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Abstract

We consider the problem of image matching under the
unknown statistical dependence of the signals, i.e. a signal
in one image may correspond to one or more signals in the
other image with different probabilities. This problem is
widely known as multimodal image registration and is com-
monly solved by the maximization of the empirical mutual
information between the images. The deformation is typ-
ically represented in a parametric form and optimization
w.r.t. it is performed using gradient-based methods. In con-
trast, we represent the deformation as a field of discretized
displacements and optimize w.r.t. it using pairwise Gibbs
energy minimization technique. This has potential advan-
tage of finding good solutions even for problems having
many local minima. In experiments we demonstrate that
the proposed method working on a single scale achieves
comparable performance to a state-of-the-art multi-scale
method.

1. Introduction
Image registration is defined as the process of finding

the correspondence between the points in two or more im-

ages of the same scene. Its application to medical images

has been well studied [9, 13, 12, 11] and extensively used

in the fusion of complimentary data acquired from multi-

ple scanning devices, the comparison of images from dif-

ferent individuals, and the follow-up of the changes within

the same individual at different times. When imaging bi-

ological structures, rigid deformations cannot, in general,

compensate for morphological variations between individ-

uals, the gradual changes over time or the natural elasticity

of imaged tissues. In these cases, despite its inherent diffi-

culty, non-rigid matching is the preferred image registration

option.

The task of estimating the non-rigid deformation that

best aligns two images is usually formulated as an opti-

mization problem that minimizes an image dissimilarity

criterion between the deformed (registered) images. The

deformation, usually taken from a parametric family (e.g.
B-Splines), is expected to realistically model the physical

variations without introducing artifacts. As the deforma-

tion is typically described by a high number of parame-

ters, the optimal solution is normally found by a differ-

ential or local search method [12]. Because the objective

function comparing the images under the deformation has

many local minima, it can only be rather poorly optimized

by local methods. The problem becomes even more sig-

nificant when additional parameters need to be estimated;

specifically, we consider the case where the statistical de-

pendence between intensities is unknown. Maximizing the

likelihood of the observed data w.r.t. both the deforma-

tion and the parameters of color dependence model natu-

rally yields an alternating optimization algorithm. Taking

the non-parametric form of the unknown statistical color

dependence it is known that this maximum likelihood ap-

proach is equivalent to registration by maximization of em-

pirical mutual information [14].

In this article we propose to search for the best deforma-

tion aligning multi-modal medical images using, instead of

local search methods, a global approximate method. Our

approach is to consider the deformation as a combination of

the local translations of small blocks with the constraint that

deviation of translations of neighboring blocks is restricted.

Related Work. Kim et al. [7] applied mutual informa-

tion criterion to solve the stereo correspondence problem.

They searched for the best next estimate of the disparity

field (deformation) by solving a discrete search problem

in the form of pairwise Gibbs energy minimization. They

showed that taking the first order Taylor approximation of

the variant of empirical mutual information with Parzen

window density estimator yields the same objective as alter-

nating the estimation of the deformation and color statistical

models in the maximum likelihood approach.

Glocker et al. [4] and Shekhovtsov et al. [18] applied lin-

ear programming relaxation to cope with difficult discrete

search problem of the optimal 2D/3D deformation. While

discrete optimization methods were proposed earlier for re-

covering nonrigid deformation [15, 1, 20], methods [4, 18]
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proposed several approximation tricks which made it realis-

tically applicable for large deformations. While [4] consid-

ered normalized mutual information as a possible measure

of image dissimilarity they discuss it just very briefly. In

particular, it is not clear if it was applied to local windows

independently, like normalized cross-correlation, or other-

wise. Both [4] and [18] apply similar piecewise transla-

tional approximations of the deformation (moving blocks):

[4] applies soft regularization on the deformation field and

proposes a gradual multi-scale approach while [18] consid-

ers hard constraints and focuses on the efficient implemen-

tation of single-scale optimization.

Hufnagel et al. [5] applied a block matching scheme with

independent blocks, with spline post-interpolation. This

approach is similar to that of [4, 18], but the blocks are

matched independently, meaning that they must be rather

large to make a good match and this strongly restricts the

class of deformations for which the approach is applicable.

Roche et al. [14] presented a systematic study of the im-

age registration problem from the point of view of the max-

imum likelihood approach, in particular they showed that

the non-parametric estimate of statistical color dependence

(joint histogram) in maximum likelihood formulation leads

to a maximization of the simplest variant of the empirical

mutual information.

2. Probabilistic Model

We follow the standard computer vision approach and

formulate the registration problem as a maximum a poste-

riori inference in a constructed probabilistic model. A de-

tailed treatment of image registration within maximum like-

lihood approach may be found in [14], whereas we focus on

a special case.

I

J

d

Figure 1. A non-symmetric formulation of registration of image I
and image J .

Let I and J be two images to be registered. Let I :
T1 → C1 and J : T2 → C2, where T1 and T2 are sets of

locations and C1 and C2 are sets of signals. The deformation

is represented by a mapping d : T1 → T2. We assume that d
is an injective mapping, meaning that not all pixels from T2

will have a preimage. This is illustrated in Fig. 1. This non-

symmetric formulation is convenient since it allows image

I to be matched to a subregion of J .

Assuming that I and J are geometrically distorted ob-

servations of an unknown but equal underlying physical de-

scription, one derives (as in e.g. [14]) that there is a statis-

tical dependence of how a particular hidden element is im-

aged in I and how it is imaged in J . In other words, there is

a statistical dependence between signals in the two images,

which is modeled as p(c1, c2; θ), c1 ∈ C1, c2 ∈ C2, where θ
is a parameter defining this distribution.

Treating images I , J and the mapping d as random vari-

ables, we model their statistical dependence as

p(I, d |J) = p(I | d, J)p(d). (1)

Assuming that pixel signals in I are conditionally indepen-

dent given d and J , we write

p(I | d, J) =
∏

t∈T1

p(It | d, J). (2)

When pixel t is mapped to pixel d(t) we consider that its

signal It depends only on the corresponding signal Jd(t) and

does not depend on the rest of signals in J . This assumption

is expressed probabilistically as

p(It | d, J) = p(It |Jd(t); θ). (3)

Prior distribution p(d), detailed later, expresses how likely

is deformation d. In particular, it is often assumed that

highly curved deformations are unlikely.

The maximum likelihood estimate of deformation d and

parameters θ is formulated now as

(d∗, θ∗) = argmax
d,θ

∏

t∈T1

p(It |Jd(t); θ)p(d). (4)

We consider that sets C1 and C2 are finite. This could mean

that signals in I (resp. J) would be quantized into |C1| (resp.

|C2|) bins, if the continuous signal spaces were one dimen-

sional. Alternatively, we can deal with multi-dimensional

signals by representing images I (resp. J) by |C1| (resp.

|C2|) representative examples (much like a color palette).

Our model of the dependence p(c1, c2; θ) is then a Gaus-

sian mixture model with |C1||C2| Gaussians placed in each

possible location (c′1, c
′
2) having diagonal covariance ma-

trix. Formally,

p(c1, c2; θ) =
∑

c′1,c′2

θc′1,c′2g1(c1, c
′
1)g2(c2, c

′
2), (5)

where

gk(c, c′) =
1

Zk
exp

[
− ρk(c, c′)2

2

]
, k = 1, 2; (6)

and ρk(c, c′) is a metric in the space Ck, k = 1, 2. Met-

rics ρ1 (resp. ρ2) captures the important information of



how close are two different elements of C1 (resp. C2). A

Gaussian distribution with a different variance can be ob-

tained by changing the metric and the normalization con-

stant accordingly. The metrics are assumed to be prede-

fined and fixed. For (5) to define a distribution the con-

straint
∑

c′1,c′2
θc′1,c′2 = 1 must hold. Finding the maximum

likelihood estimate of parameters θ and evaluating the dis-

tribution p(c1, c2; θ) may be seen as very similar to Parzen

window kernel density estimation with Gaussian kernel.

2.1. Relation to Mutual Information

Mutual information was simultaneously proposed as an

image similarity criterion by Viola and Wells [19] and Col-

lignon et al. [3]. Since then, it has rapidly become the pre-

ferred choice when registering multi-modal medical images

(see the surveys by Pluim et al. [13] and Maes et al. [11]).

Before we make any further assumptions and discuss our

approach to the optimization problem (4) we will describe

its relation to the registration by maximization of mutual

information. The derivation is similar to the one presented

in [14] and in [7].

Taking the logarithm of (4) we can write that:

d∗ = argmax
d

[
log p(d) + max

θ

∑

t∈T1

log p(It|Jd(t); θ)
]
.

(7)

Introducing nc1,c2 =
∑

t∈T1
δ{It=c1}δ{Jd(t)=c2} the maxi-

mum over θ with additional factor 1
N may be expressed as

max
θ

1
N

∑

c1∈C1
c2∈C2

nc1,c2 log p(c1|c2; θ), (8)

where N = |T1| =
∑

c1,c2

nc1,c2 . Denoting θ̂ a maximizer

of (8), the objective of (8) expresses as

1
N

∑

c1∈C1
c2∈C2

nc1,c2 log
p(c1, c2; θ̂)

p(c2; θ̂)
=

1
N

∑

c1∈C1
c2∈C2

nc1,c2 log p(c1, c2; θ̂) − 1
N

∑

c2∈C2

nc2 log p(c2; θ̂) =

−Ĥ(nC1,C2) + Ĥ(nC2),
(9)

where nc2 =
∑

c1
nc1,c2 and nC1,C2 stands for the collec-

tion of numbers {nc1,c2 | c1 ∈ C1, c2 ∈ C2} and nC2 for

the collection of numbers {∑c1∈C1
nc1,c2 | c2 ∈ C2}. The

term Ĥ(nC1,C2) then denotes the empirical estimate of the

entropy from samples represented by counts nC1,C2 . The

estimate is obtained by fitting parameters of the distribution

and using the sample mean instead of the expectation. It

should be noted that this is only one particular choice of

how to estimate the entropy from samples and that other

choices are possible.

Now problem (7) can be expressed as:

d∗ = argmax
d

[
log p(d) − Ĥ(nC1,C2(d)) + Ĥ(nC2(d))

]

= argmax
d

[
log p(d) + Ĥ(nC1) − Ĥ(nC1,C2(d))

+Ĥ(nC2(d))
]

= argmax
d

[
log p(d) + Î(nC1,C2(d))

]
,

(10)

where Ĥ(nC1) is the empirical entropy of nC1 which does

not depend on d, and Î(nC1,C2(d)) is the empirical mutual

information. Allowing p(d) to be uniform over a subset of

deformations D (and zero outside this subset), it is

d∗ = argmax
d∈D

Î(nC1,C2(d)), (11)

Thus our objective may be stated as the maximization of

mutual information. We prefer to work with maximum

likelihood formulation because it explicitly clarifies the as-

sumptions about the model and allows a wider range of

choices, e.g. to specify a nontrivial prior on d.

2.2. Optimization

We follow the standard approach to optimize (4): the

objective is alternatively optimized w.r.t. d and θ. In this

section we discuss the details of these two steps.

Under fixed d, maximization of the likelihood over θ is

obtained by solving (8). For this problem we apply a simple

iterative algorithm [6], which in our notation reads:

θnew
c1,c2

= θold
c1,c2

1
N

∑

c′1,c′2

nc′1,c′2
p(c′1, c

′
2; θold)

g1(c1, c
′
1)g2(c2, c

′
2).

(12)

The estimate is initialized to θc1,c2 = nc1,c2
N , which is easily

seen to be the Parzen window estimate, and then updated

by several iterations of (12). It should be noticed that the

improvement over the initial estimate is not very significant;

(12) is used instead of the simple Parzen window estimate

to be consistent with maximum likelihood formulation.

Under fixed θ, maximizing the log-likelihood over d
reads

argmax
d

[
log p(d) +

∑

t∈T1

log p(It|Jd(t); θ)
]
. (13)

We apply the method [18] to search for the best deforma-

tion. This method assumes that the deformation is a map-

ping B → K, where B is the set of small blocks into which



the image I is subdivided and K is the set of possible dis-

placements each block is allowed to move to (see Fig. 2).

The prior on d is modeled as a product of pairwise poten-

tials over the set E of pairs of neighboring blocks:

p(d) =
1
Z

∏

bb′∈ E

φbb′(db, db′), (14)

where φbb′(db, db′) is 1 or 0 depending on whether the

pair of displacements (db, db′) is allowed (d ∈ D) or not

(d /∈ D). This is a so-called hard model, in which normal-

ization constant Z does not influence the results since all

feasible deformations from D will have the same constant

probability 1
Z , and thus the optimal d will not depend on Z.

When model (14) is substituted into (13), the problem

can be expressed as

d∗ = argmin
d

[ ∑

b∈B

qb(db)−
∑

bb′∈E

log φbb′(db, db′)
]
, (15)

where we denote qb(db) = −∑
t∈b log p(It |Jdb(t); θ) and

switch to minimization, following the convention of energy

interpretation. Problem (15) is known as a minimization of

pairwise Gibbs energy which is known to be hard. A lin-

ear programming relaxation approach is applied [18]. For

the scope of this work it is important to notice that [18]

takes explicitly into account that the problem has many lo-

cal minima and a certain convex relaxation of it is solved (in

a certain sense suboptimally, for the sake of speed). Nev-

ertheless, we refer to this method as a global one. Note

that unlike the approach of e.g. [5], there are pairwise con-

straints on the neighboring locations of blocks, implying

that finding the best translations can only be done jointly

and does not decompose into finding the best position for

each block independently. After the best piece-wise trans-

lational deformation is found, we interpolate it to obtain a

smooth deformation.

I J

b
b

db

db

Figure 2. An approximation of deformation d as a piece-wise

translational deformation. Image I is regularry subdivided into

small blocks, each block b ∈ B may be moved solidly by dis-

placement db, a pair of neighboring blocks is constrained to have

small relative displacement, thus preventing fold-overs and dis-

continuities in the deformation field.

3. Experiments
For a quantitative test we use two synthetic images

shown in Fig. 3(b), which correspond to two axial cuts taken

Figure 3. A synthetically generated [2] pair of multi-modal MRI

images.
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Figure 4. Convergence plot of the log likelihood objective func-

tion (empirical mutual information). Circles indicate optimization

steps w.r.t. parameters θ of the statistical dependence of signals

and boxes indicate optimization steps w.r.t. deformation d.

from a simulated MRI brain scan [2] with different relax-

ation times. Figure 5(last) shows that there is a non-trivial

statistical dependence between colors of the two input im-

ages when they are perfectly aligned.

A typical run with second input image deformed like

it is exemplified in Fig. 6 and both images corrupted by

N (0, 0.12) noise (the signal space is [0, 1]) is as follows.

The progress in log-likelihood objective during alternating

optimization steps is shown in Fig. 4. Note that the plot

starts by estimating the signal dependence parameters θ as-

suming that the initial deformation is the identity. It is seen

that the method converges in a few alternating steps. Fig-

ure 5 shows the evolution of the conditional density estimate

p(c1|cc; θ).
We do not show a visual comparison of registered im-

ages, since the registration is quite accurate and it is very

difficult to see the differences directly. What we will be

interested in instead is to measure quantitatively how the

recovered deformation differs from the true deformation r.

We tested two types of noise: Gaussian i.i.d. added to each

pixel and a clutter-like noise, B(σ2), which makes bright

spots appear in random positions. Here, σ is the variance

(in pixels) of the spatial Gaussian mask defining the size of

the spots.

We have compared our method against an elastic method

based on free-form deformations using B-splines and local
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Figure 5. Estimates of the log conditional density log p(c1 | c2; θ)
during first 2 and the last iterations. Bottom: the estimate under

the ground truth deformation and the estimate for noiseless images

under ground truth deformation.

gradient descent optimization of mutual information imple-

mented by the Image Registration Toolkit Software (ITK)

[16, 17].

For each recovered deformation the maximum error was

measured as

err = max
t∈A

‖dt − rt‖ , (16)

which corresponds to the maximum deviation from the

ground-truth deformation. The maximum is computed over

the subset A ⊂ T1, which excludes the dark background of

the template original image. The deformation of the black

background is, indeed, unrecoverable.

By measuring this error over 100 recovered deforma-

tions, we estimated the probability P{err ≥ α} that on a

random sample the error will be α or greater. This proba-

bility equals 1−P{err < α} and P{err < α} is computed

as empirical cumulative distribution function estimate. Re-

sults of our measurements are shown in Figs. 6 and 7. Note

that although the errors may seem large (over 10 pixels for

some examples), these are maximal errors, whereas average

errors over pixels are shown in the Table 1. The registration

by both methods align the images’ intensities very well and

it is left to the regularization prior to solve any ambiguity.

Actually, if the ground truth error was not known for ev-

ery pixel, the error in the estimated deformation would not

be discovered. Our current implementation takes around 30

seconds for 317x281 pixel images.
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Figure 6. Left: an example of randomly deformed and corrupted

by Gaussian noise of variance 0.12. The other input image is not

deformed but perturbed with the noise as well. Right: the error

statistics. For each value of the error the plot shows the estimated

probability of the event that an error larger than that would be en-

countered on a randomly taken sample. Solid line shows our re-

sults and dashed like shows results of ITK [16, 17].

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a, px

P
{e
rr

≥ 
a
}

O ur m ethod
ITK

Figure 7. Similar to figure (6). Gaussian noise with variance 0.12

and clutter-type noise added to both input images. The deformed

and corrupted by noise second image is shown on the left.

N (0, 0.12) B(22) + N (0, 0.12)
our ITK our ITK

AE Mean 0.193 0.14 0.201 0.198
AE Median 0.135 0.0908 0.147 0.135
AE Std 0.199 0.172 0.199 0.216
MOD Mean 0.562 0.419 0.591 0.577
MOD Median 0.443 0.307 0.484 0.453
MOD Std 0.441 0.382 0.433 0.458

Table 1. Statistics of Angular Error (AE, degrees) and Magnitude

of Difference (MOD, pixels) errors for different amount of noise.

Errors are computed over the area excluding the dark background

of the template original image.

4. Discussion and Conclusions

We have presented a method for image registration based

on discrete search techniques for mutual information and

have given an empirical evidence of its usefulness as an al-

ternative for local optimization of the mutual information

criterion in multi-modal images. Tests on simulated 2D

medical images show that the method is able to consistently

recover large deformations in a robust manner and feasi-

ble time. When comparing the precision of the method to



a specialized medical image registration system using local

optimization (Image Registration Toolkit) the results show

that the two systems have similar errors with ITK having a

slightly better performance.

One of the problems with the method is that the approx-

imation technique we used in the d-optimization step is of

course not guaranteed to find a global optimum. Further-

more, reestimating the deformation sometimes decreases

the objective. This happens because [18] finds new approx-

imate optimal solution without taking into account the es-

timate from the previous step and thus is not guaranteed to

improve it.

It should be noted that cubic B-spline based methods

have a strong advantage by using physically-inspired reg-

ularization on the deformation field. An open research di-

rection is to add to the current hard constraints on the de-

formation field a regularization term, e.g. a bending energy

type of regularization, which may be defined using second

derivatives of the deformation field. It is clear that with pair-

wise interactions only, our discrete energy function cannot

model second derivatives. It is hence natural to consider

higher order Gibbs energy models which could impose this

prior.
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