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Abstract

We consider a simple statistical model of the im-
age, in which the image is represented as a sum of
two parts: one part is explained by an i.i.d. color
Gaussian mixture and the other part by a (piecewise-)
smooth grayscale shading function. The smoothness is
ensured by a quadratic (Tikhonov) or total variation
regularization. We derive an EM algorithm to estimate
simultaneously the parameters of the mixture model
and the shading. Our algorithms for both kinds of the
regularization solve for shading and mean parameters
of the mixture model jointly.

I. Introduction
This work proposes a novel model to estimate

shading in natural images1. We assume some areas
of the image are brighter or darker because of the
illumination/shadows. We refer to this effect as shad-
ing. The shading must be simple a priori – either
smooth or piecewise-smooth function over the image
domain. The image with the shading removed is then
explained by a Gaussian mixture model (GMM) with
unknown parameters. We pose the estimation problem
as maximizing the image likelihood jointly in shading
and GMM parameters. This maximum a posteriori
problem (MAP) corresponds to the optimization prob-
lem, where smoothness of the shading is imposed via
regularization.

Contribution. We showed that in the considered
model it is possible to optimize the likelihood w.r.t.
shading and mean parameters of the GMM jointly,
which makes the algorithms less prone to getting
stuck in local minima. We derived a simple algorithm
for the case of the quadratic regularization on the
shading, which monotonously improves the objective.
For the case of Total Variation (TV) regularization, we
derived algorithms which follow existing TV methods,

1The work was supported bu EU projects FP7-ICT-247870 NIFTi
and FP7-ICT-247525 HUMAVIPS and CR project 1M0567 CAK.

but estimate GMM mean parameters jointly with the
shading and put these algorithms into the EM loop.

Related Work. This work was mostly inspired
by [1], where the segmentation model includes seg-
mentation and shading. In the case of MAP shading
recovery, the estimation of the shading (by a discrete
optimization) is alternated with estimation of all ap-
pearance parameters, which is inferior to our method.

A lot of previous work, e.g. [2], [3], exploit
illumination-invariant characteristics of the color im-
age such as chromaticity. The shading could be recov-
ered from edges present in the image but absent in
the illumination-invariant representation. Such edges
are considered to be produced by shadows and they
are integrated to reconstruct the shading. In contrast,
our model can estimate soft shadows and remains
meaningful also for grayscale images. A variational
formulation of the problem was proposed in [4]. How-
ever, it seems to be too simplistic, and the results
shown in further work [5], [6] are not convincing. Our
problem of decomposing the image into shading and a
general color mixture components is closely related to
several other decompositions. Image denoising can be
viewed as decomposition into signal and noise parts. A
Gaussian noise model would correspond to the special
case of a single-component GMM. Structure-texture
decomposition [7], [8] seeks for piecewise smooth
structure and possibly largely oscillating texture com-
ponents. For grayscale images, the shading in our
model corresponds to the structure in [8] (and the same
regularization is imposed). The GMM log likelihood
term can be viewed as a parametrized regularization
on the texture component.

A related problem, inverse lighting, exploits addi-
tional a priori knowledge about scene geometry and
albedo.

II. Model

Notation. Let Ω ⊂ R2 be a continuous image
domain. For a function u∶Ω→ Rp, its value at a point
s ∈ Ω is denoted as us and belongs to Rp. Euclidean
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norm is denoted by ∥ ⋅ ∥. The point-wise norm of u,
denoted as ∣u∣∶Ω→ R, is defined by ∣u∣s = ∥us∥.

Let I ∶Ω→ R3 be the RGB color image. Let h∶Ω→
R, satisfying

∫
Ω
hsds = 0, (1)

be unknown shading (lighting) for the image I . We
define the likelihood of observing the image I given
the shading h as

p(I ∣h; θ) = exp{∫
Ω

log p(Is∣hs; θ)ds}, (2)

where p(Is∣hs; θ) is the likelihood of observing color
Is given the shading hs in the point s and θ is a vector
of parameters. In the case of discrete domain and pixel
colors i.i.d. from p(Is∣hs; θ), their joint probability
would factor as

∏
s

p(Is∣hs; θ) ( = exp∑
s

log p(Is∣hs; θ)). (3)

The model (2) is a continuous analogue of (3).
In the additive shading model, we define “un-

shaded” image as U(h)s = Is − hs13, where 13 =
(1 1 1)T. Hence the shading h is the amount of white
light added to the unshaded image to produce the
observed image. Whereas this formula does not cor-
respond to a physical law, it should be understood as
a local approximation to the effect we want to model.

The unshaded image color at a point s is explained
by a Gaussian mixture model:

p(Is∣hs; θ) = ∑
k

πkN(U(h)s;µk,Σk), (4)

where
N(x;µk,Σk) = 1

(2π)3/2 det(Σk)
1/2 e

(x−µk)
TΣ−1

k (x−µk)

(5)
is a Gaussian pdf with mean µk ∈ R3 and covariance
Σk ∈ R3×3 and πk ∈ [0, 1], ∑k πk = 1, are mixture co-
efficients. We let θ denote the vector of all parameters,
θ = (πk, µk, Σk)Kk=1.

The main assumption about the shading is that
it should be a smoothly varying function. We con-
sider two priors (regularizations) enforcing smooth-
ness, given by the following equation with ρ = 1,2:

p(h) ∝ exp{ − γ
2
∫

Ω
∣∇h∣ρsds} (6)

This functional assigns low probability to the shadings
which have strong gradients. The choice ρ = 2 allows
easier optimization, whereas ρ = 1 (Total Variation) is
more appropriate to model piecewise smooth shadings,
which occur naturally in 3D scenes. Note that param-
eter γ has a different meaning for the two cases and it
depends on the scale of h.

Our goal is to estimate shading h and the un-
known parameters θ. We choose the joint MAP esti-
mate (hMAP, θMAP), maximizing the joint likelihood,

p(I, h; θ) = p(I ∣h; θ)p(h). Taking the logarithm, the
problem can be written as maximizing E(h, θ) def=

∫
Ω

log∑
k

πkN(U(h)s;µk,Σk)ds −
γ

2
∫

Ω
∣∇h∣ρds.

(7)
We refer to the case ρ = 2 as quadratic regularization
model, and case ρ = 1 as TV model.

III. Optimization

Quadratic Regularization. Consider maximiz-
ing (7) with ρ=2. The EM algorithm is obtained as
following (e.g., [9]). It follows from the generalized
inequality of arithmetic and geometric means that for
any numbers αk∣s > 0, s ∈ Ω, k = 1 . . .K, such that
∑k αk∣s = 1 for all s, there holds

E(h, θ) ≥ ∫
Ω
(∑
k

αk∣s logπkGΣk
(U(h)s − µk)

−∑
k

αk∣s logαk∣s)ds − γ
2
∫

Ω
∣∇h∣ρds def= E(h, θ,α).

(8)
When α is fixed, it is easy to differentiate and optimize
E(h, θ,α) in (h, θ) (M-step) and when h and θ
are fixed, the inequality in (8) can be tightened by
maximizing E(h, θ,α) w.r.t. α (E-step). Thus we are to
find arg maxh,θ,αE(h, θ,α) subject to the constraints.

The E-step is the same as for the usual Gaussian
mixture model:

αk∣s =
πkN(U(h)s;µk,Σk)

∑k′ πk′N(U(h)s;µk′ ,Σk′)
. (9)

It is seen that optimal numbers αk∣s correspond to
the estimate of the conditional probability that mixture
component k has generated color U(h)s.

When α is fixed, optimizing in πk subject to the
constraint ∑k πk = 1 gives the update

πk = ∫Ωαk∣sds/∫Ω1ds, (10)

where we used that ∑k αk∣s = 1 for all s.
We can optimize w.r.t. shading h and means µ si-

multaneously. The corresponding first order necessary
optimality conditions are: ∇hE = 0, ∇µE = 0, where
∇hE, ∇µE are Frechet derivatives. Standard derivation
(see [10]) gives
0 = ∑k αk∣s1T

3 Σ−1
k (Is−hs13−µk)+γ∆hs ∀s (11a)

03 = ∫Ωαk∣sΣ
−1
k (Is−hs13−µk)ds ∀k. (11b)

The system (11) and constraint (1) is a system of linear
equations in h,µ. While the equations are differential
in h, in the discretization they become just a sparse
linear system and can be solved numerically with
standard methods.

Optimizing w.r.t. covariance matrices Σk under



fixed remaining variables gives the update

Σk =
∫Ωαk∣s(U(h)s − µk)(U(h)s − µk)

T
ds

∫Ωαk∣sds
. (12)

To prevent appearance of degenerate components we
further make sure that the smallest eigenvalue of Σk
is not smaller than some σ0 by projecting Σk on the
constraint min eig(Σk) ≥ σ0. Let Σk = Udiag(λ)UT,
then the projection is given by

Σ̃k = Udiag(max(λ,σ0))UT. (13)

Discretization. The discretization is built as fol-
lows. Domain Ω is quantized into 2D unit grid. Sym-
bols ∫Ω◽ds are to be replaced with ∑s∈Ω ◽. Derivatives
are approximated as finite differences. For the exact
choice of the approximation and boundary conditions,
we followed recommendations of [11]. With vari-
ables and updates considered discretized, the algorithm
Alg1 is as follows. The input is the image I , initial
GMM (πk, µk,Σk ∣ k = 1 . . .K) and initial shading
h = 0. The algorithm iteratively updates variables
(α,πk,Σk), via (9), (10), (12), (13), and variables
(h, µ) via solving linear system (11), (1). Each of the
updates maximizes the objective E(h, θ,α) w.r.t. the
corresponding variable, and therefore is guaranteed to
make a monotonous improvement to the objective.

TV Regularization. Consider maximizing (7) with
ρ=1. We first proceed as in the previous case. We
introduce expectation variables α and inequality (8)
holds. Optimization w.r.t. variables α,π,Σ is perfor-
mend by the update equations (9), (10), (12). We
then focus on optimizing (7) w.r.t. shading h and
means µ. The derivative of the TV regularization
−∫Ω∣∇h∣sds is the non-linear expression −∇⋅ ∇h

∣∇h∣
. It is

not straightforward how to perform optimization w.r.t.
h or (h,µ) jointly. We tested two algorithms described
in [11]. Our derivation introduces optimization w.r.t.
additional parameters µ into these algorithms. Full
details are given in our technical report [10]. Here,
we will review, a more accurate, dual method, which
is derived following [12], [11]. The difficult term ∣∇h∣
is represented as the maximization problem:

∥(∇h)s∥ = max
us

s.t. ∥us∥≤1

us ⋅ (∇h)s. (14)

Introducing additional unknown u∶Ω → R2, the maxi-
mization of (8) can be written as

max
h,θ,α

min
u
∣u∣≤1

E(h, θ,α, u), (15)

with

E(h, θ,α, u) def= ∫
Ω
( . . . )ds−γ

2
∫

Ω
us⋅(∇h)sds, (16)

where the bracket (. . . ) is the same as in (8). Noting
that E(h, θ,α, u) is convex in u, concave in (h,µ) and
the constraints on u are convex, we can swap in (15)

max over (h,µ) and min over u:
(15) = max

α,π,Σ
min
u
∣u∣≤1

max
h,µ

E(h, (π,µ,Σ), α, u). (17)

The inner maximization problem can be solved ex-
plicitly (see [10]) and an analytic expression can be
written for the derivative of E((π,Σ), α, u) w.r.t. u.
Then, the minimization problem in (17) can be solved
by a projected gradient ascend on u (following [11]).
Let us denote the corresponding algorithm for the full
problem (15), using dual updates, as Alg2D. It itera-
tively updates variables (α,πk,Σk) as (9), (10), (12)
and variables (h,u,µ) by the projected grad. ascend
on u.

IV. Experiments
Both considered algorithms are at best to output

a local maximum, because GMM estimation is a
non-convex problem by itself. Alg1 is monotonous
and is guaranteed to converge. Alg2D only becomes
monotonous when the inner minimization is solved
to the optimality. This inner minimization however,
has linear convergence and may require long time to
converge to a sufficient accuracy. We got successful
results with Alg2D when it was starting from a good
initial estimate, e.g. by Alg1. For all experiments we
adjusted regularization parameter γ in order to obtain
visually the best results. For the setting of the other
parameters see [10].

Texture unshading. As a simple test we prepared
the following artificial example. We took a real world
texture and added to it a known piecewise-continuous
smooth shading (Fig.1 top). This experiment is similar
to [1, Fig.1], only we took a texture instead of i.i.d.
Gaussian noise. The colorful texture allows to test a
general case where Gaussian mixture model does not
degenerate to a single Gaussian. As expected, quadratic
model (Alg1) gives larger error around discontinuities
of the shading, and the error is removed by the TV
model (Alg2).

Collor Illusion. The second experiment is on the fa-
mous color illusion picture (Fig.1 middle-left). Square
B in the picture is percepted as white, however it
is absolutely identical in color to square A, which
is percepted as black. The challenge is whether we
can undo this effect by estimating the proper shading.
Inspection of the colors in the results shows that it is
indeed the case.

V. Conclusion
We presented a simple model incorporating image

shading with quadratic and total variation regulariza-
tions. The model with TV regularization performs
better when there are sharp boundaries of the objects
or sharp shadows (the shading is piecewise-smooth).
However, the inner minimization problem in Alg. 2D



Synthetic shading

input image true shading Alg1 unshaded Alg1 shading Alg2D unshaded Alg2D shading
Color Illusion

input image Alg1 shading Alg1 unshaded Alg2D shading Alg2D unshaded
Image from [6]

input image Alg1 shading Alg1 unshaded Alg2D shading Alg2D unshaded

Figure 1. Experiments (see text).

may require lots of iterations to converge. Alterna-
tively, to recover a better shading, a segmentation
should be introduced into the model, similar to [1].
Different objects in the image could then have different
GMM models and shadings, and the sharp boundary
would be ensured by the segmentation. We expect
that given the correct segmentation, shadings for the
individual segments would be more accurate. For this
purpose, the quadratic model may turn out more ap-
propriate.
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