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Abstract

In this work, we prove several relations between three different energy minimization techniques. A recently proposed

methods for determining a provably optimal partial assignment of variables by Ivan Kovtun (IK), the linear

programming relaxation approach (LP) and the popular expansion move algorithm by Yuri Boykov. We propose

a novel sufficient condition of optimal partial assignment, which is based on LP relaxation and called LP-autarky.

We show that methods of Kovtun, which build auxiliary submodular problems, fulfill this sufficient condition. The

following link is thus established: LP relaxation cannot be tightened by IK. For non-submodular problems this

is a non-trivial result. In the case of two labels, LP relaxation provides optimal partial assignment, known as

persistency, which, as we show, dominates IK. Relating IK with expansion move, we show that the set of fixed

points of expansion move with any “truncation” rule for the initial problem and the problem restricted by one-vs-all

method of IK would coincide – i.e. expansion move cannot be improved by this method. In the case of two labels,

expansion move with a particular truncation rule coincide with one-vs-all method.

Keywords: energy minimization, partial optimality, persistency, max-sum, WCSP, MRF, autarky, LP-relaxation,

expansion move.

1 Introduction

1.1 Energy Minimization

In this work1 we consider minimization problem of the

following form:

min
x∈L

[

f0 +
∑

s∈V

fs(xs) +
∑

st∈E

fst(xst)

]

= min
x∈L

f(x). (1)

1The work was supported bu EU projects FP7-ICT-247870

NIFTi and FP7-ICT-247525 HUMAVIPS and the Czech project

1M0567 CAK.

Here, V is a finite set and E ⊂ V × V . A concate-

nated vector of all variables x = (xs|s ∈ V) is called

a labeling. Variable xs takes its values in a discrete

domain Ls, called labels. Labeling x takes values in

L, the Cartesian product of all domains Ls. In this

paper all Ls will have the same number of labels, but

may have different associated orderings, etc. Notation

st denotes the ordered pair (s, t) and xst denotes the

pair of corresponding variables, (xs, xt). The objective

is composed of term f0 ∈ R and functions fs : Ls → R

and fst : Ls × Lt → R.

The problem (1) is considered in several fields. It
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is also known as the labeling problem, the Weighted

Constraint Satisfaction (WCSP) and for the case of

two labels (|Ls| = 2, ∀s) as the pseudo-Boolean2 opti-

mization [1]. Our terminology comes from considering

probabilistic models in the form of Gibbs distribution.

There is certain difference between problems with two

labels and more than two labels, the later will be re-

ferred to as multi-label problems.

1.2 Partial Optimality

Energy minimization (1) is an NP-hard problem in gen-

eral. Techniques which allow us to find a “part of the

optimal” labeling are of our central interest here. The

idea is that it may be possible to fix a part of variables

to take certain labels such that any optimal labeling

will provably have the same partial assignment.

More precisely, we consider a subset of variablesA ⊂

V and the assignment of labels over this subset y =

(ys | s ∈ A). The pair (A, y) is called a strong optimal

partial assignment (strong persistency [3]), if for any

minimizer x∗ it holds x∗
A = y, where notation x∗

A is the

restriction of x∗ toA, i.e. (x∗
s | s ∈ A). Likewise, if there

exist at least one minimizer x∗, for which x∗
A = y holds

we say that (A, y) is a weak optimal partial assignment.

Two or more strong optimal partial assignments can

be combined together, because each of them preserves

all optimal solutions. This is not true for weak assign-

ments, even if they assign different variables, – they

may not share any globally optimal solutions in com-

mon. However, if we want to find a minimizer of (1)

(or at least “localize” it as much as possible), a weak

optimal partial assignment could be more helpful – the

best one assigns all variables.

1.3 Domain Constraints

The idea of optimal partial assignment naturally ex-

tends to constraining a variable to a subset of labels

Ks ⊂ Ls. Let A ⊂ V , let Ks ⊂ Ls, ∀s ∈ A. Let K be

the Cartesian product ofKs, s ∈ A. We say that a pair

(A,K) is a strong (resp. weak) optimal constraint if

2Variables xs ∈ {0, 1} are regarded as Boolean in this case

and “pseudo” emphasize that a real-valued rather than Boolean

function of these variables is considered.

x∗
A ∈K for all (resp. at least one) minimizer x∗. This

type of constraints is called domain constraints. Obvi-

ously, it includes partial assignment as a special case.

1.4 Autarkies

Some domain constraints follow from more specific

properties called “autarkies”. This term occurs in [3]

for two-label problems and we consider its exten-

sion [15] to multi-label problems.

Let Ls = {0, 1 . . . L} ∀s ∈ V , L ∈ N. Let x, y ∈ L.

Define component-wise minimum and maximum of two

labellings:

(x ∧ y)s = min(xs, ys), (2a)

(x ∨ y)s = max(xs, ys). (2b)

A pair (xmin ∈ L, xmax ∈ L) such that xmin ≤ xmax

(component-wise) is called a weak autarky for prob-

lem (1), if

∀x ∈ L f((x ∨ xmin) ∧ xmax) ≤ f(x). (3)

If additionally for any x 6= (x ∨ xmin) ∧ xmax strict

inequality

f((x ∨ xmin) ∧ xmax) < f(x) (4)

holds, then the autarky is called strong.

The autarky provides domain constraints with Ks =

[xmin
s , . . . , xmax

s ]. For any minimizer x∗, we have that

x̂ = (x∗ ∨ xmin) ∧ xmax is a minimizer as well, and

x̂s ∈ Ks. A strong autarky guarantees additionally

that x∗ must itself satisfy x∗
s ∈ Ks. Indeed, if it was

not true then x̂ 6= x∗ and f(x̂) < f(x∗), which is a

contradiction. Therefore a weak (resp. strong) autarky

provides a weak (resp. strong) domain constraint.

Determining whether a given pair (xmin, xmax) is a

strong autarky is an NP-hard decision problem [3].

Autarkies can be combined together. A join of two

autarkies (x1, x2), (y1, y2) is the pair (x1 ∨ y1, x2 ∧ y2).

For strong autarkies, the result is a strong autarky and

this operation is commutative, associative and idem-

potent, so that it defines a semi-lattice.

Proof. From definition of autarkies, we have

f((((x∨x1)∧x2)∨y1)∧y2) ≤ f((x∨x1)∧x2) ≤ f(x) (5)
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Note, that for x1 ≤ x2 we have (x ∨ x1) ∧ x2 = (x ∧

x2) ∨ x1. We can rewrite the labeling in the left hand

side (LHS) as follows

((x ∨ x1) ∧ x2) ∨ y1) ∧ y2 =

((x ∧ x2) ∨ (x1 ∨ y1)) ∧ y2
.
=

(x ∧ (x2 ∧ y2)) ∨ (x1 ∨ y1),

(6)

where doted equality holds if y2 ≥ x1. This is satisfied

for strong autarkies, because it would be a contradic-

tion that all optimal labellings are below y2 and above

x1.

Thus there exists an autarky, which provides the

maximal amount of domain constraints among strong

autarkies. It is the join of all strong autarkies.

It is also possible to join “non-contradictive” weak

autarkies together, but let us leave it aside for now.

We will consider a special cases of autarkies

with “one-side constraints”, of the form (xmin, L) or

(0, xmax), where L and 0 represent the labeling with

all components equal to L (resp. 0). For such au-

tarkies inequality (3) simplifies, because x ∨ 0 = x and

x ∧ L = x. Methods [10, 11] compute strong autarkies

of this form. By taking the join of two strong au-

tarkies (xmin, L) and (0, xmax) we can obtain a strong

autarky (xmin, xmax). However, the reverse is not true:

if (xmin, xmax) is a strong autarky, it does not imply

that (xmin, L) or (0, xmax) is an autarky. And it is the

case that other methods (roof-dual [1] in the case of

two-label problem and its multi-label extension [15])

can find an autarky of the form (xmin, xmax), which is

not a join of two one-side autarkies.

1.5 Submodular Problems

Function f is called submodular if

∀x, y ∈ L f(x ∨ y) + f(x ∧ y) ≤ f(x) + f(y). (7)

In the case f is defined by (1), it is submodular iff (see

e.g. [18]) ∀st ∈ E , ∀xst, yst ∈ Lst = Ls × Lt

fst(xst)+ fst(yst) ≥ fst(xst ∧ yst) + fst(xst ∨ yst). (8)

Minimizing a pairwise submodular function reduces to

mincut problem [7], [13]. Let f be submodular and x∗

be its minimizer. Then we have the following proper-

ties:

f(x ∨ x∗) ≤ f(x), (9a)

f(x ∧ x∗) ≤ f(x). (9b)

They easily follow from submodularity, noting that

f(x∨x∗) ≥ f(x∗) and f(x∨x∗) ≥ f(x∗). So, in fact, any

pair of optimal solutions (x1∗, x2∗) is a weak autarky

for this problem. Moreover, if we let

xmin =
∧

argmin
x

f(x), (10a)

xmax =
∨

argmin
x

f(x), (10b)

where argmin is the set of minimizers, we see that both

xmin and xmax are minimizers of f and that (xmin, xmax)

is a strong autarky for f . In fact, it is the join of

all strong autarkies for f . This strong autarky can

be determined from a solution of the corresponding

maxflow problem.

2 Approach by Kovtun

In this section, we review techniques [10, 11] for build-

ing autarkies (and hence domain constrains) by con-

structing auxiliary problems. We take a somewhat dif-

ferent perspective on these results, however, our state-

ments and proofs here are in a sense equivalent to ones

given in [10, 11].

Theorem 1. Let f = g + h, let (xmin, xmax) be a

strong autarky for g and a weak autarky for h. Then

(xmin, xmax) is a strong autarky for f .

Proof. We have

f((x ∨ xmin) ∧ xmax) =

g((x ∨ xmin) ∧ xmax) + h((x ∨ xmin) ∧ xmax) ≤

g(x) + h(x),

(11)

and the inequality is strict if (xmin, xmax) is strong for

either h or g.

The idea of auxiliary problems is to construct a sub-

modular g, for which, as we know, a strong autarky

(xmin, L) can be found by choosing xmin as the lowest

minimizer of g, given by (10a). The trick is to find
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such g that (xmin, L) is at the same time an autarky

for h = f − g. The following sufficient conditions were

proposed [11]:

Statement 1. Let h satisfy

∀s ∈ V , xs ∈ Ls, x̂s ∈ Ks

hs(xs ∨ x̂s) ≤ hs(x̂s)
(12a)

∀st ∈ E , xst ∈ Lst, x̂st ∈ Kst

hst(xst ∨ x̂st) ≤ hst(xst).
(12b)

Then for any xmin such that xmin
s ∈ Ks, the pair

(xmin, L) is a weak autarky for h. If additionally

∀s ∈ V , x̂s ∈ Ks, xs < x̂s

hs(xs ∨ x̂s) < hs(x̂s),
(12c)

then (xmin, L) is a strong autarky.

Proof. For any x ∈ L, summing corresponding inequal-

ities from (12a) and (12b), we obtain

∑

s

hs(xs ∨ xmin

s ) +
∑

st

hst(xst ∨ xmin

st ) ≤

∑

s

hs(xs) +
∑

st

hst(xst).
(13)

If x ∨ xmin 6= x, then ∃s ∈ V xs < xmin
s and (12c)

implies strict inequality.

Two practical methods were proposed [11] to con-

struct g and (Ks | s ∈ V). We first describe a more

general approach.

Algorithm 1:

Sequential construction of g, (Ks | s ∈ V), [11]

1. Start with Ks = ∅, s ∈ V ;

2. Find g such that h = f − g satisfies (12) and g

satisfies submodularity constraints (8).

3. Find xmin =
∧

argminx g(x);

4. If xmin
s ∈ Ks for all s ∈ V then stop.

5. Set Ks ← Ks ∪ {xmin
s } ∀s ∈ V and go to step 2.

In step 2 for each edge st ∈ E a system of linear

inequalities in gst has to be solved. While [11] provides

an explicit solution, for our consideration it will not be

necessary. When the algorithm stops, g is submodular

and (xmin, L) is a strong autarky for g and a weak

autarky for f−g. By Theorem 1, it is a strong autarky

for f . It may stop, however, with xmin
s = 0 for all s,

so that efficiently no constraints are derived. Being

a polynomial algorithm it cannot have a guarantee to

simplify the problem (1).

A simpler non-iterative method proposed in [10] is

shown in Algorithm 2. It attempts to identify nodes s

where the label L is better than any other label. The

constructed auxiliary problem g has a property that

its lowest minimizer xmin =
∧

argming(x) is guar-

Algorithm 2: One vs all method, [10, 11]

1. For each s chose such ordering of Ls that 0 ∈

argmin
i6=L

fs(i).

2. Set gs = fs, s ∈ V .

3. Set Ks = {0, L}.

4. Set gst(i, j) =



























ast, i = L, j = L,

bst, i = L, j 6= L,

cst, i 6= L, j = L,

dst, i 6= L, j 6= L,

where ast, bst, cst, dst are such that fst − gst satisfy

(12b) and submodularity constraints. One of the

solutions is as follows:

ast = fst(L,L),

bst = min
j 6=L

fst(L, j),

cst = min
i6=L

fst(i, L),

dst = min
(

bst + cst − ast, min
i6=L,j 6=L

[

fst(i, j)

+ min
{

bst − fst(L, j), cst − fst(i, L)
}

])

.

(14)

anteed to satisfy xmin ∈ Ks ∀s ∈ V . (because all

costs (gst(i, j) | i < L, j < L) are equal and gs(0) ≤

gs(i) ∀s ∈ V , ∀i < L, see proof in [10]). Therefore

(xmin, L) is a weak autarky for f − g and Theorem (1)

applies.

Both methods allow us to choose various orderings

of sets Ls. Strong domain constraints derived from

various orderings can be then combined.
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3 LP-autarkies

In this section we introduce a special subclass of au-

tarkies, which preserve optimal solutions of the LP-

relaxation. Unlike with general autarkies, the mem-

bership to this subclass is polynomially verifiable. We

show that autarkies constructed by algorithms 1, 2 be-

long to this subclass. This has useful implications for

LP relaxation.

3.1 LP Relaxation

Let φ(x) be a vector with components φ(x)0 = 1,

φ(x)s,i = [[xs=i]] and φ(x)st,ij = [[xst=ij]], where [[·]] is

1 if the expression inside is true and 0 otherwise. Let

f denote a vector with components f0, fs,i = fs(i) and

fst,ij = fst(ij). With respect to components of energy

functions we will be using this index and parenthesis

notations completely interchangeably. Let 〈·, ·〉 denote

a scalar product. Then we can write energy minimiza-

tion as

min
x∈L

〈f, φ(x)〉. (15)

Its relaxation to a linear program is written as

≥ min
µ∈Λ

〈f, µ〉, (16)

where Λ is the local polytope. It approximates

conv{φ(x) |x ∈ L} from the outside, see e.g. [18] for

more detail. It is given by the linear constraints

µ0 = 1,

µs,i ≥ 0, µst,ij ≥ 0,
∑

ij∈Lst

µst,ij = 1 ∀st ∈ E ,

∑

j∈Lt

µst,ij = µs,i ∀i ∈ Ls, st ∈ E ,

∑

i∈Ls

µst,ij = µt,j ∀j ∈ Lt, st ∈ E .

(17)

Vector µ ∈ Λ is called a relaxed labeling.

3.2 LP-autarky

We now extend the notion of autarky to relaxed la-

bellings.

Definition 1. A binary operation ⊼ : Λ × L → Λ, is

defined as follows. Let y ∈ L and µ ∈ Λ. Then ν =

µ ⊼ y ∈ Λ is constructed as:

νs,i =















µs,i, i < ys,
∑

i′≥ys

µs,i′ , i = ys,

0, i > ys;

(18a)

νst,ij =



















































µst,ij , i < ys, j < yt,
∑

i′≥ys

µst,i′j , i = ys, j < yt,

∑

j′≥yt

µst,ij′ , i < ys, j = yt,

∑

i′≥ys

j′≥yt

µst,i′j′ , i = ys, j = yt,

0, i > ys or j > yt.

(18b)

By construction, the relaxed labeling ν has non-zero

weights only for labels “below” y: νs,i = 0 for i > ys

and the same for pairs st, ij. Let us check that ν ∈ Λ.

Proof. Normalization constraint:

∑

i

νs,i =
∑

i<ys

µs,i +
∑

i′≥ys

µs,i′ =
∑

i

µs,i = 1. (19)

Marginalization constraint:

∑

i

νst,ij =



























∑

i<ys

µst,ij +
∑

i′≥ys

µst,i′j , j < yt,

∑

i<ys

j′≥yt

µst,ij +
∑

i′≥ys

j′≥yt

µst,i′j′ , j = yt,

0, j > yt,

= νt,j .

(20)

Operation ν = µ ⊻ y is defined completely similarly,

having singleton components

(µ ⊻ y)s,i =















µs,i, i > ys,
∑

i′≤ys

µs,i′ , i = ys,

0, i < ys.

(21)

Definition 2. We say that a pair (xmin, xmax) is a

weak LP-autarky for f , if

∀µ ∈ Λ 〈f, (µ ⊼ xmin) ⊻ xmax〉 ≤ 〈f, µ〉. (22)

If additionally for all µ such that (µ⊼xmin)⊻xmax 6= µ

the strict inequality holds then we say that it is a strong

LP-autarky.
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3.3 Properties of LP-autarkies

Statement 2. Any weak (resp. strong) LP-autarky is

a weak (resp. strong) autarky.

Proof. By substituting µ = φ(x).

Statement 3. Checking whether (xmin, xmax) is an

LP-autarky for f can be solved in a polynomial time.

Proof. By construction, (µ ⊼ xmin) ⊻ xmax is a linear

map in µ, let us denote it Aµ. Inequality (22) holds iff

min
µ∈Λ

〈f, µ−Aµ〉 ≥ 0, (23)

which is a linear program. To verify whether A is a

strong LP-autarky we need to solve

min〈f, µ−Aµ〉 > 0

s.t.







µ ∈ Λ,
∑

s

∑

xmin≤i≤xmax

µs,i < |V|.
(24)

Statement 4. If f is submodular, then

∀µ ∈ Λ, ∀y ∈ L

〈µ, f〉+ 〈φ(y), f〉 ≥ 〈µ ⊼ y, f〉+ 〈µ ⊻ y, f〉.
(25)

Proof. Scalar products in (25) are composed of sums of

singleton terms and pairwise terms. We first show that

sums of singleton terms are equal, expanding singleton

terms in the right hand side (RHS):

∑

s

∑

i

[

(µ ⊼ y)s,i + (µ ⊻ y)s,i
]

fs(i) =

∑

s

∑

i<ys

µs,ifs(i) +
∑

s

∑

i′≥ys

µs,i′fs(ys)+

∑

s

∑

i>ys

µs,ifs(i) +
∑

s

∑

i′≤ys

µs,i′fs(ys) =

∑

s

∑

i

µs,ifs(i) +
∑

s

(

∑

i′

µs,i′

)

fs(ys) =

∑

s

∑

i

µs,ifs(i) +
∑

s

∑

i

[[i= ys]]fs(ys).

(26)

Now consider submodularity constraints:

∀st ∈ E , ∀ij ∈ Lst, ∀yst ∈ Lst

fst(ij) + fst(yst) ≥ fst(ij ∧ yst) + fst(ij ∨ yst).
(27)

Multiplying this inequality by µst,ij and summing over

ij, we obtain on the LHS:
∑

ij

µst,ijfst(ij) + fst(yst) =

∑

ij

µst,ijfst(ij) +
∑

ij

[[ij=yst]]fst(yst)
(28)

and on the RHS:
∑

ij

µst,ij

[

fst(ij ∧ yst) + fst(ij ∨ yst)
]

=

∑

ij

[

(µ ⊼ y)st,ij + (µ ⊻ y)st,ij
]

fst(ij),
(29)

where the equality is verified as follows:
∑

ij

µst,ijfst(ij ∧ yst) =

∑

i<ys

j<yt

µst,ijfst(ij) +
∑

i≥ys

j<yt

µst,ijfst(ys, j)+

∑

i<ys

j≥yt

µst,ijfst(i, yt) +
∑

i≥ys

j≥yt

µst,ijfst(yst) =

∑

ij

(µ ⊼ y)st,ijfst,ij .

(30)

The term with ⊻ is rewritten similarly. By summing

inequalities (28) ≥ (29) over st ∈ E and adding equal-

ities (26) of the singleton terms, we get the result.

Statement 5. Let f be submodular and x∗ ∈

argmin
x

f(x). Then ∀µ ∈ Λ

〈µ ⊼ x∗, f〉 ≤ 〈µ, f〉, (31a)

〈µ ⊻ x∗, f〉 ≤ 〈µ, f〉. (31b)

Proof. Let us show (31a). For submodular problems

LP-relaxation (16) is tight. Thus for any ν ∈ Λ there

holds 〈ν, f〉 ≥ f(x∗) = 〈φ(x∗), f〉. In particular, for

ν = µ ⊼ y we have 〈µ ⊼ y, f〉 ≥ 〈φ(x∗), f〉, which when

combined with (25) implies the statement.

Statement 6. Let (xmin, L) be a strong LP-autarky

for f , then:

∀s ∈ V , ∀i < xmin

s , ∀µ∗ ∈ argmin
µ∈Λ
〈µ, f〉 µ∗

s,i = 0.

(32)

Proof. Let µ∗ ∈ argminµ∈Λ〈µ, f〉 and µ∗
s,i > 0. Then

µ∗
⊻ xmin 6= µ∗ and f(µ∗

⊻ xmin) < f(µ∗), which con-

tradicts optimality of µ∗.
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3.4 Implications for Algorithms 1, 2

We have already seen in statement 5 that for a sub-

modular problem g, taking y as a minimizer (resp. the

lowest minimizer) of g gives a weak (resp. strong) LP-

autarky (y, L). Let us show that statement 1 extends

to LP-autarkies too. This would imply that autarkies

derived by algorithms 1, 2 are in fact LP-autarkies for

f = g+ h.

Statement 7. Let h satisfy inequalities (12). Then

for any y ∈ L such that ys ∈ Ks, the pair (y, L) is a

weak LP-autarky for h.

Proof. Let µ ∈ Λ. From inequality (12a) we have

∑

s

∑

i

((µ ⊻ y)s,i − µs,i)hs,i ≤ 0. (33)

Multiplying (12b) by µst,ij and summing over ij ∈ Lst

and over st ∈ E we obtain

∑

st

∑

ij

[

(µ ⊻ y)st,ij − µst,ij

]

hst,ij ≤ 0. (34)

Adding (33) and (34), we get:

〈µ ⊻ y − µ, h〉 ≤ 0, (35)

which is equivalent to (22).

We have shown that algorithms 1, 2 derive do-

main constraints in the form of strong LP-autarkies.

We know too that optimal solutions of LP-relaxation

will obey domain constraints derived via strong LP-

autarkies. Note, while algorithms 1, 2 depend on the

ordering of the labels, solutions of the LP-relaxation

does not. Hence,

Corollary 1. Let (Ks ⊂ Ls | s ∈ V) be a strong domain

constraint derived by Algorithms 1, 2 w.r.t. any order-

ing of sets Ls. Then the set of optimal solutions of LP

relaxation with and without these domain constraints

would coincide.

We proved that LP relaxation cannot be tightened

by algorithms 1, 2. It may only be simplified by elim-

inating all variables which are guaranteed to be 0 in

every optimal solution. This may be useful in practical

methods solving LP relaxation.

For problems with two labels, the following relation

also holds. Let Λ∗ = argminµ∈Λ〈f, µ〉. Let

xmin

s = min{i | ∃µ∗ ∈ Λ∗ µs,i > 0},

xmax

s = max{i | ∃µ∗ ∈ Λ∗ µs,i > 0},
(36)

then (xmin, xmax) is a strong autarky for f . This is

the roof-dual autarky [1]. Because for any other au-

tarky derived via algorithms 1 and 2 statement 6 holds,

we conclude that roof-dual autarky dominates algo-

rithms 1 and 2.

4 Expansion Move

Expansion move algorithm [4] seeks to improve the cur-

rent solution x by considering a move, which for every

s ∈ V either keeps the current label xs or changes it to

the label k.

Algorithm 3: Expansion-Move [4]

1. Let x ∈ L, let k ∈ L. The move energy function

g(z) of binary configuration z ∈ {0, 1}V is defined

by:

g0 = f0, gs(0) = fs(xs), gs(1) = fs(k),

gst(1, 1) = fst(k, k), gst(1, 0) = fst(k, xt),

gst(0, 1) = fst(xs, k), gst(0, 0) = fst(xs, xt).

(37)

2. Let z∗ ∈ argmin
z

g(z).

3. If g(z∗) < g(0), assign xs ←

{

xs, if zs = 0,

k, if zs = 1.

If the above procedure is repeated for all labels k ∈ L

and no improvement to x is found then x is said to be

a fixed point of this method.

In the case f is a metric energy [4], the move energy g

is submodular for arbitrary x and step 2 is easy.

Statement 8. Let f be metric [4]. Let (xmin, L) be

a strong autarky for f such that xmin
s ∈ {0, L}, ∀s ∈

V. Then for any fixed point x of the expansion-move

algorithm there holds

x ≥ xmin. (38)
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Proof. Assume ∃s ∈ V such that xs < xmin. Then

f(x ∨ xmin) < f(x) and since xs ∈ {1, L}, it is

xs ∨ xmin

s =







xs, xmin
s = 1,

L, xmin
s = L,

(39)

which is a valid expansion move from x to label k = L,

strictly improving the energy.

In the case when a move energy is not submodular,

it can be “truncated” to make it submodular while still

preserving the property that the move does not increase

f(x) [12]. Let ∆st = gst(1, 1) + gst(0, 0) − gst(0, 1) −

gst(1, 0). Pair st is submodular iff ∆st < 0.

Definition 3. Truncation g′ of g is different from g

only in non-submodular pairwise components of g,

which are set as:

g′st,00 = gst,00 − βst∆st,

g′st,01 = gst,01 + αst∆st,

g′st,10 = gst,10 + (1− αst − βst)∆st,

g′st,11 = gst,11,

(40)

where αst and βst are free parameters, satisfying αst ≥

0, βst ≥ 0, αst + βst ≤ 1.

It is easy to verify that g′ is submodular, and

g(z)− g(0) ≤ g′(z)− g′(0), (41)

saying that increase in g is no more than increase in g′

when changing from 0 to z.

Proof of (41). By construction of g′, for all st ∈ E such

that ∆st > 0, enumerating all zst,

g′st,00 − g′st,00 = 0,

g′st,01 − g′st,00 = gst,01 − gst,00 + (αst + βst)∆st,

g′st,10 − g′st,00 = gst,10 − gst,00 + (1− αst)∆st,

g′st,11 − g′st,00 = gst,11 − gst,00 + βst∆st,

(42)

we see that only positive values are added on RHS.

It is also seen that the added positive values do only

increase with βst. This means that the truncation with

βst > 0 (let’s denote it gα,β) is never better than the

truncation with β = 0 (let’s denote it gα): ∀z

g(z)−g(0) ≤ gα(z)−gα(0) ≤ gα,β(z)−gα,β(0). (43)

Similarly, the truncation with α = 0, β = 1 (g0,1) is

not better than the truncation gα,β :

gα,β(z)− gα,β(0) ≤ g0,1(z)− g0,1(0). (44)

This is verified by examining components:

g
0,1
st (zst)− g

0,1
st (0)− g

α,β
st (zst) + g

α,β
st (0) =



















0, zst = 00,

∆st(1 − (α+ β)), zst = 01,

∆st(1 − (1− α)), zst = 10,

∆st(1 − β), zst = 11,

≥ 0.

(45)

If z is an improving move for g0,1 then it is also an

improving move for any truncation.

We have the following result about Algorithm 2:

Statement 9. Let (xmin, L) be a strong autarky for

f obtained by Algorithm 2. Let x be a fixed point of

the expansion-move algorithm with any truncation rule.

Then

x ≥ xmin. (46)

Proof. We will prove that the statement holds for trun-

cation (α = 0, β = 1). We need to show that for a move

from x to x ∨ xmin the truncated energy decreases at

least as much as does auxiliary problem built by Alg. 2.

This can be verified by inspecting pairwise components

for the 4 cases zst = 00, 01, 10, 11.

5 Conclusion

We propose a novel representation of methods [10, 11]

as deriving domain constraints via LP-autarkies. This

allows for comparison with other methods deriving do-

main constraints in the same form [3, 15] and establish-

ing relations with common methods of (approximate)

optimization. We also believe that “label domination”

condition proposed by [5] can be interpreted in the

same framework, allowing for the theoretical compari-

son and or for the design of combined methods.

Our results open several directions for improve-

ments. A direct improvement to Alg. 2 can be ob-

tained as follows. Alg. 2 constructs a multi-label aux-

iliary problem, which is equivalent to a two-label prob-

lem (since we know that there is a minimizer with
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x∗
s ∈ {0, L}, ∀s ∈ V). For two label problems, we also

know that the autarky constructed by roof-dual domi-

nates the autarky by truncation, so it will be better to

set

dst = min
i6=L,j 6=L

[

fst(i, j)

+min
{

bst − fst(L, j), cst − fst(i, L)
}]

(47)

and solve for roof-dual using reduction to

maxflow [2]. This would be a non-submodular

auxiliary problem.

We can also attempt to construct auxiliary prob-

lem with mixed submodular and supermodular terms

as in [15] or design an algorithm which will propose

an autarky in some greedy way and then verify it via

solving linear program (24).
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