤i≤K
1≤j≤K

µst(i, j)−
∑

1≤i≤K
j′≤j≤K

µst(i, j) +
∑

1≤i≤K
1≤j≤K

µst(i, j) =

=
∑

1≤i<i′

1≤j<j′

µst(i, j) ≥ 0.
(54)

• Supermodularity constraints follow from that when the mapping Π is substituted into the expres-
sion (49) it yields exactly matrix of non-negative values µst.

Statement 10. The inverse mapping Π−1 : Λ̂sup
N,B 7→ ΛG,L is given by

[Π−1ν]s(i) = −Di+1

(
1 νs 0

)
, i = 1 . . . K;

[Π−1ν]st(i, j) = Di+1 j+1

 1 νt 0
νs νst 0
0 0 0

 i, j = 1 . . . K;

[Π−1ν]const = 1.

(55)

Proof. Let µ = Π−1ν. We need to verify that µ ∈ ΛG,L for all ν ∈ Λ̂sup
G,B and that Π−1Πµ = µ for all

µ ∈ ΛG,L. First claim is verified as follows. Expanding expression (55) it is

µs(1) = −(νs,2 − 1) = 1− νs,2

µs(i) = −(νs,i+1 − νs,i) = νs,i − νs,i+1, i = 2 . . . K − 1

µs(K) = −(0− νs,K) = νs,K .

(56)
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• Constraints µs(i) ≥ 0 follow from that νs are monotonous non-increasing (33) and from con-
straints νs,i′ ≤ 1.

• It is also
∑

i∈L µs(i) = 1− νs,2 + νs,2 − νs,3 + · · ·+ νs,K−1 − νs,K + νs,K = 1.

• It may be verified that

∑
j∈L

µst(i, j) =


1− νs,2 i = 1

νs,i − νs,i+1 i = 2 . . . K − 1

νs,K i = K,

(57)

which coincides with (56), and therefore marginalization constraints (5) are satisfied.

• Non-negativity of µst(i, j) is implied by the supermodularity (49) of ν.

The claim Π−1Πµ = µ is verified as follows. Let µ′ = Π−1Πµ.

• Substituting mapping Π into (56) it is

µ′s(1) = 1−
∑

2≤i′′≤K

µs(i
′′) = µs(1)

µ′s(i) =
∑

i≤i′′≤K

µs(i
′′)−

∑
i+1≤i′′≤K

µs(i
′′) = µs(i), i ∈ L

µ′s(K) =
∑

K≤i′′≤K

µs(i
′′) = µs(K).

(58)

• Similarly it is verified for pairwise terms. Let us expand, e.g., the term µ′st(i, 1):

µ′st(i, 1) = νs,i − νs, i+1 − νs, i;t,2 + νs, i+1;t,2 = µs(i)− νs, i;t,2 + νs, i+1;t,2 =∑
1≤j′′≤K

µst(i, j
′′)−

∑
i≤i′′≤K
2≤j′′≤K

µst(i
′′, j′′) +

∑
i+1≤i′′≤K
2≤j′′≤K

µst(i
′′, j′′) = µst(i, 1). (59)

Thus we proved that Π is a bijective mapping between ΛG,L and Λ̂sup
N,B.

Statement 11. Let (G,L, θ) and (N, B, η) define the pair of corresponding multi-label and binary energy
minimization problems. Mapping Π preserves the associated primal cost:

〈Πµ, η〉 = 〈µ, θ〉. (60)

Proof. Without loss of generality we assume that θ satisfies (12), so η(s,i) = Diθs, η(s,i)(t,j) = Dijθst and
ηconst = θconst.

• Univariate terms of 〈µ, θ〉 are expressed as:∑
i∈L

µs(i)θs(i) =
∑
i∈L

µs(i)
∑

2≤i′≤i

Di′θs =
∑
i′∈L̃

η(s,i′)

∑
i′≤i≤K

µs(i) =
∑
i′∈L̃

η(s,i′)[Πµ]s,i′ . (61)
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• Analogously, pairwise terms of 〈µ, θ〉 are expressed as:∑
i,j∈L

µst(i, j)θst(i, j) =
∑
i,j∈L

µst(i, j)
∑

2≤i′≤i
2≤j′≤j

Di′j′θst =

∑
2≤i′≤i
2≤j′≤j

ηsi′;tj′

∑
i′≤i≤K
j′≤j≤K

µst(i, j) =
∑

2≤i′≤i
2≤j′≤j

ηsi′;tj′ [Πµ]si′;tj′ .
(62)

Theorem 1. Let (G,L, θ) define a multi-label energy minimization problem. Let for each edge st ∈ E
term θst is either submodular or supermodular. Let (N, B, η) define the corresponding binary energy
minimization problem. Then

(a) LP-relaxations of E(x|θ) and E(z|η) coincide:

min
µ∈ΛG,L

〈µ, θ〉 = min
ν∈ΛN,B

〈ν, η〉; (63)

(b) There exists half-integral optimal solution of LHS of (63).

Proof. Using mappings Π, U and L the claim is proved as follows:

Let µ∗ be optimal to the LHS of (63). Then 〈Πµ∗, η〉 = 〈µ∗, θ〉 and therefore LHS ≥ RHS.

Let ν∗ be optimal solution of the RHS of (63). Let ν∗∗ be constructed from ν∗ using Stat. (7), with
ν∗∗(si)(tj) = min(ν∗si, ν

∗
tj) for submodular θst and with ν∗∗(si)(tj) = max(0, ν∗si + ν∗tj − 1) for super-

modular θst. In this case ν∗∗st is supermodular (see Statment 8) and it is 〈ν∗∗, η〉 = 〈ΠΠ−1ν∗∗, η〉 =
〈Π−1ν∗∗, θ〉 and therefore LHS ≤ RHS.

Claim in (b) follows trivially from the existence of half-integral optimal ν∗ by considering µ =
Π−1ν∗∗.

It worse noting that under conditions of the theorem half-integrality of optimal µ implies that for each
s ∈ V there could be at most two labels assigned non-zero weights by µ, i.e. µs is either integral:
(0 . . . 0, 1, 0 . . . 0), either half-integral: (0 . . . 0, 1

2
, 0 . . . 0, 1

2
, 0 . . . 0).

Corollary 1. For a subclass of problems defined by conditions of the theorem there exist efficient fully
combinatorial algorithm to maximize the LB, which is an improvement over e.g. TRW-S algorithm [22,
9]. It is the network flow algorithm [2] applied to binary energy E(·|η).

9 Persistency for Relaxed Labelings
Theorem 2. Let (G,L, θ) define a multi-label energy minimization problem. Let (N, B, η) define the
corresponding binary energy minimization problem. Let (zmin , zmax ) provide strong persistency for
E(·|η). Let µ ∈ ΛG,L be an optimal solution of the LP-1 relaxation.

Then it is µs;i = 0 for all labels i outside the interval [xmin
s , xmax

s ], where xmin = x(zmin ) and
xmax = x(zmax ).
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Proof. Let us denote components of vector ν ∈ ΛN,B as νu;α, νuv;αβ where α, β ∈ {0, 1} are binary
labels. If u = (s, i) then for brevity we will use notation like νs;i = νs;i;1 and νst;ij = νst;ij;11.

Earlier we defined a mapping z = z(x) from multi-valued configurations to binary configurations.
Let us extend it to a mapping Π : ΛG;L → ΛN,B for relaxed labelings. For index i ∈ {2, . . . , K} define
the following sets of labels:

Ls(i, 0) = {1, . . . , i− 1} Ls(i, 1) = {i, . . . ,K}

Then we can define vector ν = Πµ as

νs;i;α =
∑

i′∈Ls(i,α)

µs;i′ νst;ij;αβ =
∑

i′∈Ls(i,α)
j′∈Lt(j,β)

µst;i′j′

It is easy to see that mapping Π is precisely the mapping µ 7→ ν defined by (51) only extended to
polytope ΛN,B by relations (37). When proving Theorem 1 we already showed that under this mapping
objective is preserved, which may be written as:

〈µ, θ〉 = 〈ν, η〉, (64)

where ν = Πµ and η is understood to have components ηu;α, ηuv;αβ , where α, β ∈ {0, 1} are binary
labels and only non-zero components are ηu;1, ηuv;11.

Next we define “truncated” vector µ̄. Loosely speaking, values of µ associated with labels i < xmin
s

are reassigned to xmin
s , and values associated with labels i > xmax

s are reassigned to xmax
s . Formally, if

xmin
s < xmax

s then for label i let us define the set of labels Ts(i) associated with i as

Ts(i) =



∅ if i < xmin
s

{1, 2, . . . , i} if i = xmin
s

{i} if xmin
s < i < xmax

s

{i, i + 1, . . . , K} if i = xmax
s

∅ if i > xmax
s

If xmin
s = xmax

s then Ts(i) = {1, . . . , K} if i = xmin
s and Ts(i) = ∅ otherwise. Using these sets,

“truncated” vector is defined as

µ̄s;i =
∑

i′∈Ts(i)

µs;i′ µ̄st;ij =
∑

i′∈Ts(i)
j′∈Tt(j)

µst;i′j′

It is trivial to check that µ̄ ∈ ΛG,L.
We define “truncated” vector ν̄ in a similar way:{

Ts;i(0) = {0, 1}
Ts;i(1) = ∅

if zmin
s;i = zmax

s;i = 0{
Ts;i(0) = {0}
Ts;i(1) = {1}

if zmin
s;i = 0, zmax

s;i = 1{
Ts;i(0) = ∅
Ts;i(1) = {0, 1}

if zmin
s;i = zmax

s;i = 1
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ν̄s;i;α =
∑

α′∈T̂s;i(α)

νs;i;α′ ν̄st;ij;αβ =
∑

α′∈T̂s;i(α)

β′∈T̂t;j(β)

νst;ij;α′β′

We prove below that Πµ̄ = ν̄. This will imply the desired result. Indeed, suppose that the condition
in theorem 2 does not hold, then νs;i;α > 0 for some index (s; i) and binary label α outside the interval
[zmin

s , zmax
s ]. Therefore,

〈µ̄, θ〉 = 〈ν̄, η〉
< 〈ν, η〉 = 〈µ, θ〉

(The inequality follows from the the properties of roof duality). This contradicts to the optimality of µ.
In order to prove that Πµ̄ = ν̄, let us show the following

Lemma 2. For any node s, index i ∈ {2, . . . , K} and label α ∈ {0, 1} there holds⋃
i′∈Ls(i,α)

Ts(i
′) =

⋃
α′∈T̂s;i(α)

Ls(i, α
′)

Furthermore, all unions are disjoint.

Proof. We prove the lemma only for α = 1; the other case is similar. (Actually, the case α = 1 would
be sufficient for showing that Πµ̄ = ν̄ since it is enough to establish the latter equality only for indexes
(u; 1) and (uv; 11).) Also, we consider only the case when xmin

s < xmax
s ; the case xmin

s = xmax
s can be

analyzed in the same way.
Three cases are possible; in each case it is easy to see that all unions are disjoint:

• i ∈ {2, . . . , xmin
s }. Then the LHS is {1, . . . , K} since {xmin

s , . . . , xmax
s } is a subset of Ls(i, α).

The RHS equals the same set since zmin
s;i = zmax

s;i = 1 and T̂s;i(1) = {0, 1}.

• i ∈ {xmin
s +1, . . . , xmax

s }. Then the LHS is {i, . . . ,K}. The RHS equals the same set since
zmin

s;i = 0, zmax
s;i = 1 and T̂s;i(1) = {1}.

• i ∈ {xmax
s +1, . . . , K}. Then the LHS is empty. The RHS is empty as well since zmin

s;i = zmax
s;i = 0

and T̂s;i(1) = ∅.

Using the lemma, we can write

(Πµ̄)s;i;α =
∑

i′∈Ls(i,α)

µ̄s;i′

=
∑

i′∈Ls(i,α)

∑
i′′∈Ts(i′)

µs;i′′

=
∑

α′∈T̂s;i(α)

∑
i′∈Ls(i,α′)

µs;i′

=
∑

α′∈T̂s;i(α)

νs;i;α′ = ν̄s;i;α
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(Πµ̄)st;ij;αβ =
∑

i′∈Ls(i,α)
j′∈Lt(j,β)

µ̄st;i′j′

=
∑

i′∈Ls(i,α)
j′∈Lt(j,β)

∑
i′′∈Ts(i′)
j′′∈Tt(j′)

µst;i′′j′′

=
∑

α′∈T̂s;i(α)

β′∈T̂t;j(β)

∑
i′∈Ls(i,α′)
j′∈Lt(j,β′)

µst;i′j′

=
∑

α′∈T̂s;i(α)

β′∈T̂t;j(β)

νs;i;α′ = ν̄st;ij;αβ

10 Submodular-Supermodular Decomposition
LP-relaxation of binary energy can be written directly in terms of the multi-label problem via addition-
ally relaxed LP (4). The construction is motivated by considering a lower bound obtained by decompos-
ing θ into sum of submodular and supermodular problems.

Lemma 3 (Decomposition, [21]). Any θ ∈ Ω can be decomposed as θ = θ1 + θ2, with θ1 ∈ Ωsub,
θ2 ∈ Ωsup.

Proof. For any st ∈ E let c1
st(i, j) = min(Dijθst, 0) and c2

st(i, j) = max(Dijθst, 0), i, j = 2 . . . K and
let qst(i, j) = θst(i, 1) + θst(1, j)− θst(1, 1), i, j ∈ L. Then choosing

θ̂1
st(i, j) =

∑
2≤i′≤i
2≤j′≤j

c1
st(i

′, j′) + qst(i, j)

θ̂2
st(i, j) =

∑
2≤i′≤i
2≤j′≤j

c2
st(i

′, j′)

θ̂1
s = θ̂2

s = 1
2
θs, θ̂1

const = θ̂2
const = 1

2
θconst

(65)

provides such a decomposition. Note it is not unique.

It was noticed [21] that the family of all decompositions of this kind provide an alternative to the tree-
structured decomposition [22] and may be used to construct a lower bound on the energy. The tightest
lower bound by all possible decompositions from the family may be written in the form, similar to our
expression of LB as:

max
θ1, θ2

(θ1
conts + θ2

conts) s.t.



θ1 ∈ Ωsub

θ2 ∈ Ωsup

θ1 + θ2 ≡ θ

θ1
I ≥ 0, θ2

I ≥ 0

θ1
const, θ

2
const ∈ R.

(LB2)
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It is clear that LB2 ≤LB since there are additional constraints in the optimization problem LB2 com-
pared to LB (the submodularity of θ1 and supermodularity of θ2), which means that LB2 bound is
weaker. However, as we show here, LB2 is equivalent to the LP-relaxation of the binarized energy mini-
mization (LP-2), considered in Sect. 8. Thus the bound LB2 can be efficiently computed via a max-flow
algorithm. The optimal solution (θ1, θ2) can be shown to provide constraints in the form of autarky on
the set of minimizers of (1), completely analogous to those considered in Sect. 6.

To show the stated equivalence we first derive a non-trivial dual of LB2 and then show it is equivalent
to LP -2. The construction is accomplished in several steps: characterize the set of constraints in the
problem LB2 and use it to simplify the standard Lagrangian dual.

The following lemma describes the (convex) set of all possible submodular-supermodular decompo-
sitions. Decomposition θ̂1 + θ̂2 by Lemma 3 plays a role of an extreme point in this set.

Lemma 4 (All decompositions). Let θ1 + θ2 = θ, θ1 ∈ Ωsub, θ2 ∈ Ωsup. Then there exist ϕ ∈ Ωsub such
that

θ1 = θ̂1 + ϕ, θ2 = θ̂2 − ϕ, (66)

where θ̂1 and θ̂1 are defined by decomposition (65).

Proof. Let us construct ϕ as follows

ϕst(i, j) =
∑

2≤i′≤i
2≤j′≤j

Di′j′θ
1
st −Di′j′θ

1
st, st ∈ E , i, j ∈ L

ϕs(i) = θ1
s(i)− θ̂1

s(i), s ∈ V , i ∈ L
ϕconst = θ1

const − θ̂1
const.

(67)

The definition of ϕ ensures equation (66) holds. We will prove now ϕ is submodular, i.e. Dϕst ≤ 0.
From Dθ1

st + Dθ2
st = Dθst it is Dθ2

st = Dθst −Dθ1
st ≥ 0, since θ2 is supermodular. And it is Dθ1

st ≤ 0
(since θ1 is submodular). Therefore Dθ1

st ≤ min(0, Dθst) = Dθ̂1
st.

It is also easily seen that for any ϕ ∈ Ωsub equation (66) provides a submodular-supermodular decom-
position. It follows that the family of the decompositions can be constructively defined as follows:

{(θ1, θ2) | θ1 + θ2 = θ, θ1 ∈ Ωsub, θ2 ∈ Ωsup} = {(θ̂1 + ϕ, θ̂2 − ϕ) |ϕ ∈ Ωsub}. (68)

Lemma 5. Space Ωsub, up to equivalent transformations, can be parametrized as follows:

ϕ ∈ Ωsub ⇔ ∃c ∈ RE×L̃2

− , ∃q ∈ RV×L : ϕ ≡ ϕ(c, q), (69)

where
[ϕ(c, q)]s(i) = qs(i), s ∈ V , i ∈ L

[ϕ(c, q)]st(i, j) =
∑

2≤i′≤i
2≤j′≤j

cst(i
′, j′), st ∈ E , i, j ∈ L

[ϕ(c, q)]const = 0.

(70)

Proof. Let ϕ̂ = ϕ satisfy (12). Then, setting cst(i
′, j′) = Di′j′ϕ̂st and qs(i) = ϕ̂s(i) + 1

|V| ϕ̂const provides
the necessary result.
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Statement 12 (LB2-dual). The dual of LB2 can be written as:

min
µ1, µ2

〈µ1, θ̂1〉+ 〈µ2, θ̂2〉 s.t.
{

µ1, µ2∈Λ
µ1

s=µ2
s ∀s∈V,

(71)

where θ̂1 and θ̂2 are defined by decomposition (65).

Proof. Using Lemma 4, we rewrite LB2 as

max
θ1, θ2,ϕ

(θ1
conts + θ2

conts) s.t.


θ1≡θ̂1+ϕ

θ2≡θ̂2−ϕ
θ1
I≥0

θ2
I≥0

θ1
const,θ

2
const∈R

ϕ∈Ωsub,

(72)

or, changing the order of maximization, as:

= max
ϕ∈Ωsub

(
max
θ1
I≥0

θ1≡θ̂1+ϕ

θ1
const + max

θ2
I≥0

θ2≡θ̂2−ϕ

θ2
const

)
, (73)

applying the duality relation (4)=LB to the two maximization problems in the brackets it is

= max
ϕ∈Ωsub

(
min

µ1∈ΛG,L
〈µ1, θ̂1 + ϕ〉+ min

µ2∈ΛG,L
〈µ2, θ̂2 − ϕ〉

)
(74)

= inf
µ1,µ2∈ΛG,L

sup
ϕ∈Ωsub

(
〈µ1, θ̂1 + ϕ〉+ 〈µ2, θ̂2 − ϕ〉

)
(75)

= inf
µ1,µ2∈ΛG,L

(
〈µ1, θ̂1〉+ 〈µ2, θ̂2〉+ sup

ϕ∈Ωsub

〈ϕ, µ1 − µ2〉
)
. (76)

The supremum in the expression (76) can be expanded using Lemma (5) as follows:

sup
ϕ∈Ωsub

〈ϕ, µ1 − µ2〉 = sup
q∈RV×L

c∈RE×L̃
2

−

∑
s∈V, i∈L

(µ1
s(i)− µ2

s(i))qs(i) +
∑

st∈E, i,j∈L

(µ1
st(i, j)− µ2

st(i, j))
∑

2≤i′≤i
2≤j′≤j

cst(i
′, j′)

= sup
q∈RV×L

∑
s∈V, i∈L

(µ1
s(i)− µ2

s(i))qs(i) + sup
−c∈RE×L̃2

−

∑
st∈E, i′,j′∈L̃

cst(i
′, j′)

∑
i′≤i≤K
j′≤j≤K

(µ1
st(i, j)− µ2

st(i, j))

=


0, µ1

s(i) = µ2
s(i) ∀s ∈ V , ∀i ∈ L ∧

∑
i′≤i≤K
j′≤j≤K

(µ1
st(i, j)− µ2

st(i, j)) ≥ 0, ∀st ∈ E , ∀i, j ∈ L̃

∞, otherwise.
(77)

Thus, (76) may be continued as:

= min
(
〈µ1, θ̂1〉+ 〈µ2, θ̂2〉

)
.

s.t.


µ1, µ2 ∈ ΛG,L
µ1

s(i) = µ2
s(i) ∀s ∈ V , ∀i ∈ L∑

i′≤i≤K
j′≤j≤K

(µ1
st(i, j)− µ2

st(i, j)) ≥ 0, ∀st ∈ E , ∀i, j ∈ L̃
(78)
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where the inequality constraints may be discarded (consider proofs of Statement 9 and Theorem 1), and
it is

= min
(
〈µ1, θ̂1〉+ 〈µ2, θ̂2〉

)
.

s.t.
{

µ1, µ2 ∈ ΛG,L
µ1

s(i) = µ2
s(i) ∀s ∈ V , ∀i ∈ L

(79)

Theorem 3. Let (G,L, θ) define a multi-label energy minimization problem. Let (N, B, η) define a
corresponding binary energy minimization problem. Then (71) is equivalent to minν∈Λ̂N,B

〈ν, η〉.

Proof. Let ν be optimal solution of the relaxed binarized problem. Then the corresponding (µ1, µ2) is
constructed as follows:

• Values µ1
s(i) = µ2

s(i) = Π−1
i νs, ∀s ∈ V , ∀i ∈ L.

• Values µ1
st(i, j) = Π−1

ij Ust(ν), ∀st ∈ E , ∀i, j ∈ L.

• Values µ2
st(i, j) = Π−1

ij Lst(ν), ∀st ∈ E , ∀i, j ∈ L.

The pair (µ1, µ2) is feasible to (71) as followed by properties of Π−1. To see that objective is preserved
we need to verify that pairwise terms preserve the associated parts of the objective. It is seen as follows:∑

i,j∈L

[
µ1

st;ij θ̂
1
st;ij + µ2

st;ij θ̂
2
st;ij

]
=∑

i′,j′∈L̃

[
Ust(ν)i′j′Di′j′ θ̂

1
st + Lst(ν)i′j′Di′j′ θ̂

2
st

]
=

∑
i′,j′∈L̃

νst;i′j′Di′j′θst =
∑

i′,j′∈L̃

νst;i′j′ηst;i′j′ .
(80)

Let (µ1, µ2) be optimal to (71), then the corresponding ν is constructed as follows:

• Values ν(s,i′) = Πi′µ
1
s = Πi′µ

2
s, ∀t ∈ V , ∀i′ ∈ L̃.

• Values ν(s,i′)(t,j′) =

{
Πi′j′µ

1
st, Di′j′θ ≤ 0

Πi′j′µ
2
st, Di′j′θ > 0

, ∀st ∈ E , ∀i′, j′ ∈ L̃.

Marginalization constraints hold for ν since µ1
s = µ2

s for all s ∈ V . Pairwise terms of the objective are
expressed as: ∑

i′,j′∈L̃

νst;i′j′ηst;i′j′ =
∑

i′,j′∈L̃

νst;i′j′
[
Di′j′ θ̂

1
st + Di′j′ θ̂

2
st

]
=

∑
i′,j′∈L̃

(Πi′j′µ
1
st)(Di′j′ θ̂

1
st) +

∑
i′,j′∈L̃

(Πi′j′µ
2
st)(Di′j′ θ̂

2
st) =

∑
i,j∈L

µ1
st;ij θ̂

1
st;ij +

∑
i,j∈L

µ2
st;ij θ̂

2
st;ij,

(81)
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where we used the following rearrangement of sums:∑
i′,j′∈L̃

(Πi′j′µ
1
st)(Di′j′ θ̂

1
st) =

∑
i′,j′∈L̃

∑
i′≤i≤K
j′≤j≤K

µ1
st;ijDi′j′ θ̂

1
st =

∑
i,j∈L

µ1
st;ij

∑
2≤i′≤i
2≤j′≤j

Di′j′ θ̂
1
st =

∑
i,j∈L

µ1
st;ij θ̂

1
st;ij

(82)
and analogous equality for µ2.

Appendix: Order-independent Reduction
to Binary Variables
In section 5 we mentioned an order-independent reduction of multi-label energy 1 minimization to the
following binary energy minimization:

E(z) =
∑
(s,i)

θs(i)z(s,i) +
∑

(s,i),(t,j)

θst(i, j)z(s,i)z(t j)

+H(z) + C
∑

s

(1−
∑

i

z(s,i)). (83)

Here z(s,i) = δ{xs=i} are binary indicator variables. H(z) is a hard constraint prohibiting two variables
z(s,i), z(s,j) with i 6= j to be 1 simultaneously; it can be written as

H(z) =
∑

s

∑
i,j:i6=j

h(z(s,i), z(s,j)), (84)

where h(zu, zv) is +∞ if zu = zv = 1, and 0 otherwise. Finally, C is a sufficiently large constant which
ensures that at least one of the indicator variables for node s is 1, e.g. C > 2C0 where

C0 =
∑

s

max
i
|θs(i)|+

∑
(s,t)

max
i,j

|θst(i, j)|. (85)

Let us show that the roof duality relaxation applied to (83) is degenerate if K ≥ 3, i.e. it does not
label any nodes. Let ν(s,i) ∈ [0, 1] be the fractional variable which is the relaxation of binary variable
z(s,i) ∈ {0, 1}. (The relaxation also uses variables for pairwise terms; below we always assume that
given variables ν = {ν(s,i)}, variables for pairwise terms are chosen so that the objective of the roof
duality relaxation is minimized.) It is known (see e.g. [1]) that extreme points of the polytope in the
roof duality relaxation are half-integral, i.e. ν(s,i) ∈ {0, 0.5, 1}. (Note, variables for pairwise terms are
half-integral as well). Thus, there exists a half-integral vector ν∗ which is an optimal solution of the roof
duality relaxation.

Lemma 6. There holds ν∗(s,i) = 0.5 for all (s, i).

Proof. Let Λ be the set of half-integral vectors ν ∈ {0, 0.5, 1}V×L whose cost in the roof duality relax-
ation is finite. It is,

Λ = {ν ∈ {0, 0.5, 1}V×L | ∀ s
(
∃i ν(s,i)=1

)
⇒

(
∀j 6=i ν(s,j)=0

)
}.
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Indeed, suppose i 6=j and ν(s,i)=1 and ν(s,j) > 0. By constraints (32) it must be that ν(s,i)(s,j) ≥
max(0, ν(s,i)+ν(s,j)−1) = ν(s,j) > 0, and because of the hard terms h the relaxed cost is infinite. Under
other cases ν(s,i)(s,j) can be 0 and the relaxed cost is finite.

For vectors ν ∈ Λ the relaxed cost can be written as

E(ν) = E0(ν) + C
∑

s

(1−
∑

i

ν(s,i)),

where E0(ν) corresponds to the relaxation of the first two terms in (83). Without loss of generality we
can assume that E0(ν) ≥ 0 ∀ν. We will not need an explicit form of E0(ν); however, we will use the
property −C0 ≤ E0(ν

′)− E0(ν) ≤ C0 for ν, ν ′ ∈ Λ, which is easy to check.
For ν∗ ∈ Λ for each s consider the following hypothetical cases:

• Suppose ∃i ν∗(s,i) = 1. Then it is necessary ν∗s = (0, . . . , 0, 1, 0, . . . , 0). Let ν be the vector
obtained from ν∗ by setting ν(s,i) for all i to 0.5. We have ν ∈ Λ and

E(ν)− E(ν∗) = E0(ν)− E0(ν
∗) +

1

2
CK − C(K − 1) ≤ C0 −

K − 2

2
C < 0,

which contradicts to the optimality of ν∗.

• Suppose ∀j ν∗(s,j) < 1 and ν∗(s,i) = 0 for some i. Let ν be the vector obtained from ν∗ by modifying
ν(s,i) from 0 to 0.5. We have ν ∈ Λ and

E(ν)− E(ν∗) = E0(ν)− E0(ν
∗)− C

2
≤ C0 −

1

2
C < 0,

which again contradicts to the optimality of ν∗.

These contradictions imply the lemma.
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