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Work We Build on

Outline

Energy minimization min
x

E (x|θ) (MAP inference in MRF/CRF)

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

variables xs ∈ L = {1 . . .K}

 

 

s t

xs xt

NP-hard in general
Consider:

conventional linear relaxation
relaxation of a binarized problem

Goal: study relations
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Linear Programming Relaxation Approach

Relaxation LP-1

E (x |θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt) = 〈θ, µ(x)〉,

[µ(x)]s(i) = δ{xs=i} [µ(x)]st(i , j) = δ{xs=i}δ{xt=j}

min
x∈LV

〈θ, µ(x)〉 = min
Aµ=b

µ∈{0,1}n

〈θ, µ〉 ≥ min
Aµ=b

µ∈[0,1]n

〈θ, µ〉

proposed many times independently [Schlesinger-76, Koster-98,
Chekuri-00, Wainwright-03, Cooper-07]
large-scale LP problem
sub-optimal dual solvers [Koval-76, Wainwright-03, Kolmogorov-05]
subgradient dual solvers [Schlesinger & Giginyak- 07,
Komodakis et al.-07]
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Binary Problems

L = {0, 1} – pseudo-Boolean optimization [Boros, Hammer, ...]

still NP-hard

LP-relaxation (roof-dual) can be solved via network flow

Can identify assignments which are persistent for all (some) optimal
solutions

Definition

Relation (e.g. xs = α) is strongly persistent
if it is satisfied for all minimizers x .
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

xs = 1

z(s,4)

z(s,3)

z(s,2)
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

z(s,4)

z(s,3)

z(s,2)

xs = 2
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

z(s,4)

z(s,3)

z(s,2)
xs = 3
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

z(s,4)

z(s,3)

z(s,2)

xs = 4
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

z(s,4)

z(s,3)

z(s,2)

xs = 4

E (x|θ) = E (z|η) = H(z) +
∑
u

ηuzu +
∑
uv

ηuvzuzv + ηconst
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

z(s,4)

z(s,3)

z(s,2)
∞

∞

xs =?

E (x|θ) = E (z|η) = H(z) +
∑

u∈V

ηuzu +
∑

uv∈A

ηuvzuzv + ηconst
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Reduction to Binary Problem

E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Introduce z(s,i) = δ{i≤xs}
[Ishikawa-03, Kovtun-04, Schlesinger & Flach-06]

Relaxation LP-2 (roof-dual)

Apply conventional LP-relaxation to the binarized problem E (z |η)

Yields relaxation of the original problem
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Persistencies in Multi-Label

persistent

Hard constraints imply that non-persistent labels form intervals

problem restriction / part of optimal solution
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Persistencies in LP-1

persistent

0

0

0.8

0.2 0

0

0.5

0.5

Theorem

We show that persistency derived from LP-2
holds for LP-1 relaxation
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Submodular Problems

Definition

Function f : LV → R is called submodular if
f (x ∨ y) + f (x ∧ y) ≤ f (x) + f (y) ∀x, y ∈ LV

(x ∨ y)s = max(xs , ys)

(x ∧ y)s = min(xs , ys)
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Subclass on which LP-2 = LP-1

Consider E (x|θ) =
∑
s

θs(xs) +
∑
st

θst(xs , xt)

Theorem

If each θst(·, ·) is submodular or supermodular, then
LP-2 = LP-1

LP-1 for this subclass can be solved using network flow model

we have not found applications.
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Submodular+Supermodular

Decompose E (x|θ) = E (x|θsub) + E (x|θsup)

−5

0

5

−5

0

5

= +

min
x

E (x |θ) ≥ min
x

E (x|θsub) + min
x

E (x |θsup) – (computable LB for

bipartite graphs)

Statement

Tightest bound = LP-2

c.f. [Wainwright et al.-03] decomposition with trees.
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Experiments

Methods:

derive restriction intervals [xmin
s , xmax

s ] on the problem variables
using network flow model for LP − 2 (MQPBO)

some variables get determined exactly – use

apply other methods on restricted problem (MQPBO+X)

derive more persistent constraints by probing (MQPBO-P)
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Experiments

For some instances global minimum can be found

Original Noisy Image MQPBO-P
(E=65382)

BP (E=65424) TRW-S
(E=65398)

Expansion
(E=65386)
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Experiments

Random instance: how many variables are determined exactly?

50×50 variables, comparison with [Kovtun-03]
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Experiments

Real Instance: combined methods

Object segmentation and recognition model [Shottonet al.-05]
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There could be different low-order linear relaxations

We studied some relations between two of them

Dependence on the Ordering

We assumed L = {1, . . . ,K} – ordered
Order of labels for each variable xs can be selected differently –
exponentially many
Order-independent reductions are possible, we investigated one and it
has degenerate LP-relaxation solutions
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Preprocessing of unconstrained quadratic binary optimization
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