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Abstract

We consider a simple statistical model of the image, in which the image is represented
as a sum of two parts: one part is explained by an i.i.d. color Gaussian mixture and the
other part is a (piecewise-)smoothly varying grayscale shading function. The smoothness
is ensured by a quadratic (Tikhonov) or total variation regularization. We derive an EM
algorithm to estimate simultaneously the parameters of the mixture model and the shading.
Our algorithms solve for shading and mean parameters of the mixture model jointly for both
kinds of the regularization.

1 Introduction

This work proposes a novel model to estimate shading in natural images. We assume some areas
of the image are brighter or darker because of the illumination/shadows. We refer to this effect as
shading. The shading must be simple a priori — either smooth or piecewise-smooth function over
the image domain. The image with the shading removed is then explained by a Gaussian mixture
model (GMM) with unknown parameters. We pose the estimation problem as maximizing the
image likelihood jointly in shading and GMM parameters. This maximum a posteriori problem
(MAP) corresponds to the optimization problem, where smoothness of the shading is imposed via
regularization.

Expectation Maximization. Estimating GMM parameters is commonly done by the EM
algorithm. Suppose, however, that there are other unknowns to be estimated (shading). Having
the GMM parameters fixed, estimating the best shading also could be done by some standard
method (e.g. gradient descend). Especially, if the shading is discretized, one could solve for
optimal shading using discrete optimization methods. Under pairwise convex regularization this
subproblem can be solved exactly. It is then very easy to design an algorithm alternating between
the two estimates in order to archive the best joint estimate of GMM and shading. However,
this algorithm would be unstable: each new iteration, depending on the slight adjustment of the
shading, the GMM estimate may end up in a different local optimum.

Contribution. We showed that in the considered model it is possible to optimize the likelihood
w.r.t. shading and mean parameters of the GMM jointly, which makes the algorithms less prone
to getting stuck in local minima. We derived a simple algorithm for the case of the quadratic
regularization on the shading, which monotonously improves the objective. For the case of Total
Variation (TV) regularization, we derived algorithms which follow existing TV methods, but
estimate GMM mean parameters jointly with the shading and put these algorithms in the EM
loop.

Related Work. This work was mostly inspired by [! 1], where the model included segmentation
and shading. The problem of recovering shading is posed there in two forms: MAP and Bayesian
estimation with additive quadratic risk function. They considered grayscale images and the non-
parametric color model. However within the learning /inference framework, color images and GMM
appearance model can be handled similarly, which is mentioned in the further work [6]. In the
case of MAP estimate, the estimate of the shading is alternated with the estimate of appearance
parameters, which is inferior to our method. In the case of Bayesian estimate, shading and GMM
mixture hidden variables are sampled jointly.



A lot of previous work, e.g. [7], [5], exploit illumination-invariant characteristics of the color
image such as chromaticity. The shading could be recovered from edges present in the image but
absent in the illumination-invariant representation. Such edges are considered to be produced by
shadows and they are integrated to reconstruct the shading. In contrast, our model can estimate
soft shadows and remains meaningful also for grayscale images.

A variational formulation of the problem was proposed in [3]. However, it seems to be too
simplistic, and the results shown in further work [1] and also in [12] are not convincing,.

Our problem of decomposing the image into shading and a general color mixture components is
closely related to several other decompositions. Image denoising can be viewed as decomposition
into signal and noise parts. A Gaussian noise model would correspond to the special case of
a single-component GMM. Structure-texture decomposition [9], [I] seeks for piecewise smooth
structure and possibly largely oscillating texture components. For grayscale images, the shading in
our model corresponds to the structure in [1] (and the same regularization is imposed). The GMM
log likelihood term can be viewed as a parametrized regularization on the texture component.

Discrete and Continuous methods. Model [11] is based on the discrete formulation where
values of the shading are discretized. In this work, we take advantage of the continuous formu-
lation. For the quadratic regularization, we can differentiate the objective and solve for shading
and GMM means from linear equations. In this case, it does not matter whether we consider
image domain as continuous or discrete, the derivation would be the same. However, for TV
regularization we use certain integral identities (following the prior work) to derive the algorithm,
which would not be possible with the discretized domain. Hence we keep everything continuous
and work with the calculus of variations.

Notation. Let Q C R? be a continuous image domain. For a function u: Q — RP, its value
in a point s € Q is denoted as us and belongs to R?. Euclidean norm is denoted by || - ||. For a
function u: Q — R?, the point-wise norm |u|: Q@ — R is defined as |u|, = ||us]|.

2 Model

2.1 Additive Shading

Let I: Q — R3 be the RGB color image. Let h: 2 — R be unknown shading (lighting) for the
image I. We define the likelihood of observing the image I given the shading h as

p(I|h;0) = exp { /Qlogp(fslhs;G)dS}, (1)

where p(Is|hs; 0) is the likelihood of observing color I, given the shading h in the point s. In the
case of discrete domain and pixel colors i.i.d. from p(Is|hs;6), their joint probability would have
been equal to

[1p(Llhs; 6) = exp ) " log p(L|hs; 0). (2)

s

The model (1) is a continuous analogue of (2).
In the additive shading model, we define “unshaded” image U as

U(h)s = Is = hyls, (3)
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where 13 = (111)7. Hence the shading h is the amount of white light added to the unshaded
image to produce the observed image. Whereas this formula does not correspond to a physical
law (in particular, unshaded intensities may become negative), it should be understood as a local
approximation to the effect we want to model.

The unshaded image color in a point s is explained by a Gaussian mixture model:

p<15|h87 0) = Zﬂ-kGZk<Is - hs]-3 - Mk:)? (4)
k

where Gy, (¥ — 1) is a Gaussian pdf with mean py and covariance Xy, and 0 = (7, pr, Jk) i, is
the vector of all parameters of the mixture model, where m, € [0, 1], ux € R3, X € R3*3.

The main assumption about the shading is that it should be a smoothly varying function. We
consider two priors (regularizations) enforcing smoothness:

p(h) exp{ . % /vam?ds} (5)

and
p(h) exp{ - % /Q|Vh|ds}. (6)

Both functions assign low probability to those shadings which have strong gradients. The first
choice allows easier optimization, whereas the second one (Total Variation) better fits to model
piecewise smooth functions, which are more appropriate to describe shading of 3D scenes. Note
that parameter v has a different meaning for the two cases and it depends on the scale of h.

Our goal is to estimate shading h and the unknown parameters 6. We choose the joint MAP
estimate (BMAP MAP) maximizing the joint likelihood, p(I, h;8) = p(I|h;0)p(h). We cal this a
MAP estimate by the following argument. Let § be a random variable with a uniform prior!,
then maximizing joint likelihood p(1, h, ) o p(I, h;0) is equivalent to maximizing the conditional
likelihood p(h,0|1) = p(I,h,0)/p(I). Arguably, one might prefer to have a maximum likelihood
estimate for 6, M = argmaxp(/;0) = argmax J, p(I,h;0). However, this problem is more
difficult and is not addressed here. Taking the logarithm, the MAP problem can be written as
maximizing E(h,0) =

/Q log 3 G, (U (h), — py)ds — 1 /Q VhiPds. 1)

We refer to case p = 2 as quadratic regularization model, and case p =1 as TV model.

Remarks. In the special case, K = 1, p = 1, with fixed ¥, the model becomes efficiently a TV
denoising model. Suppose, we are working with a grayscale image, then the mean parameter j;
of the single Gaussian component can be excluded from the model. This is because the shading
already includes an arbitrary constant offset not penalized by the regularization. This case is
well-studied, so in our experiments we have chosen images, such that GMM does not degenerate
to a single Gaussian.

IThis would be an improper prior. However, a proper prior, such as normal distribution with very large variance
would efficiently give the same result.



3 Optimization

3.1 Quadratic Regularization

Consider maximizing (7) with p=2. To derive the EM algorithm, we introduce numbers s > 0,
s €Q, k=1...K such that >, ays = 1 for all 5. It follows from the generalized inequality of
arithmetic and geometric means for positive numbers ¢(s, k) that

q(s, k)
logE q(s, k) > E akslog—gms : (8)
k k

where we let ¢(s, k) = 7Gx, (U(h)s — ). Then

v
E(h, 9) > /Q(Zk: Ok|s IOg WkGEk<U(h)s - Nk) - Zk: Og|s log ak|s)d5 - § /Q’Vmpds = E(h7 97 Oé).
(9)

(We refer to [10] regarding this interpretation of the EM algorithm.) In (9) and further on we will
use the convention that E with different arguments will denote different functionals. When « is
fixed, it is easy to differentiate and optimize F(h, 0, «) in (h,0) (M-step) and when h and 6 are
fixed, the inequality in (9) can be tightened by maximizing F(h, 0, «) over «a subject to the above
constraints (E-step). Thus the problem reads

max E(h,0,a). (10)

h,0,«
The E-step is the same as for the usual Gaussian mixture model:

o = G, (UR)s — p)
e > e kG, (U(R)s — i)

When « is fixed, optimizing in 7, subject to the constraint ), m, = 1 gives the update

T :/ak|5ds//1ds, (12)
Q Q

where we used that ), ay, =1 for all s. To optimize in the other variables, recall that

3 1 1 .
log G, (U (k). — ju) = = log 2 — 2 log x| — 5 (U (k). — w) S OB — ). (13)

(11)

We can optimize w.r.t. shading h and means g simultaneously. The corresponding first order
necessary optimality conditions are:

0=VpFE
0=V,E, (14)
where V,E, V,E are Frechet derivatives. Standard derivation (Appendix A) gives
0="> 135" (I — hyls — ) + yAh, Vs (15)
k
05 = /ak|sz:,;1(18 — hyls — pg)ds k. (16)
Q
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The system (15)-(16) is a system of linear equations in h, u. While the equations are differential
in h, in the discretization they become just a sparse linear system and can be solved numerically
with standard methods.

Optimizing w.r.t. covariance matrices X; under fixed remaining variables gives the update

Y — ank|s (]s - h513 - lj'k) (Is - hs]-3 - :uk)TdS
k= .

17
fgaklsds )

To prevent appearance of degenerate components we further make sure the smallest eigenvalue of
¥ is not smaller than some 0. It is achieved by projecting ¥ on the constraint min eig(3;) > oy.
Let ¥, = Udiag(A\)UT, then the projection is given by

¥y, = Udiag(max(), 00))UT. (18)

Discretization. The discretization is built as follows. Domain () is quantized into 2D unit

grid. Symbols fQ ds are to be replaced with | __,. The first derivative is approximated as forward

difference: % ~ hsi(1,0) — hs. The second derivative is approximated as % ~ hs—(1,0) + P (1,0) —

2hs. The exact choice of the discretization and boundary conditions is more important for the
TV model, in which case we followed recommendations of [13].
Let us summarize the algorithm for the total squared variation.

Algorithm 1

Input: image I, initial GMM (7, pg, X |k =1... K)
Initialize h = 0
Repeat

Update « via (11)

Update 7 via (12)

Update h, p via solving linear system (15)(16)

Update Xy via (17), (18).
The variables and updates should be understood as discretized. The algorithm is performing
alternating maximization of the objective E(h, 0, a) and hence each step is guaranteed to make a
monotonous improvement to the objective.

3.2 Total Variation

Consider maximizing (7) with p=1. We first proceed as in the previous case. We introduce expec-
tation variables a and inequality (9) holds. Optimization w.r.t. variables «, 7, 3 is performend by
the update equations (11), (12), (17). We then focus on optimizing (7) w.r.t. shading h and means
p. The derivative of the TV regularization [,|(Vh),|ds is the non-linear expression (Appendix
A)

Vh
S vANNE 19
It is not straightforward how to perform optimization w.r.t. h or (h,u) jointly. We tested two
algorithms described in [13]. Our derivation introduces optimization w.r.t. additional parameters



i into these algorithms. The first one, referred to as primal fixed point iteration [11] is obtained
as follows.

Primal TV Update. Let hy be the current estimate of the optimal A, then (19) is approxi-
mated with

Vh

|Vh0| +e a

which is linear in h and approximates (19) when h is close to hy and ¢ is small. The system of
equations in (h, 1) becomes

v ~V - (aVh), (20)

0= ars a2 (I — hsls — pu) + (V- (aVh)),
. (21)
equation (16)
The method is then summarized by the following algorithm:
Primal TV improve
Input: current h, a, a, {m, 2 |k =1... K}
Repeat
Update u and p via solving (21).
Update a:
1
Uy = ————— 22
(V) e (22)
Output: h, a, p.
Should this algorithm converge, h will be optimal to the energy with the regularization —3 ‘gl}ff€7

which is close to the desired —3|Vh|. However the algorithm is not monotonous and is not
guaranteed to converge. The full optimization of (9) is summarized as Alg. 2P in the end of the
section.

Dual TV Update. The dual algorithm [2, 3, 13] is as follows. The difficult term |Vh| is
represented as the maximization problem:

St [Jus||<1
Introducing additional unknown wu: € — R?, the maximization of (9) can be written as

max min E(h, 6, o, u), (24)
h,0,« |u|“S1

with

E(h,0,a,u) = /

Q

(...)ds —%/Qu - (Vh)ds, (25)

where the bracket (...) is the same as in (9). Noting that F(h, 0, «,u) is convex in u, concave in
(h, 1) and the constraints on u are convex, we can swap in (24) max over (h, ) and min over u:

(24) = max min max E(h, (7, p, 2), a, u). (26)

> u
o, ‘u|§1 h,}t



Our goal is to solve explicitly the inner maximization problem and to represent (26) as

max min F((m, X), a, u). (27)

T, \u|u§1
The necessary optimality condition w.r.t. h, V,E = 0, expresses as

0= IS (L = hls =) + 2(V-u), Vs, (28)
k

where we used that [,u - Vhds = — [,(V - u)hds (see Appendix A).

Optimality conditions w.r.t. p are given by (16). Equations (28) and (16) are linear in (h, u)
and, as we shall see, it is not difficult to derive a closed-form solution. Consider the minimization
problem in (27). Optimality conditions w.r.t. u are complicated by the constraint |u| < 1.
Following [13] we will use the projected gradient descend on w. From (25), we have for the
gradient

(VuE), = —1(Vh), Vs. (29)

We will solve for (h, ) from (28),(16) and by substituting into (29) find the expression for V,E
as a function of u. From (28), we have

_ 2 s 135 (L — ) + (V- ),

hs - 30
>k O‘klslgzkllii (30)
Let us abbreviate this expression as
he=Jo =Y cp e+ (V- ), (31)
k

where J: Q = R, ¢;,: © — R3 \: Q — R are appropriate functions of s as for (31) to match (30).
Substituting A into optimality condition w.r.t. u (16) we have for all k:

03 = /aksZ,gl <[5 — ]_3(Js + )\s(v . u)s)>d8 + /aksE,gl <13 ZC—SI:]C/M],C/ — [Lk> ds (32)
Q) Q k!

This is a system of linear equations in p, let us write it in the form
Ap = b(u), (33)

where 1 is the concatenated vector {ul |k =1... K, [ =1...3}, and A € R3**3K and b(u) € R3K
are given by

A eay = Joms | (5 Lahiek s = (57 by | ds

b(u) k) = = Jo s [251 <IS = L3(Je + AV “wﬂlds

Substituting u = A7'b(u) into (31) and then (31) into (29) we obtain for the gradient w.r.t. u:
(VuE)s =

(34)

—2[(9), = Y (Ve T (A b(w) , + (VAT - w))s ). (35)

k



The projected gradient descend on w is then as follows:

Dual TV improve

Input: current u, a, {m, X |k =1... K}
Compute J, ¢, A as for (31):

O — 21;113
s = 1oy, X
As = %2( Zk ak\sgk) (36)
Chs = ;/\Sak‘safc
JS = Zk,l Céc,sjé
Compute A:
2 v -1
Ay 1y = =040k | QrjsAsQprjsds — Ogpmpry (3 )1 [ ajsds (37)
Y Q Q
Compute by:
boe, = — JoomsSy (Is — 13J5)ds (38)
Repeat
Compute
b(u)g, = bo,., + o ank‘sx\s(V -u)4ds (39)

Set = A"1b(u)

Compute g = V, F according to (35)
Set u=u—17g

Project u: us = m Vs

Output: u, p and h recovered via (31).

This algorithm is guaranteed to converge to a global optimum of the inner minimization problem
in (27). Let us give now the corresponding algorithm for the full problem (24) using primal or
dual updates.

Algorithm 2P (resp. D)
Input: Image I, initial GMM {7y, pp, X |k =1... K}
Repeat
Update « as (11)
Update 7y, as (12)
Update h,u, u by Primal TV improve

(resp. Dual TV improve)
Update ¥y by (17)



(b) (d) (f)

Figure 1: (a) A texture image with the added shading. (b) the shading. Results of the quadratic
model showing estimated shading in (d) and reconstructed unshaded image in (c). Results of the
TV model optimized with primal updates are similar to (c), (d). Results for the dual-based TV
method initialized with (d) are shown in (e), (f).

Remarks. All the considered algorithms are at best to output a local maximum, because
GMM estimation is a non-convex problem by itself. Alg. 1 is monotonous and is guaranteed to
converge. Alg. 2P is not monotonous and is not guaranteed to converge. It is very sensitive to the
value of e: it affects the approximation of TV regularization and convergence of the algorithm,
but also it affects which local optimum of the joint GMM shading problem is found.

Alg. 2D only becomes monotonous when the inner minimization by “Dual TV improve” is solved
to the optimality. This inner minimization however, has linear convergence and may require long
time to converge to a sufficient accuracy. We got successful results with Alg. 2D when it was
starting from a good initial estimate by Alg. 1 or Alg. 2P. When an estimate of the shading A is
given, the initial estimate for u can be obtained as

o {% 1(VR)]| > 0

0, [[(VR) =0. (40)

This expression make sure that |u| < 1 and that u-Vh = |Vh]|.

4 Experiments

We present a few encouraging results. We note, however, that the algorithms are prune to local
optima and are sensitive to the parameters. We set the number of Gaussian components, K, to
10. It turned out that parameter oy should be set to a rather high value, we used oo = 0.1. It
makes Gaussian components smoother so there is a smooth transition in expectations a between



Figure 2: Progress of Alg. 1 on the texture unshading instance and progress of Alg. 2D continuing
on the instance (starting on from the blue circle). x-axis show iterations and y-axis show the EM
objective (9).

the components and therefore the full EM procedure is less likely to get stuck in a suboptimal
point. This suggests that we could as well have used fixed ¥, = 0¢l3. However, the covariances
estimated in the experiments often exceeded og, so we consider them still a useful part of the
model.

Clearly, the strength of the regularization ~ is a meaningful parameter to adjust for each
particular use case. It should correspond to the scale and smoothness of the shading to be
estimated. We adjusted this parameter for each experiment and each model p = 1,2 individually
as to obtain visually the best results.

Texture unshading. As a simple test we prepared the following artificial example. We took a
real world texture and added to it a known piecewise-continuous smooth shading (Fig. 1 a,b). This
experiment is similar to [ 1, fig.1], only we took a texture instead of i.i.d. Gaussian noise. The
colorful texture allows to test a general case where Gaussian mixture model does not degenerate
to a single Gaussian. Fig. 1 shows the results: as expected, quadratic model gives larger error
around discontinuities of the shading, and the error is removed by the TV model.

Collor Illusion. The second experiment is on the famous color illusion picture shown in Fig. 3
a. Square B in the picture is percepted as white, however it is absolutely identical in color to
square A, which is percepted as black. The challenge is whether we can undo this effect by
estimating the proper shading. Fig. 3 b-g shows the results of the proposed methods. Inspection
of the colors shows that color difference between white squares is much smaller than between A
and B in all three results.

Some more results are shown in Fig. 4, the image is taken from [12].

5 Conclusion

We presented a simple model incorporating image shading with quadratic and total variation
regularizations. The model with TV regularization seems to perform better when there are sharp
boundaries of the objects or sharp shadows (the shading is piecewise-smooth). However, we faced
a difficulty in the optimization: the best algorithm, Alg. 2D, needs to solve an inner minimization
problem, which takes lots of iterations to converge. We know how to maximize the objective
w.r.t. one group of variables (a, 7, ¥) and minimize it w.r.t. other (u). We would be interested
to find a fixed point in both of the groups (a saddle point problem). However, when the inner
minimization problem is not solved to the optimality and only few iterations are taken, the

10



(2)

Figure 3: (a) Input image. (b), (c) results of the quadratic model (Alg. 1). (d), (e) Results of the
TV model (Alg. 2P). (f), (g) results of the TV model (Alg. 2D) initialized with (e).

() (f) ()

Figure 4: (a) Input image. (b), (c¢) results of the quadratic model (Alg. 1). (d), (e) Results of the
TV model (Alg. 2P). (f), (g) results of the TV model (Alg. 2D) initialized with (e).

algorithm may oscillate. In the preliminary experiments, we were not able to obtain good results
with this saddle point version. This seem to be a generic problem for parameter estimation within
dual algorithms.

Let us also note that in order to recover better shading, a segmentation should be introduced
into the model, like in [11]. Different objects in the image could then have different GMM models

11



and shadings, and the sharp boundary would be ensured by the segmentation. We expect that
given the correct segmentation, shadings for the individual segments would be more accurate. For
this purpose, the quadratic model may turn out more appropriate.

It is also questionable, whether the additive model is an appropriate approximation for shading
estimation. For example, in Fig. 4f it is seen, that the background and the shadow are different
in color, and this difference cannot be fully described by the white light.

Appendix A: Vector and Variation Calculus

Let Q C R? be a compact set. Let X be the space of continuously differentiable functions
f:Q — Rsuch that f(02) = 0 and f and V f are square integrable. The inner product of f € X
and g € X is the integral

(f.9) = / f,gsds. (41)

A vector f € AP will denote a multi-valued function such that f; € RP.

. . _ oft af?
Vector Calculus. Let f € X2, g € 22( Dz;uergence (V- f) is defined by V- f = 5 + D
Laplace operator A is defined by Ag = % + g—yg. The following properties hold:

V(gV)=(Vg)-V+gV-V (42)
Ag=V-(Vyg) (43)

Divergence theorem. Let F' € C'(Q2)? be a continuously differentiable vector field.

Then [(V - F),ds = — [, F'-ndl, where n is unit boundary normal vector.
By letting F = fg, f € C1(Q)?, g € X we get the following corollary:

/Qfs~(Vg)sds—|—/Q(V~f)sgsds:—/mgf-ndl:(), (44)

where the last equality holds because g(0f2) = 0.

Frechet Derivative. Let F: X — R. The Frechet derivative of E, denoted VE, is a function
) — R satisfying the relation

E(f+&8)=FE(f) +e(VE,£) +0(s?) Vee X (45)

Let E(f) = [,L(fs,(Vf)s)ds, where L € C*(R?). Then,

ViE =L -V L, (46)
oL

where L] is the partial derivative of L w.r.t. first argument and L/, = ( 3 ) is partial derivative
afy

of L w.r.t. second argument.
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Proof.

E(f +¢6) = / L(fut 20, [V(f +£6))1)ds = / L(f2) + e [(LY)ebe + (Ih)s - (VE),] + O()ds

- / L(f)ds + (L), €) + ¢ / (L), - (VE)uds + O(2)
Q Q
_ / L(f)ds + £(Ly, &) — eV - Ih,€) + O(=2),

(47)
where we applied identity (44) with f = L} and g = &. O]
Let us derive Frechet derivatieves of several standard functionals.
1
Ly / [(Vh)a|[2ds = —Ah. (48)
Q
Vh
h)s||d 49
v [ om s = V- (49)
1
§V/as|\(Vh)s||2ds = —alAh — (Va) - (Vh). (50)
0
Proof.
(48): Let L(hs, (VR)) = LI(VA)I2 = S((H,)? + (R))2). We have (Lb), = (EZ? ) and by (46) it
is V,E = -V -Vh=—Ah.
(19): Let L{hy, (Th),) = [I(Th),ll = /(B2 + (2. We have (Ly), = sty (30607 ). By (46)
itis Vo, E =V %.
(50): Let L(hs, (Vh)s) = 1a||(Vh)s||>. We have Ly = aVh, and hence V,E = —V - (aVh) =
—aV - (Vh) — (Va) - (Vh) = —alAh — (Va) - (Vh).
[
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