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Abstract We propose a novel distributed algorithm

for the minimum cut problem. Motivated by appli-

cations like volumetric segmentation in computer vi-

sion, we aim at solving large sparse problems. When

the problem does not fully fit in the memory, we need

to either process it by parts, looking at one part at

a time, or distribute across several computers. Many

mincut/maxflow algorithms are designed for the

shared memory architecture and do not scale to this

setting. We consider algorithms that work on disjoint

regions of the problem and exchange messages between

the regions. We show that the region push-relabel algo-

rithm of Delong and Boykov (2008) uses Θ(n2) rounds

of message exchange, where n is the number of vertices.

Our new algorithm performs path augmentations inside

the regions and push-relabel style updates between the

regions. It uses asymptotically less message exchanges,

O(B2), where B is the set of boundary vertices. The se-

quential and parallel versions of our algorithm are com-

petitive with the state-of-the-art in the shared memory

model. By achieving a lower amount of message ex-

changes (even asymptotically lower in our synthetic ex-

periments), they suit better for solving large problems

using a disk storage or a distributed system.
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1 Introduction

Minimum s-t cut (mincut) is a classical combinatorial

problem with applications in many areas of science and

engineering. This research was motivated by the wide

use of mincut/maxflow problems in computer vision,

where large sparse instances need to be solved. We start

by a more detailed overview of models and optimization

techniques in vision, where the mincut problem is em-

ployed and give examples of our test problems.

mincut in Computer Vision. In some cases, an

applied problem is formulated directly as a mincut.

More often, however, mincut problems in computer vi-

sion originate from the Energy minimization framework

(maximum a posteriori solution in a Markov random

field model). Submodular Energy minimization prob-
lems completely reduce to mincut (Ishikawa 2003;

Schlesinger and Flach 2006). When the energy min-

imization is intractable, mincut is employed in re-

laxation and local search methods. The linear relax-

ation of pairwise Energy minimization with 0-1 vari-

ables reduces to mincut (Boros et al 1991; Kolmogorov

and Rother 2007) as well as the relaxation of prob-

lems reformulated in 0-1 variables (Kohli et al 2008).

Expansion-move, swap-move (Boykov et al 1999) and

fusion-move (Lempitsky et al 2010) algorithms formu-

late a local improvement step as a mincut problem.

Many applications of mincut in computer vision

use graphs of a regular structure, with vertices arranged

into an N -D grid and edges uniformly repeated, e.g .,

3D segmentation models illustrated in Fig. 1(c), 3D re-

construction models, Fig. 1(b). Because of such regular

structure, the graph itself need not be stored in the

memory, only the edge capacities, allowing relatively

large instances to be solved by a specialized implemen-

http://www.springer.com/alert/urltracking.do?id=Ld656fdMab653fSb04c906
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mailto:shekhole@fel.cvut.cz
mailto:hlavac@fel.cvut.cz
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Fig. 1 Examples of labeling problems in computer vi-
sion solved via maxflow. (a) Stereo and stereo with occlu-
sions (Boykov et al 1998), (Kolmogorov and Zabih 2001).
(b) 3D reconstruction (Lempitsky et al 2006; Boykov and
Lempitsky 2006) and surface fitting (Lempitsky and Boykov
2007). (c) 3D segmentation (Boykov and Jolly 2001; Boykov
and Funka-Lea 2006; Boykov and Kolmogorov 2003). The in-
stances are published at the University of Western Ontario
web pages (2008) for benchmarking maxflow implementa-
tions.

tation. However, in many cases, it is advantageous to

have a non-regular structure, e.g ., in stereo with occlu-

sions in Fig. 1(a), in 3D reconstruction with adaptive

tetrahedral volume (Labatut et al 2009; Jancosek and

Pajdla 2011). Such applications would benefit from a

large-scale generic mincut solver.

Distributed Computation. The previous re-

search mostly focused on speeding up mincut by paral-

lel computation in the shared memory model. We con-

sider a distributed memory model, which assumes that

the computation units have their own separate memory

and exchanging the information between them is expen-

sive. A distributed algorithm has therefore to divide the

computation and the problem data between the units

and keep the communication rate low. We will consider

distributed algorithms, operating in the following two

practical usage modes:

– Sequential (or streaming) mode, which uses a single

computer with a limited memory and a disk storage,

reading, processing and writing back a portion of

data at a time.

– Parallel mode, in which the units are thought as

computers in a network.

We propose new algorithms for both cases, prove their

correctness and termination guarantees. In the assess-

ment of complexity, we focus on the costly operations

such as load-unload of the data in the streaming mode

or message exchanges in the parallel mode. More specif-

ically, we call a sweep the event when all units of a dis-

tributed algorithm recalculate their data once. Sweeps

in our algorithms correspond to outer iterations and

their number is roughly proportional to the amount of

communication in the parallel mode or disk operations

in the streaming mode. While there are algorithms with

better bounds in terms of elementary operations, our

algorithms achieve lower communication rates.

Previous Work. A variant of path augmenta-

tion algorithm was shown by Boykov and Kolmogorov

(2004) to have the best performance on computer vi-

sion problems among sequential solvers. There were

several proposals how to parallelize it. Partially dis-

tributed implementation (Liu and Sun 2010) augments

paths within disjoint regions first and then merges re-

gions hierarchically. In the end, it still requires finding

augmenting paths in the whole problem. Therefore, it

cannot be used to solve a large problem by distributing

it over several computers or by using a limited memory

and a disk storage. For the shared memory model Liu

and Sun (2010) reported a near-linear speed-up with up

to 4 CPUs for 2D and 3D segmentation problems.

Strandmark and Kahl (2010) obtained a distributed

algorithm using a dual decomposition approach. The

subproblems are mincut instances on the parts of the

graph (regions) and the master problem is solved using

the subgradient method. This approach requires solving

mincut subproblems with real valued capacities and

does not have a polynomial bound on the number of

iterations. The integer algorithm proposed by Strand-

mark and Kahl (2010) is not guaranteed to terminate.

Our experiments (§7.3) showed that it did not termi-

nate on some of the instances in 1000 sweeps. In §10,

we relate dual variables in this method to flows.

The push-relabel algorithm (Goldberg and Tar-

jan 1988) performs many local atomic operations,

which makes it a good choice for a parallel or dis-

tributed implementation. A distributed version (Gold-

berg 1991) runs in O(n2) time using O(n) processors

and O(n2
√
m) messages, where n is the number of ver-

tices and m is the number of edges in the problem.

However, for a good practical performance it is cru-

cial to implement gap relabel and global relabel heuris-

tics (Cherkassky and Goldberg 1994). The global rela-

bel heuristic can be parallelized (Anderson and Setubal

1995), but it is difficult to distribute. We should note,

however, that the global relabel heuristic was not essen-

tial in the experiments with computer vision problems

we made (§7.2). Delong and Boykov (2008) proposed a

coarser granulation of push-relabel operations, associ-

ating a subset of vertices (a region) to each processor.

Push and relabel operations inside a region are decou-

pled from the rest of the graph. This allows to process

several non-interacting regions in parallel or run in a

limited memory, processing few regions at a time. The

gap and relabel heuristics, restricted to the regions (De-

long and Boykov 2008) are powerful and distributed at

the same time. Our work was largely motivated by De-
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long and Boykov (2008) and the notice that their ap-

proach might be extendible to augmenting path algo-

rithms. However, our first attempt to prioritize augmen-

tation to the boundary vertices by the shortest distance

to the sink did not lead to a correct algorithm.

Contribution. In this work we revisit the algo-

rithm of Delong and Boykov (2008) for the case of

a fixed partition into regions. We study a sequential

variant and a novel parallel variant of their algorithm,

which allows computation on neighboring interacting

regions to run concurrently using a conflict resolution

similar to the asynchronous parallel push-relabel (Gold-

berg 1991). We prove that both variants have a tight

O(n2) bound on the number of sweeps. The new algo-

rithm we construct works with the same partition of the

graph into regions but is guided by a different distance

function than the push-relabel one.

Given a fixed partition into regions, we introduce

a distance function which counts the number of region

boundaries crossed by a path to the sink. Intuitively, it

corresponds to the amount of costly operations – net-

work communications or loads-unloads of the regions in

the streaming mode. The algorithm maintains a label-

ing, which is a lower bound on the distance function.

Within a region, we first augment paths to the sink

and then paths to the boundary vertices prioritized by

the lowest label. Thus the flow is pushed out of the

region in the direction given by the distance estimate.

We present a sequential and parallel versions of the al-

gorithm which terminate in O(|B|2) sweeps, where B is

the set of all boundary vertices (incident to inter-region

edges).

The proposed algorithms are evaluated on instances

of mincut problems collected and published by the

Computer Vision Research Group at the University

of Western Ontario (illustrated in Fig. 1). The re-

sults are compared against the state-of-the-art sequen-

tial and parallel solvers. We also studied the behav-

ior of the algorithms w.r.t. problem size, granularity

of the partition, etc. Our implementation is publicly

available at http://cmp.felk.cvut.cz/~shekhovt/

d_maxflow.

Other Related Work. The following works do not

consider a distributed implementation but are relevant

to our design. The Partial Augment-Relabel algorithm

(PAR) by Goldberg (2008) augments in each step a

path of length k. It may be viewed as a lazy variant of

push-relabel, where actual pushes are delayed until it is

known that a sequence of k pushes can be executed. The

algorithm by Goldberg and Rao (1998) incorporates the

notion of a length function and a valid labeling w.r.t.

this length. It can be seen that the labeling maintained

by our algorithm corresponds to the length function

assigning 1 to boundary edges and 0 to intra-region

edges. Goldberg and Rao (1998) used such generalized

labeling in the context of the blocking flow algorithm

but not within the push-relabel.

2 mincut and Push-Relabel

We solve mincut problem by finding a maximum pre-

flow1. In this section, we give basic definitions and in-

troduce the push-relabel framework of Goldberg and

Tarjan (1988). While we assume the reader is familiar

with mincut/maxflow, we explain some known results

using the notation adjusted for the needs of this paper.

In the classical framework of minimum cut and max-

imum flow, the flow augmentation transforms a mini-

mum cut problem into an equivalent one on the residual

network (preserving costs of all cuts up to a constant).

However, there is no equivalent minimum cut problem

corresponding to an augmentation of a preflow. In the

push-relabel approach of Goldberg and Tarjan (1988),

this is not essential, as only single residual arcs need

to be considered and algorithms can be formulated as

working with a pair of a network and a preflow. In this

paper, we need to work with residual paths and the

reachability in the residual network. We therefore use

the extended definition of the minimum cut problem,

which includes a flow excess (or supply) in every ver-

tex. After this extension, the family of equivalent min-

cut problems becomes closed under preflow augmen-

tations. This allows us to formulate algorithms more

conveniently as working with the current residual net-

work and constructing a preflow increment. This point

is illustrated in Fig. 2.
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Fig. 2 (a) Example of a network with indicated edge capacity
function. (b) Augmenting path approach: send flow from the
source to the sink along a path. The residual network defines
an equivalent min-cut problem. (c) Push-relabel approach:
the preflow is pushed over arcs in all directions, prioritized
by the shortest distance to the sink. The equivalent min-cut
problem is defined by a network with excess.

1 A maximum preflow can be completed to a maximum flow
using the flow decomposition, in O(m logm) time. Because
we are primarily interested in the minimum cut, we do not
consider this step or whether it can be distributed.

http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
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By a network we call the tuple G = (V,E, s, t, c, e),

where V is a set of vertices; E ⊂ V × V is the set of

edges, thus (V,E) is a directed graph; s, t ∈ V , s 6=
t, are source and sink, respectively; c : E → N0 is a

capacity function; and e : V → {0, 1, . . . ,∞}, e(t) = 0,

e(s) =∞ is an excess function. We also denote n = |V |
and m = |E|.

For any sets X,Y ⊂ V we will denote (X,Y ) =

E ∩ (X × Y ). For C ⊂ V such that s ∈ C, t /∈ C, the

set of edges (C, C̄), with C̄ = V \C is called an s-t cut.

The mincut problem is

min
{ ∑

(u,v)∈(C,C̄)

c(u, v)+
∑
v∈C̄

e(v)
∣∣∣C ⊂ V, s ∈ C, t ∈ C̄}. (1)

The objective is called the cost of the cut. Note, that

excess in this problem can be equivalently represented

as additional edges from the source, but we prefer the

explicit form. Without a loss of generality, we assume

that E is symmetric – if not, the missing edges are

added and assigned a zero capacity.

A preflow in G is the function f : E → Z satisfying

the following constraints:

f(u, v) ≤ c(u, v) ∀(u, v) ∈ E; (2a)

(capacity constraint)

f(u, v) = −f(v, u) ∀(u, v) ∈ E; (2b)

(antisymmetry)

e(v) +
∑

u | (u,v)∈E

f(u, v) ≥ 0 ∀v ∈ V. (2c)

(preflow constraint)

The constraint (2b) removes the redundancy in the

otherwise independent flow values on (u, v) and (v, u)

(positive flows should naturally cancel each other) and

shortens the equations at the same time.

A residual network w.r.t. preflow f is a network

Gf = (V,E, s, t, cf , ef ) with the capacity and excess

functions given by

cf = c− f, (3a)

ef (v) = e(v) +
∑

u | (u,v)∈E

f(u, v), ∀v ∈ V \{s, t}. (3b)

By constraints (2) it is cf ≥ 0 and ef ≥ 0. The costs

of all s-t cuts differ in G and Gf by a constant called

the flow value, |f | =
∑

u | (u,t)∈E
f(u, t). This can be easily

verified by substituting cf and ef into (1) and expand-

ing. Network Gf is thus equivalent to network G up

to the constant |f | and since all cuts in Gf are non-

negative, |f | is a lower bound on the cost of a cut in G.

The problem of maximizing this lower bound, i.e. find-

ing a maximum preflow:

max
f
|f | s.t. constraints (2) (4)

is dual to mincut. The value of a maximum preflow

equals to the cost of a minimum cut and the solutions

are related as explained below.

We say that w ∈ V is reachable from v ∈ V in the

network Gf if there is a path (possibly of length 0) from

v to w composed of edges with strictly positive residual

capacities cf (a residual path). This relation is denoted

by v → w.

Let us consider a residual path from v to w such

ef (v) > 0. Augmentation increases the flow by ∆ > 0

on all forward edges of the path, and decreases it on

all reverse edges, where ∆ does not exceed the residual

capacities of the forward arcs or ef (v). In the result, the

excess ef (v) is decreased and excess ef (w) is increased.

Augmenting paths to the sink increases the flow value.

In the augmenting path approach, the problem (4) is

solved by repeatedly augmenting residual paths from

vertices having excess (e.g ., source) to the sink.

If w is not reachable from v in Gf we write v 9 w.

For any X,Y ⊂ V , we write X → Y if there exist

x ∈ X, y ∈ Y such that x → y. Otherwise we write

X 9 Y .

A preflow f is maximum iff there is no residual path

to the sink which can be augmented. This can be writ-

ten as {v | ef (v) > 0} 9 t in Gf . In this case the cut

(T̄ , T ) with T = {v ∈ V | v → t in Gf} has value 0 in

Gf . Because all cuts are non-negative it is a minimum

cut.

2.1 General Push-relabel

A Distance function d∗ : V → {0, 1, . . . , n} in Gf as-

signs to v ∈ V the length of the shortest residual path

from v to t, or n if no such path exists. A shortest path

cannot have loops, thus its length is not greater than

n− 1. Let us denote d∞ = n.

A labeling d : V → {0, 1, . . . , d∞} is valid in Gf if

d(t) = 0 and d(u) ≤ d(v)+1 for all (u, v) ∈ E such that

cf (u, v) > 0. Any valid labeling is a lower bound on the

distance d∗ in Gf , however not every lower bound is a

valid labeling.

A vertex v is called active w.r.t. (f, d) if ef (v) > 0

and d(v) < d∞.

The definitions of reachability and validity are given

w.r.t. the residual network Gf , however expressions like

“v → w in G” or “d is valid in G” are also correct, and

will be needed later in the paper. In particular, we will

consider algorithms making some large steps, where a
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preflow increment f is computed and then applied to

the initial network by assigning G := Gf . After that,

the algorithm continues with G and resets f .

To ensure that residual paths do not go through

the source and for reasons of efficiency, we make all

edges from the source saturated during the following

Init procedure (common to all algorithms in this paper).

Procedure Init
/* saturate source edges */

1 f(s, v) := c(s, v), ∀(s, v) ∈ E;
2 G := Gf ; f := 0; /* apply preflow */

3 d := 0, d(s) := d∞; /* initialize labels */

The generic push-relabel algorithm by Goldberg and

Tarjan (1988) maintains a preflow f and a valid labeling

d. It starts with Init and applies the following Push

and Relabel operations while possible:

– Push(u, v), which is applicable if u is active and

cf (u, v) > 0 and d(u) = d(v) + 1. The operation

increases f(u, v) by ∆ and decreases f(v, u) by ∆,

where ∆ = min(ef (u), cf (u, v)).

– Relabel(u), which is applicable if u is active and

∀v | (u, v) ∈ E, cf (u, v) > 0 it is d(u) ≤ d(v).

It sets d(u) := min
(
d∞,min{d(v) + 1 | (u, v) ∈

E, cf (u, v) > 0}
)
.

If u is active then either Push or Relabel operation

is applicable to u. The algorithm preserves validity of

the labeling and stops when there are no active vertices.

Then for any u such that ef (u) > 0, we have d(u) = d∞

and therefore d∗(u) = d∞ and u 9 t in Gf , so f is a

maximum preflow.

3 Region Discharge Revisited

We now review the approach of Delong and Boykov

(2008) and reformulate it for the case of a fixed graph

partition. We then introduce generic sequential and

parallel algorithms which will be applied with both

push-relabel and augmenting path approaches.

Delong and Boykov (2008) introduce the following

operation. The discharge of a region R ⊂ V \{s, t} ap-

plies Push and Relabel to v ∈ R until there are no

active vertices left in R. This localizes computations to

R and its boundary, defined as

BR = {w | ∃u ∈ R (u,w) ∈ E,w /∈ R, w 6= s, t}. (5)

When a Push is applied to an edge (v, w) ∈ (R,BR),

the flow is sent out of the region. We say that two re-

gions R1, R2 ⊂ V \{s, t} interact if R1 ∩ R2 6= ∅ or

R1 ∩ BR2 6= ∅, that is they share vertices or they are

 t

s

 

s

t

B
R

R

(a) (b)

Fig. 3 (a) Partition of a network into 4 regions and the
boundary set B depicted by stars. (b) The region network
corresponding to the highlighted region in (a).

connected by an edge. Because Push and Relabel oper-

ations work on the individual edges, discharges of non-

interacting regions can be performed in parallel. The al-

gorithm proposed by Delong and Boykov (2008) repeats

the following steps until there are no active vertices in

V :

1. Select several non-interacting regions, containing ac-

tive vertices.

2. Discharge the selected regions in parallel, applying

region-gap and region-relabel heuristics.

3. Apply the global gap heuristic.

All heuristics (global-gap, region-gap, region-relabel)

serve to improve the distance estimate. They are very

important in practice, but do not affect the theoretical

properties and will be discussed in §5 devoted to the

implementation.

3.1 Region Network

We now take a different perspective on the algorithm.

We consider each region discharge as a proper subprob-

lem to be solved. Given the states of the boundary edges

on the input (labels and excess), region discharge of re-

gion R returns a flow and a labeling. To define it for-

mally, we first single out a subnetwork on which region

discharge will work.

A region network GR = (V R, ER, s, t, cR, eR) has

the set of vertices V R = R ∪ BR ∪ {s, t}; set of edges

ER = (R ∪ {s, t}, R ∪ {s, t}) ∪ (R,BR) ∪ (BR, RR); ca-

pacities cR(u, v) = c(u, v) if (u, v) ∈ ER\(BR, R) and 0

otherwise; and excess eR = e|R∪{s,t} (the restriction of

function e to its subdomain R ∪ {s, t}). This subnet-

work is illustrated in Fig. 3(b). Note that the capacities

of edges coming from the boundary, (BR, R), are set to

zero. Indeed, these edges belong to a neighboring region

network. The region discharge operation of Delong and
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Boykov (2008), which we refer to as Push-relabel Re-

gion Discharge (PRD), can now be defined as shown in

Procedure PRD.

Procedure (f, d) = PRD(GR,d)

/* assume d : V R → {0, . . . , d∞} valid in GR */

1 while ∃v ∈ R active do

2 apply Push or Relabel to v; /* changes f and d */

3 apply region gap heuristic (§5); /* optional */

3.2 Generic Region Discharging Algorithms

While Delong and Boykov (2008) selected the regions

dynamically, trying to divide the work evenly between

CPUs in each iteration and cover the most of the ac-

tive vertices, we restrict ourselves to a fixed collection

of regions (Rk)Kk=1 forming a partition (disjoint union)

of V \{s, t}. With respect to this partition we will use

shortened notations Bk, Gk, V k, Ek, ck, ek to denote

the corresponding region boundary BRk , region net-

workGRk and its respective components. We also define

the boundary B =
⋃
k B

k, which is the set of all vertices

incident to inter-region edges (Fig. 3(a)).

We now define generic sequential and parallel algo-

rithms which use a black-box Discharge function as

a subroutine. The sequential algorithm (Alg. 1) takes

regions one-by-one from the partition and applies the

Discharge operation to them until there are no active

vertices in either region. The parallel algorithm (Alg. 2)

calls Discharge for all regions concurrently and then re-

solves conflicts in the flow similarly to the asynchronous

parallel push-relabel of Goldberg and Tarjan (1988). A

conflict occurs if two interacting regions increase their

labels on the vertices of a boundary edge (u, v) simulta-

neously and try pushing flow over it (in their respective

region networks). In such a case, we accept the labels,

but do not allow the flow to cross the boundary in one

of the directions by the following construction. In step 5

of Alg. 2, boundary edges, where the validity condition

is potentially violated, are assigned α = 0 (here, [[]] is

the Iverson bracket). The flow fusion in step 6 disables

the flow on such edges (the flow going “upwards”). As

will be proven later, this correction restores the validity.

The actual implementation does not maintain the full

network G, only the separate region networks. This is

in contrast to Delong and Boykov (2008), who perform

all operations in the global network G.

In the case when the abstract Discharge procedure

is implemented by PRD, the sequential and parallel al-

gorithms correspond to the push-relabel approach and

will be referred to as S-PRD and P-PRD respectively.

Algorithm 1: Sequential Discharging

1 Init;
2 while there are active vertices do /* a sweep */

3 for k = 1, . . .K do

4 Construct Gk from G;
5 (f ′, d′) := Discharge(Gk, d|V k );
6 G := Gf ′ ; /* apply f ′ to G */

7 d|Rk := d′|Rk ; /* update labels */

8 apply global gap heuristic (§5); /* optional */

9 Compute the reachability v → t in G, ∀v (§5.2);

Algorithm 2: Parallel Discharging

1 Init;
2 while there are active vertices do /* a sweep */

/* discharge all regions in parallel */

3 (f ′k, d
′
k) := Discharge(Gk, d|V k ) ∀k;

4 d′|Rk := d′k|Rk ∀k; /* fuse labels */

/* determine valid pairs */

5 α(u, v) := [[d′(u) ≤ d′(v) + 1]] ∀(u, v) ∈ (B,B);
/* fuse flows */

6 f ′(u, v) :={
α(v, u)f ′k(u, v) + α(u, v)f ′j(u, v) if (u, v) ∈ (Rk, Rj)

f ′k(u, v) if (u, v) ∈ (Rk, Rk)

7 G := Gf ′ ; /* apply f ′ to G */

8 d := d′; /* update labels */

9 global gap heuristic (§ 5); /* optional */

10 Compute the reachability v → t in G, ∀v (§5.2);

S-PRD is a sequential variant of Delong and Boykov

(2008) and P-PRD is a novel parallel variant. As was

mentioned above, the original algorithm by Delong and

Boykov (2008) allows to discharge only non-interacting

regions in parallel (in this case there are no conflicts).

To discharge all regions, this approach would require se-
quentially selecting subsets of non-interacting regions

for processing.2 Our parallel algorithm applies ideas

of Goldberg and Tarjan (1988) to remove this limitation

and process all regions in parallel.

We prove below that both S-PRD and P-PRD ter-

minate with a valid labeling in at most 2n2 sweeps.

Parallel variants of push-relabel (Goldberg 1987) have

the same bound on the number of sweeps. However,

they perform much simpler sweeps, processing every

vertex only once, compared to S/P-PRD. A natural

question is whether O(n2) bound cannot be tightened

for S/P-PRD. In §9, we give an example of a graph,

its partition into two regions and a valid sequence of

Push and Relabel operations, implementing S/P-PRD

which takes Ω(n2) sweeps to terminate.3 The number

2 The number of sequential phases required in a general
case is equal to the minimal coloring of the region interaction
graph, i.e. 2 for bipartite graph and so on.
3 An algorithm is said to be Ω(f(n)) if for some numbers c′

and n0 and all n >= n0, the algorithm takes at least c′f(n)
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of inter-region edges in this example is constant, which

shows that a better bound in terms of this characteristic

is not possible.

3.3 Complexity of Sequential Push-relabel Region

Discharging

Our proof follows the main idea of the similar result for

parallel push-relabel by Goldberg (1987). The main dif-

ference is that we try to keep Discharge operation as

abstract as possible. Indeed, it will be seen that proofs

of termination of other variants follow the same pattern,

using several important properties of the Discharge op-

eration, abstracted from the respective algorithm. Un-

fortunately, to this end we do not have a unified proof,

so we will analyze all cases separately.

Statement 1 (Properties of PRD)

Let (f ′, d′) = PRD(GR, d), then

1. there are no active vertices in R w.r.t. (f ′, d′)

(optimality)

2. d′ ≥ d; d′|BR = d|BR (labeling monotony)

3. d′ is valid in GRf ′ (labeling validity)

4. f ′(u, v) > 0⇒ d′(u) > d(v), ∀(u, v) ∈ ER
(flow direction).

Proof 1. Optimality. This is the stopping condition of

PRD.

2,3. Labeling validity and monotony: labels are never

decreased and the Push operation preserves label-

ing validity (Goldberg and Tarjan 1988). Labels not

in Rk are not modified.

4. Flow direction: let f ′(u, v) > 0, then there was a

push operation from u to v in some step. Let d̃ be

the labeling in this step. We have d̃(u) = d̃(v) +

1. Because labels never decrease, d′(u) ≥ d̃(u) >

d̃(v) ≥ d(v). ut

These properties are sufficient to prove correctness and

the complexity bound of S-PRD. They are abstract

from the actual sequence of Push and Relabel opera-

tion performed by PRD and for a given pair (f ′, d′) they

are easy to verify. For correctness of S-PRD we need

to verify that it maintains a labeling, which is globally

valid.

Statement 2 Let d be a valid labeling in G. Let f ′

be a preflow in GR and d′ be a labeling satisfying

properties 2 and 3 of Statement 1. Extend f ′ to E

by letting f ′|E\ER = 0 and extend d′ to V by letting

d′|V \V R = d|V \V R . Then d′ is valid in Gf ′ .

time on some problem instance. Here we measure complexity
in sweeps.

Proof We have that d′ is valid in GRf ′ . For edges out-

side the region network, (u, v) ∈ (V \R, V \R), it is

f ′(u, v) = 0 and d′ coincides with d on V \R. It re-

mains to verify validity on the boundary edges (v, u) ∈
(BR, R) in the case cRf (v, u) = 0 and cf (v, u) > 0.

These are the incoming boundary edges which are ze-

roed in the network GR. Because 0 = cRf (v, u) =

cR(v, u)−f(v, u) = −f(v, u), we have cf (v, u) = c(v, u).

Since d was valid in G, d(v) ≤ d(u) + 1. The new label-

ing d′ satisfies d′(u) ≥ d(u) and d′(v) = d(v). It follows

that d′(v) = d(v) ≤ d(u) + 1 ≤ d′(u) + 1. Hence d′ is

valid in Gf ′ . ut

Similar to Goldberg (1987), we introduce the potential

function

Φ = max{d(v) | v ∈ V, v is active in G}. (6)

This value may increase and decrease during the algo-

rithm run, but the total number of times it can change

is bounded. We first show that for a region discharge

on R its increase is bounded by the total increase of the

labeling.

Statement 3 Let (f ′, d′) satisfy properties 2-4 of

Statement 1. Let f ′ be extended to E by setting

f ′|E\ER = 0 and d′ be extended to V by setting

d′|V \V R = d|V \V R . Let G′ = Gf ′ and Φ′ be the new

potential computed for the network G′ and labeling d′.

Then

Φ′ − Φ ≤
∑
v∈R

[d′(v)− d(v)]. (7)

Proof Let the maximum in the definition of Φ′ be at-

tained at a vertex v, so Φ′ = d′(v). Then either v /∈ V R,

in which case Φ′ ≤ Φ (because the label and the excess
of v in G and G′ are the same), or v ∈ V R and there ex-

ists a path (v0, v1, . . . vl), vl = v, v0, . . . vl−1 ∈ R, such

that f ′(vi−1, vi) > 0, i = 1 . . . l and v0 is active in G.

We have Φ ≥ d(v0), therefore

Φ′ − Φ ≤ d′(vl)− d(v0) =

l∑
i=1

[d′(vi)− d′(vi−1)] + [d′(v0)− d(v0)]

(a)

≤
l∑
i=0

[d′(vi)− d(vi)]

(b)

≤
∑

v∈R∪BR

[d′(v)− d(v)]
(c)
=
∑
v∈R

[d′(v)− d(v)],

(8)

where inequality (a) is due to the flow direction prop-

erty (statement 1.4) which implies d′(vi−1) > d(vi).

The inequality (b) is due to monotony property (state-

ment 1.2) and due to vi ⊂ R ∪ BR. The equality (c) is

due to d′|BR = d|BR . ut
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We can now state the termination.

Theorem 1 S-PRD terminates in at most 2n2 sweeps.

Proof Labeling d does not exceed n for every vertex.

Because there are n vertices, d can be increased n2 times

at most.

From Statement 3 it follows that the increase of Φ

after the discharge of region Rk is bounded by the total

increase of d|Rk . Since regions are disjoint, the total

increase of Φ after a sweep of S-PRD is bounded by the

total increase of d.

If d has not increased during a sweep (d′ = d) then

Φ decreases at least by 1. Indeed, let us consider the

set of vertices having the label greater or equal to the

label of the highest active vertex, H = {v | d(v) ≥ Φ}.
These vertices do not receive flow during all discharge

operations due to the flow direction property. After dis-

charging Rk, there are no active vertices in Rk ∩ H
(statement 1.1). Therefore, there are no active vertices

in H after the full sweep.

In the worst case, Φ can increase by one n2 times and

decrease by one n2 times. Therefore, there are no active

vertices in G in at most 2n2 sweeps and the algorithm

terminates. ut

When the algorithm terminates, it outputs a net-

work G, equivalent to the initial one, a labeling d valid

in G and guarantees that there are no active vertices

w.r.t. d. This implies that in the current network G

there are no paths form the vertices with excess to the

sink and the cut (T̄ , T ), with T = {v | v → t in G} is

one of the minimum cuts. The issue how to compute

the reachability v → t in G in a distributed fashion,

utilizing d, rather than by breadth-first search in G is

discussed in §5.2. This is the purpose of the last step in

both of the algorithms.

3.4 Complexity of Parallel Push-relabel Region

Discharging

We will now prove the validity and termination of the

parallel algorithm using the results of previous section.

Properties similar to Statement 1 will be proven for

the fused flow and labeling (constructed at step 6 of

Alg. 2) and the bound on the increase of the potential

will follow for the whole network as if it was a single

region.

Statement 4 Let d be a valid labeling in the beginning

of a sweep of P-PRD. Then the pair of fused flow and

labeling (f ′, d′) satisfies:

1. d′ ≥ d; (labeling monotony)

2. d′ is valid in Gf ′ ; (labeling validity)

3. f ′(u, v) > 0⇒ d′(u) > d(v), ∀(u, v) ∈ E;

(flow direction)

Proof

1. We have d′|Rk ≥ d|Rk for all k.

2. We have to prove validity for the boundary edges,

where the flow and the labeling are fused from different

regions. It is sufficient to study the two regions case. De-

note the regions R1 and R2. The situation is completely

symmetric w.r.t. orientation of a boundary edge (u, v).

Let u ∈ R1 and v ∈ R2. Let only d′(v) ≤ d′(u) + 1

be satisfied and not d′(u) ≤ d′(v) + 1. By the con-

struction in step 6 of Alg. 2, flow f2 is canceled and

f ′(u, v) = f ′1(u, v) ≥ 0. Suppose cf ′
1
(u, v) > 0, then we

have that d′1(u) ≤ d′1(v) + 1, because d′1 is valid in G1
f ′
1
.

It follows that d′(u) = d′1(u) ≤ d′1(v) + 1 = d(v) + 1 ≤
d′2(v)+1 = d′(v)+1, where we also used labeling mono-

tonicity property. The inequality d′(u) ≤ d′(v) + 1 is a

contradiction, therefore it must be that cf ′(u, v) = 0.

The labeling d′ is valid on (u, v) in this case. Note that

inequalities d′(v) ≤ d′(u) + 1 and d′(u) ≤ d′(v) + 1 can-

not be violated simultaneously. In the remaining case,

when both inequalities are satisfied, the labeling is valid

for arbitrary flow on (u, v), so no flow is canceled in the

flow fusion step.

3. If f ′(u, v) > 0 then f ′k(u, v) > 0 and there was a

push operation from u to v in the discharge of region

Rk 3 u. Let d̃k be the labeling in Gk on this step. We

have d′(u) ≥ d̃k(u) = d̃k(v) + 1 ≥ d(v) + 1 > d(v). ut
Theorem 2 P-PRD terminates in at most 2n2 sweeps.

Proof As before, the total increase of d is at most n2. As

shown above, the labeling monotony, labeling validity

and flow direction are satisfied for the fused flow and

labeling (f ′, d′) on the region R = V \{s, t}. Applying

Statement 3, we get that the total increase of potential

is bounded above by the total increase of d during a

sweep.

If d has not increased during a sweep (d′ = d) then

α(u, v) = 1 for all (u, v) ∈ (B,B) (all boundary pairs

are valid). Flow direction property implies that the flow

goes only “downwards” the labeling. So no flow is can-

celed on the fusion step. Let H = {v | d(v) ≥ Φ}. These

vertices are above any active vertices, so they cannot

receive flow. After the sweep, all active vertices which

were in H are discharged and must become inactive. Be-

cause there is no active vertices with label Φ or above

left, it is Φ′ < Φ. It follows that the algorithm will ter-

minate in at most 2n2 sweeps. ut

4 Augmented path Region Discharge

In this section, we introduce the core of our new algo-

rithm, which combines path augmentation and push-
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Fig. 4 (a) Illustration of region distance. (b) Illustration of
Lemma 1: augmentation on paths from x to u or from v to y
preserves X 9 Y , but not the augmentation on the red path.

relabel approaches. We will give a new definition to the

distance function and validity of a labeling and intro-

duce the new Discharge operation to be used within

the generic sequential and parallel algorithms (Alg. 1

and 2). With these modifications the algorithms will

be proven correct and posses a tighter bound on the

number of sweeps.

4.1 A New Distance Function

Consider the fixed partition (Rk)Kk=1. Let us introduce a

distance function, which counts only inter-region edges

and not inner edges. The region distance d∗B(u) in G is

the minimal number of inter-region edges contained in

a path from u to t, or |B| if no such path exists:

d∗B(u) =

 min
P=((u,u1),...,(ur,t))

|P ∩ (B,B)| if u→ t,

|B| if u9 t.

(9)

This distance corresponds well to the number of region

discharge operations required to transfer the excess to

the sink (see Fig. 4(a)).

Statement 5 If u→ t then d∗B(u) < |B|.

Proof Let P be a path from u to t given as a sequence

of edges. If P contains a loop then it can be removed

from P and |P∩(B,B)| will not increase. A path without

loops goes through each vertex at most once. For B ⊂ V
there is at most |B| − 1 edges in the path which have

both endpoints in B. ut

We now let d∞ = |B| and redefine a valid labeling w.r.t.

the new distance. A labeling d : V → {0, . . . , d∞} is

valid in G if d(t) = 0 and for all (u, v) ∈ E such that

cf (u, v) > 0:

d(u) ≤ d(v) + 1 if (u, v) ∈ (B,B), (10)

d(u) ≤ d(v) if (u, v) /∈ (B,B). (11)

Procedure ARD(GR,d)

/* assume d : V R → {0, . . . , d∞} valid in GR */

1 for i = 0, 1, . . . , d∞ do /* stage i */

2 Ti = {t} ∪ {v ∈ BR | d(v) < i};
3 Augment(R, Ti);

/* Region-relabel */

4 d(u) :=


min{i |u→ Ti} u ∈ R, u→ Td∞ ,

d∞ u ∈ R, u9 Td∞ ,

d(u) u ∈ BR.

Procedure Augment(X,Y )

1 while there exist a path (v0, v1, . . . , vl), cf (vi−1, vi) > 0,
ef (v0) > 0, v0 ∈ X, vl ∈ Y do

2 augment ∆ = min(ef (v0),min
i
cf (vi−1, vi)) units

along the path.

Statement 6 A valid labeling d is a lower bound on

the region distance d∗B.

Proof If u 9 t then d(u) ≤ d∗B. Otherwise, let P =

((u, v1), . . . , (vl, t)) be one of the shortest paths w.r.t.

d∗B, i.e. d∗B(u) = |P ∩ (B,B)|. Applying the validity

property to each edge in this path, we have d(u) ≤
d(t) + |P ∩ (B,B)| = d∗B(u). ut

4.2 New Region Discharge

In this subsection, reachability relations “→”, “9”,

residual paths, and labeling validity will be understood

in the region network GR or its residual GRf .

The new Discharge operation, called Augmented

path Region Discharge (ARD), works as follows. It first

pushes excess to the sink along augmenting paths in-

side the network GR. When it is no longer possible,

it continues to augment paths to vertices in the re-

gion boundary BR in the order of their increasing la-

bels. This is represented by the sequence of nested

sets T0 = {t}, T1 = {t} ∪ {v ∈ BR | d(v) < 1}, . . . ,

Td∞ = {t} ∪ {v ∈ BR | d(v) < d∞}. Set Ti is the desti-

nation of augmentations in stage i. As we prove below,

in stage i > 0 residual paths may exist only to the set

Ti\Ti−1 = {v | d(v) = i− 1}.
The labels on the boundary d|BR remain fixed dur-

ing ARD and the labels d|R inside the region do not

participate in augmentations and therefore are updated

only in the end.

We claim that ARD terminates with no active ver-

tices inside the region, preserves validity and mono-

tonicity of the labeling, and pushes flow from higher la-
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Fig. 5 (a) Reachability relations in the network GR
f at the

end of stage 1 of ARD: {v | ef (v) > 0}9 T1; Td∞\T1 9 R. (b)
Example of a path in the network GR

f for which by Corollary 2

it must be d(v) ≤ d(w). Note, such a path is not possible at
the beginning of ARD, but in the middle it may exist since
residual capacities of edges (BR, R) may become non-zero.

bels to lower labels w.r.t. the new labeling. These prop-

erties will be required to prove finite termination and

correctness of S-ARD. Before we prove them (State-

ment 10) we need the following intermediate results:

– Properties of the network GRf maintained by ARD

(Statement 7, Corollaries 1 and 2).

– Properties of valid labellings in the network GRf
(Statement 8).

– Properties of the labeling constructed by region-

relabel (line 4 of ARD) in the network GRf (State-

ment 9).

Lemma 1 Let X,Y ⊂ V R, X ∩ Y = ∅, X 9 Y .

Then X 9 Y is preserved after i) augmenting a path

(x, . . . , v) with x ∈ X and v ∈ V R; ii) augmenting a

path (v, . . . , y) with y ∈ Y and v ∈ V R.

Proof (See Fig. 4(b)). Let X be the set of vertices reach-

able from X. Let Y be the set of vertices from which
Y is reachable. Clearly X ∩ Y = ∅, otherwise X → Y .

Therefore, the cut (X , X̄ ) separatesX and Y and has all

edge capacities equal zero. Any residual path starting

in X or ending in Y cannot cross the cut and its aug-

mentation cannot change the edges of the cut. Hence,

X and Y will stay separated. ut

Statement 7 Let v ∈ V R and v 9 Ta in Gf in the be-

ginning of stage i0 of ARD, where a, i0 ∈ {0, 1, . . . d∞}.
Then v 9 Ta holds until the end of ARD, that is during

all stages i ≥ i0.

Proof We need to show that v 9 Ta is not affected

by augmentations performed by ARD. If i0 ≤ a, we

first prove v 9 Ta holds during stages i0 ≤ i ≤ a.

Consider augmentation of a path (u0, u1, . . . , ul), u0 ∈
R, ul ∈ Ti ⊂ Ta, ef (u0) > 0. Assume v 9 Ta before

augmentation. By Lemma 1 with X = {v}, Y = Ta
(noting that X 9 Y and the augmenting path ends in

Y ), after the augmentation v 9 Ta. By induction, it

holds till the end of stage a and hence in the beginning

of stage a+ 1.

We can assume now that i0 > a. Let A = {u ∈
R | ef (u) > 0}. At the end of stage i0− 1, we have A9
Ti0−1 ⊃ Ta by construction. Consider augmentation in

stage i0 on a path (u0, u1 . . . , ul), u0 ∈ R, ul ∈ Ti0 ,

ef (u0) > 0. By construction, u0 ∈ A. Assume {v} ∪
A 9 Ta before augmentation. Apply Lemma 1 with

X = {v} ∪ A, Y = Ta (we have X 9 Y and u0 ∈ A ⊂
X). After augmentation it is X 9 Ta. By induction,

X 9 Ta till the end of stage i0. By induction on stages,

v 9 Ta until the end of the ARD procedure. ut

Corollary 1 If w ∈ BR then w 9 Td(w) throughout

the ARD procedure.

Proof At initialization, it is fulfilled by construction of

GR due to cR(BR, R) = 0. It holds then during ARD

by Statement 7. ut

In particular, we have BR 9 t during ARD.

Corollary 2 Let (u, v1 . . . vl, w) be a residual path in

GRf from u ∈ R to w ∈ BR and let vr ∈ BR for some

r. Then d(vr) ≤ d(w).

Proof We have vr 9 Td(vr). Suppose d(w) < d(vr),

then w ∈ Td(vr) and because vr → w it is vr → Td(vr)

which is a contradiction. ut

The properties of the network GRf established by State-

ment 7 and Corollary 2 are illustrated in Fig. 5.

Statement 8 Let d be a valid labeling, d(u) ≥ 1, u ∈
R. Then u9 Td(u)−1.

Proof Suppose u→ T0. Then there exist a residual path

(u, v1 . . . vl, t), vi ∈ R (by Corollary 1 it cannot happen

that vi ∈ BR). By validity of d we have d(u) ≤ d(v1) ≤
· · · ≤ d(vl) ≤ d(t) = 0, which is a contradiction.

Suppose d(u) > 1 and u → Td(u)−1. Because u 9
T0, it must be that u→ w, w ∈ BR and d(w) < d(u)−1.

Let (v0 . . . vl) be a residual path with v0 = u and vl =

w. Let r be the minimal number such that vr ∈ BR. By

validity of d we have d(u) ≤ d(v1) ≤ · · · ≤ d(vr−1) ≤
d(vr) + 1. By corollary 2 we have d(vr) ≤ d(w), hence

d(u) ≤ d(w) + 1 which is a contradiction. ut

Statement 9 For d computed on line 4 of Proce-

dure ARD and any u ∈ R it holds:

1. d is valid;

2. u9 Ta ⇔ d(u) ≥ a+ 1.

Proof

1. Let (u, v) ∈ ER and c(u, v) > 0. Clearly u → v.

Consider four cases:
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– case u ∈ R, v ∈ BR: Then u → Td(v)+1, hence

d(u) ≤ d(v) + 1.

– case u ∈ R, v ∈ R: If v 9 Td∞ then d(v) = d∞ and

d(u) ≤ d(v). If v → Td∞ , then d(v) = min{i | v →
Ti}. Let i = d(v), then v → Ti and u→ Ti, therefore

d(u) ≤ i = d(v).

– case u ∈ BR, v ∈ R: By Corollary 1, u 9 Td(u).

Because u → v, it is v 9 Td(u), therefore d(v) ≥
d(u) + 1 and d(u) ≤ d(v)− 1 ≤ d(v) + 1.

– case when u = t or v = t is trivial.

2. The “⇐” direction follows by Statement 8 applied

to d, which is a valid labeling. The “⇒” direction: we

have u 9 Ta and d(u) ≥ min{i |u → Ti} = min{i >
a |u→ Ti} ≥ a+ 1. ut

Statement 10 (Properties of ARD) Let d be a

valid labeling in GR. The output (f ′, d′) of ARD satis-

fies:

1. There are no active vertices in R w.r.t. (f ′, d′);(op-

timality)

2. d′ ≥ d, d′|BR = d|BR ; (labeling monotonicity)

3. d′ is valid in GRf ′ ; (labeling validity)

4. f ′ is a sum of path flows, where each path is from

a vertex u ∈ R to a vertex v ∈ {t} ∪ BR and it is

d′(u) > d(v) if v ∈ BR. (flow direction)

Proof 1. In the last stage, the ARD procedure aug-

ments all paths to Td∞ . After this augmentation a

vertex u ∈ R either has excess 0 or there is no resid-

ual path to Td∞ and hence d′(u) = d∞ by construc-

tion.

2. For d(u) = 0, we trivially have d′(u) ≥ d(u). Let

d(u) = a + 1 > 0. By Statement 8, u 9 Ta in

GR and it holds also in GRf ′ by Statement 7. From

Statement 9.2, we conclude that d′(u) ≥ a + 1 =

d(u). The equality d′|BR = d|BR is by construction.

3. Proven by Statement 9.1.

4. Consider a path from u to v ∈ BR, augmented in

stage i > 0. It follows that i = d(v)+1. At the begin-

ning of stage i, it is u9 Ti−1. By Statement 7, this

is preserved till the end of ARD. By Statement 9.2,

d′(u) ≥ i = d(v) + 1 > d(v). ut

Algorithms 1 and 2 for Discharge being ARD will be

referred to as S-ARD and P-ARD, respectively.

4.3 Complexity of Sequential Augmented path Region

Discharging

Statement 2 holds for S-ARD as well, so S-ARD main-

tains a valid labeling.

Theorem 3 S-ARD terminates in at most 2|B|2 + 1

sweeps.

Proof The value of d(v) does not exceed |B| and d is

non-decreasing. The total increase of d|B during the al-

gorithm is at most |B|2.

After the first sweep, active vertices are only in B.

Indeed, discharging region Rk makes all vertices v ∈ Rk
inactive and only vertices in B may become active. So

by the end of the sweep, all vertices V \B are inactive.

Therefore, after the first sweep, the potential can be

equivalently written as

Φ = max{d(v) | v ∈ B, v is active in G}. (12)

We will prove the following two cases for each sweep

but the first one:

1. If d|B is increased then the increase in Φ is no more

than total increase in d|B. Consider discharge of Rk.

Let Φ be the value before ARD on Rk and Φ′ the

value after. Let Φ′ = d′(v). It must be that v is

active in G′. If v /∈ V k, then d(v) = d′(v) and e(v) =

ef ′(v) so Φ ≥ d(v) = Φ′.

Let v ∈ V k. After the discharge, vertices in Rk are

inactive, so v ∈ Bk and it is d′(v) = d(v). If v was

active in G then Φ ≥ d(v) and we have Φ′ − Φ ≤
d′(v)−d(v) = 0. If v was not active in G, there must

exist an augmenting path from a vertex v0 to v such

that v0 ∈ Rk ∩B was active in G. For this path, the

flow direction property implies d′(v0) ≥ d(v). We

now have Φ′ − Φ ≤ d′(v) − d(v0) = d(v) − d(v0) ≤
d′(v0) − d(v0) ≤

∑
v∈Rk∩B[d′(v) − d(v)]. Summing

over all regions, we get the result.

2. If d|B is not increased then Φ is decreased at least

by 1. We have d′ = d. Let us consider the set of

vertices having the highest active label or above,

H = {v | d(v) ≥ Φ}. These vertices do not re-

ceive flow during all discharge operations due to the

flow direction property. After the discharge of Rk

there are no active vertices left in Rk ∩ H (State-

ment 10.1). After the full sweep, there are no active

vertices in H.

In the worst case, starting from sweep 2, Φ can in-

crease by one |B|2 times and decrease by one |B2| times.

There are no active vertices left in at most 2|B|2 + 1

sweeps. ut

On termination, we have that the labeling is valid and

there are no active vertices in G. Therefore, the accu-

mulated preflow is maximal and a minimum cut can be

found by analyzing the reachability in G (see discussion

for S-PRD §3.3 and implementation details §5.2).
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4.4 Complexity of Parallel Augmented Path Region

Discharging

Statement 11 (Properties of Parallel ARD) Let

d be a valid labeling at the beginning of a sweep of P-

ARD. Then the pair of fused flow and labeling (f ′, d′)

satisfies:

1. Vertices in V \B are not active in Gf ′ . (optimality)

2. d′ ≥ d; (labeling monotony)

3. d′ is valid; (labeling validity)

4. f ′ is the sum of path flows, where each path is from

a vertex u ∈ V to a vertex v ∈ B, satisfying d′(u) ≥
d(v). (weak flow direction)

Proof 1. For each k there are no active vertices in Rk

w.r.t. (f ′k, d
′
k). The fused flow f ′ may differ from f ′k

only on the boundary edges (u, v) ∈ (B,B). So there

are no active vertices in V \B w.r.t. (f ′, d′).

2. By construction.

3. Same as in P-PRD.

4. Consider the augmentation of a path from u ∈ Rk
to v ∈ Bk during ARD on Gk and canceling of the

flow on the last edge of the path during the flow

fusion step. Let the last edge of the path be (w, v).

We need to prove that d′(u) ≥ d(w). Let d̃ be the

labeling in Gk right before augmentation, as if it

was computed by region-relabel. Because d̃ is valid

it must be that d̃(w) ≤ d̃(v) + 1. We have d′k(u) >

d(v) = d̃(v) ≥ d̃(w)−1 ≥ d(w)−1. So d′(u) ≥ d(w).

ut

Theorem 4 P-ARD terminates in 2|B|2 + 1 sweeps.

Proof As before, total increase of d|B is at most |B|2.

After the first sweep, active vertices are only in B by
Statement 11.1.

For each sweep after the first one:

– If d|B is increased then increase in Φ is no more than

the total increase of d|B. Let Φ′ be the value of the

potential in the network G′ = Gf ′ . Let Φ′ = d′(v).

It must be that v is active in G′ and v ∈ B.

If v was active in G then Φ ≥ d(v) and we have

Φ′ − Φ ≤ d′(v)− d(v).

If v was not active in G then there must exist a path

flow in f ′ from a vertex v0 to v such that v0 ∈ B was

active in G. For this path, the weak flow direction

property implies d′(v0) ≥ d(v). We have Φ′ − Φ ≤
d′(v)− d(v0) = d′(v)− d(v) + d(v)− d(v0) ≤ d′(v)−
d(v) + d′(v0)− d(v0) ≤

∑
v∈B[d′(v)− d(v)].

– If d|B is not increased then Φ is decreased at least

by 1. In this case, f ′ satisfies the strong flow direc-

tion property and the proof of Theorem 3 applies.

After total of 2|B|2 + 1 sweeps, there are no active ver-

tices left. ut

5 Implementation

In this section, we first discuss heuristics for improv-

ing the distance labeling (making it closer to the true

distance at a cheap cost) commonly used in the push-

relabel framework. They are essential for the practical

performance of the algorithms. We then describe our

base implementations of S-ARD/S-PRD and the solvers

they rely on. In the next section, we describe an effi-

cient implementation of ARD, which is more sophisti-

cated but has a much better practical performance. All

of the labeling heuristics can only increase the labels

and preserve validity of the labeling. Therefore, they

do not break theoretical properties of the respective al-

gorithms.

5.1 Heuristics

Region-relabel heuristic computes labels d|R of the

region vertices, given the distance estimate on the

boundary, d|BR . There is a slight difference between

PRD and ARD variants (using distance d∗ and d∗B,

resp.), displayed by the corresponding “if” conditions.

Procedure d|R = Region-relabel(GR,d|BR)

/* init */

1 d(t) := 0; O := {t}; d|R := d∞; dc := 0;
2 if ARD then d|BR := d|BR + 1; /* (for ARD) */

/* O is a list of open vertices, having the

current label dc */

3 dmax := max{d(w) |w ∈ BR, d(w) < d∞};
4 while O 6= ∅ or dc < dmax do

/* if O is empty raise dc to the next seed */

5 if O = ∅ then
dc := min{d(w) |w ∈ BR, d(w) > dc, d(w) < d∞};
/* add seeds to the open set */

6 O := O ∪ {w ∈ BR | d(w) = dc};
/* find all unlabeled vertices from which O

can be reached */

7 O := {u ∈ R | (u, v) ∈ ER, v ∈ O, c(u, v) > 0, d(u) =
d∞};

8 if PRD then dc ← dc + 1; /* (for PRD) */

9 d|O := dc; /* label the new open vertices */

10 if ARD then d|BR := d|BR − 1; /* (for ARD) */

In the implementation, the set of boundary vertices

is sorted in advance, so that Region-relabel runs in

O(|ER|+ |V R|+ |BR| log |BR|) time and uses O(|V R|)
space. The resulting labeling d′ is valid and satisfies

d′ ≥ d for arbitrary valid d.

Global gap heuristic. Let us briefly explain the

global gap heuristic (Cherkassky and Goldberg 1994).

It is a sufficient condition to identify that the sink is un-

reachable from a set of vertices. Let there be no vertices

with label g > 0: ∀v ∈ V d(v) 6= g, and let d(u) > g.

For a valid labeling d, it follows that there is no vertex
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v for which c(u, v) > 0 and d(v) < g. Assuming there is,

we will have d(u) ≤ d(v) + 1 ≤ g, which is a contradic-

tion. Therefore the sink is unreachable from all vertices

{u | d(u) > g} and their labels may be set to d∞.

Region gap heuristic of Delong and Boykov

(2008) detects if there are no vertices inside region R

having label g > 0. Such vertices can be connected to

the sink in the whole network only through one of the

boundary vertices, so they may be relabeled up to the

closest boundary label. Here is the algorithm4:

Procedure d|R = Region-gap(GR,d|R∪BR , g)

/* Input: region network GR, labeling d, */

/* gap g: ∀v ∈ R d(v) 6= g */

1 dnext := min{d(w) |w ∈ BR, d(w) > g.};
2 for v ∈ R such that g < d(v) < dnext do
3 d(v) := dnext+1;

If no boundary vertex is above the gap, then dnext =

d∞ in step 1 and all vertices above the gap are discon-

nected from the sink in the network G. Interestingly,

this sufficient condition does not imply a global gap. In

our implementation of PRD, we detect the region-gap

efficiently after every vertex relabel operation by dis-

covering an empty bucket (see the implementation of

S/P-PRD in §5.5).

5.2 Reachability/Exact distance Computation

At the termination of our algorithms (S/P-PRD, S/P-

ARD), we have found a maximum preflow and we know

that (T̄ , T ), defined by T = {v | v → t in G}, is a min-

imum cut. However, we only know the lower bound d

on the true distance d∗ (resp. d∗B) and therefore the

reachability relation v → t is not fully known at this

point. When d(v) = d∞ we are sure that v 9 t in G

and hence v must be in the source set of a minimum

cut, but if d(v) < d∞ it is still possible that v 9 t in G.

Therefore, we need to do some extra work to make d

the exact distance and in this way to find the minimum

cut. For this purpose we execute several extra sweeps,

performing only region-relabel and gap heuristics until

labels stop changing. We claim that at most d∞ such

extra sweeps are needed. We give a proof for the case

of push-relabel distance.

Proof Let us call labels d(v) loose if d(v) < d∗(v)

and exact if d(v) = d∗(v). Consider the lowest loose

label, L = min{d(v) | d(v) < d∗(v)} and the set of

loose vertices having this label, L = {v |L = d(v) <

4 Region-gap-relabel (Delong and Boykov 2008, fig. 10)
seems to contain an error: only vertices above the gap should
be processed in step 3.

d∗(v)}. Let us show that after a sweep of region-relabel,

the value of L increases at least by 1. Let v ∈ L,

(v, w) ∈ E and c(v, w) > 0. If d(w) is loose, we have

d(w) ≥ L by construction. Assume that d(w) is exact.

Since d(v) < d∗(v) and d∗(v) ≤ d∗(w) + 1, we have

d(w) ≥ d(v) = L. Therefore, all neighbors of v have

label L or above. After the elementary Relabel of v or

Region-relabel of the region including v, its label will

increase at least by 1 (recall that Relabel of v performs

d(v) := minw{d(w) | (v, w) ∈ E, c(v, w) > 0} + 1).

Because this holds for all vertices from L, the value L

will increase at least by 1 after elementary Relabel of

all vertices or a sweep of Region-relabel. Because L is

bounded above by d∞, after at most d∞ sweeps, d will

be the exact distance. ut
This proof can be suitably modified for the case of re-

gion distance (used in ARD) by replacing the pair (v, w)

with a path from v to a boundary vertex w. In this

case, we have the bound d∞ = |B| sweeps. In the ex-

periments, we observed that in order to compute the

exact distance, only few extra sweeps were necessary

(from 0 to 2) for S/P-ARD and somewhat more for

S/P-PRD. Note, to compute the final reachability rela-

tion in S/P-PRD, the region distance and ARD Region-

relabel could be employed. However, we did not imple-

ment this improvement. In §6 we describe how ARD

Region-relabel is replaced by a dynamic data structure

(search trees), allowing for quick recomputation during

the sweeps.

5.3 Referenced Implementations

Boykov-Kolmogorov (BK). The reference augment-

ing path implementation by Boykov and Kolmogorov

(2004) (v3.0, http://www.cs.adastral.ucl.ac.uk/

~vnk/software.html). We will also use the possibility

of dynamic updates in this code due to Kohli and Torr

(2005). There is only a trivial O(mn2|C|) complexity

bound known for this algorithm5, where C is the cost

of a minimum cut.

Highest level Push-Relabel (HIPR). The ref-

erence push-relabel implementation by Cherkassky

and Goldberg (1994) (v3.6, http://www.avglab.com/

andrew/soft.html). This implementation has two

stages: finding the maximum preflow / minimum cut

and upgrading the maximum preflow to a maximum

flow. Only the first stage was executed and bench-

marked. We tested two variants with frequency of

5 The worst-case complexity of breadth-first search shortest
path augmentation algorithm is just O(m|C|). The tree adap-
tation step, introduced by Boykov and Kolmogorov (2004) to
speed-up the search, does not have a good bound and intro-
duces an additional n2 factor.

http://www.cs.adastral.ucl.ac.uk/~vnk/software.html
http://www.cs.adastral.ucl.ac.uk/~vnk/software.html
http://www.avglab.com/andrew/soft.html
http://www.avglab.com/andrew/soft.html
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the global relabel heuristic (the frequency parameter

roughly corresponds to the proportion of time spent on

global updates versus push/relabel) equal to 0.5 (the

default value in HIPR v3.6) and equal to 0. These vari-

ants will be denoted HIPR0.5 and HIPR0 respectively.

HIPR0 executes only one global update at the begin-

ning. Global updates are essential for difficult problems.

However, HIPR0 was always faster than HIPR0.5 in our

experiments with real test instances6. The worst case

complexity is O(n2
√
m).

5.4 S/P-ARD implementation

The basic implementation of ARD simply invokes BK

solver as follows. On stage 0 we compute the maximum

flow in the network GR by BK, augmenting paths from

source to the sink. On the stage i, infinite capacities

are added from the boundary vertices having label i−1

to the sink, using the possibility of dynamic changes in

BK. The flow augmentation to the sink is then contin-

ued, reusing the search trees. The Region-relabel proce-

dure is implemented as described earlier in this section.

In the beginning of next discharge, we clear the infinite

link from boundary to the sink and repeat the above.

Some parts of the sink search tree, linked through the

boundary vertices, get destroyed, but the larger part of

it and the source search tree are reused. A more efficient

implementation is described in §6. It includes additional

heuristics and maintenance of separate boundary search

trees.

S-ARD. In the streaming mode, we keep only one

region in the memory at a time. After a region is pro-

cessed by ARD, all the internal data structures have to

be saved to the disk and cleared from memory until the

region is discharged next time. We manage this by al-

locating all the region’s data into a fixed page in the

memory, which can be saved and loaded preserving the

pointers. By doing the load/unload manually (rather

than relying on the system swapping mechanism), we

can accurately measure the pure time needed for com-

putation (CPU) and the amount of disk I/O. We also

can use 32bit pointers with larger problems.

A region with no active vertices is skipped. The

global gap heuristic is executed after each region dis-

charge. Because it is based on labels of boundary

vertices only, it is sufficient to maintain a label his-

togram with |B| bins to implement it. S-ARD uses

O(|B| + |(B,B)|) “shared” memory and O(|V R + ER|)
6 There is a discrepancy with Delong and Boykov (2008,

Figure 4) regarding the results for the basic push-relabel. The
main implementation difference is in the order of processing
(HIPR versus FILO). It is also possible that their plot is
illustrative and is not using the gap heuristic.

“region” memory, to which regions are loaded one at a

time.

To solve large problems, which do not fit in the

memory, we have to create region graphs without ever

loading the full problem. We implemented a tool called

splitter, which reads the problem from a file and writes

edges corresponding to the same region to the region’s

separate “part” file. Only the boundary edges (linking

different regions) are withheld to the memory.

P-ARD. We implemented this algorithm for a

shared-memory system using OpenMP language exten-

sion. All regions are kept in the memory, the discharges

are executed concurrently in separate threads, while the

gap heuristic and messages exchange are executed syn-

chronously by the master thread.

5.5 S/P-PRD implementation

To solve region discharge subproblems in PRD in the

highest label first fashion, we designed a special reim-

plementation of HIPR, which will be denoted HPR.

We intended to use the original HIPR implementation

to make sure that PRD relies on the state-of-the art

core solver. It was not possible directly. A subproblem

in PRD is given by a region network with fixed distance

labels on the boundary (let us call them seeds). Distance

labels in PRD may go up to n in the worst case. The

same applies to region subproblems as well. Therefore,

keeping an array of buckets corresponding to possible

labels (like in HIPR), would not be efficient. It would

require O(|V |) memory and an increased complexity.

However, because a region has only |V R| vertices, there

are no more than |V R| distinct labels at any time. This

allows to keep buckets as a doubly-linked list with at

most |V R| entries. Highest label selection rule and the

region-gap heuristic can then be implemented efficiently

with just a small overhead. We tried to keep other de-

tails similar to HIPR (current arc data structure, etc.).

HPR with arbitrary seeds has the worst case complexity

O(|V R|2
√
|ER|) and uses O(|V R|+ |V E |) space. When

the whole problem is taken as a single region, HPR

should be equivalent to HIPR0. Though the running

time on the real instances can be somewhat different.

S-PRD. This is our reimplementation of the algo-

rithm by Delong and Boykov (2008) for an arbitrary

graph and a fixed partition, using HPR as a core solver.

It uses the same memory model, paging mechanism and

the splitter tool as S-ARD. The region discharge is al-

ways warm-started. We found it inefficient to run the

region-relabel after every discharge. In the current ex-

periments, motivated by performance of HIPR0, we run

it once at the beginning and then only when a global

gap is discovered. To detect a global gap, we keep a
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histogram of all labels, O(n) memory, and update it

after each region discharge (in O(|V R|) time). In prac-

tice, this O(n) memory is not a serious limitation –

labels are usually well below n. If they are not then we

should consider a weaker gap heuristic with a smaller

number of bins. Applying the gap (raising the corre-

sponding vertices to d∞) for all regions is delayed until

they are loaded. So we keep the track of the best global

gap detected for every region. Similar to how the se-

quential Alg. 1 represents both S-ARD and S-PRD, it

constitutes a piece of generic code in our implementa-

tion, where the respective discharge procedure and gap

heuristics are plugged.

P-PRD. This is our implementation of parallel PRD

for shared-memory system with OpenMP.

6 Efficient ARD Implementation

The basic implementation of S-ARD, as described in

the previous section, worked reasonably fast (compara-

ble to BK) on simple problems like 2D stereo and 2D

random segmentation (Sec. 7.1). However, on some 3D

problems the performance was unexpectedly bad. For

example, to solve LB07-bunny-lrg instance (Sec. 7.2)

the basic implementation required 32 minutes of CPU

time. In this section we describe an efficient implemen-

tation which is more robust and is comparable in speed

with BK on all tested instances. In particular, to solve

LB07-bunny-lrg it takes only 15 seconds of CPU time.

The problem why the basic implementation is so slow

is in the nature of the algorithm: sometimes it has to

augment the flow to the boundary, without knowing

of whether it is a useful work or not. If the particu-

lar boundary was selected wrongly, the work is wasted.

This happens in LB07-bunny-lrg instance, where the

data seeds are sparse. A huge work is performed to

push the flow around in the first few iterations, be-

fore a reasonable labeling is established. We intro-

duce two heuristics how to overcome this problem: the

boundary-relabel heuristic and partial discharges. An

additional speed-up is obtained by dynamically main-

taining boundary search trees and the current labeling.

6.1 Boundary Relabel Heuristic

We would like to have a better distance estimate, but

we cannot run a global relabel because implementing it

in a distributed fashion would take several full sweeps,

which would be too wasteful. Instead, we go for the fol-

lowing cheaper lower bound. Our implementation keeps

all the boundary edges (including their flow and dis-

tance labels of the adjacent vertices) in the shared
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Fig. 6 Boundary relabel heuristic: (a) Boundary vertices of
the network and a valid labeling. Directed arcs correspond to
non-zero residual capacities. Vertices without numbers have
label d∞ and do not participate in the construction. (b) Ver-
tices having the same label are grouped together within each
region and arcs of zero length (of red color) are added from
a group to the next label’s group. It is guaranteed that e.g.,
vertices with label 1 are not reachable from vertices with la-
bel 2 within the region, hence there is no arc 2→1. Black arcs
have the unit length. (c) The distance in the auxiliary graph
is a valid labeling and a lower bound on the distance in the
original network.

memory. Fig. 6(a) illustrates this boundary informa-

tion. We want to improve the labels by analyzing only

this boundary part of the graph, not looking inside the

regions. Since we do not know how the vertices are con-

nected inside the regions, we have to assume that every

boundary vertex might be connected to any other one

within the region, except of the following case. If u and

v are in the same region R and d(u) > d(v) then we

know for sure that u9 v in GR. It follows from the va-

lidity of labeling d (as defined for ARD in §4). We can

calculate now a lower bound on the distance d∗B in G

assuming that all the rest of the vertices are potentially

connected within the regions.

We will now construct an auxiliary directed graph Ḡ

with arcs having length 0 or 1 and show that the dis-

tance in this graph (according to the arc lengths) lower

bounds d∗B. If d(v) = d(u) we have to assume that

v → u and u→ v in GR, therefore the new lower bound

for u and v will coincide. Hence we group vertices hav-

ing the same label within a region together as shown

in Fig. 6(b). In the case d(v) < d(u), we know that

u 9 v but have to assume v → u in R. We thus add

a directed arc of length zero from the group of v to

the group of u (Fig. 6(b)). Let d1 < d2 < d3 be labels



16 Alexander Shekhovtsov, Václav Hlaváč

of groups within one region. There is no need to cre-

ate an arc from d1 to d3, because two arcs from d1 to

d2 and from d2 to d3 of length zero are an equivalent

representation. Therefore it is sufficient to connect only

groups having consecutive labels. We then add all resid-

ual edges (u, v) between the regions to Ḡ with length 1.

We can calculate the distance to vertices with label 0

in Ḡ by running Dijkstra’s algorithm. Let this distance

be denoted d′. We then update the labels as

d(u) := max{d(u), d′(u)}. (13)

We have to prove the following two points:

1. d′ is a valid labeling;

2. If d and d′ are valid labellings, then max(d, d′) is

valid.

Proof 1. Let c(u, v) > 0. Let u and v be in the same

region. It must be that d(u) ≤ d(v). Therefore either

u and v are in the same group or there is an arc of

length zero from group of u to group of v. It must be

d′(u) ≤ d′(v) in any case. If u and v are in different

regions, there is an arc of length 1 from group of u

to group of v and therefore d′(u) ≤ d′(v) + 1.

2. Let l(u, v) = 1 if (u, v) ∈ (B,B) and l(u, v) = 0

otherwise. We have to prove that if c(u, v) > 0 then

max{d(u), d′(u)} ≤ max{d(v), d′(v)}+ l(u, v). (14)

Let max{d(u), d′(u)} = d(u). From validity of d we

have d(u) ≤ d(v) + l(u, v). If d(v) ≥ d′(v), then

max{d(v), d′(v)} = d(v) and (14) holds. If d(v) <

d′(v) then d(u) ≤ d(v) + l(u, v) < d′(v) + l(u, v)

and (14) holds again.

The complexity of the boundary relabel heuristic is

O(|(B,B)|). It is relatively inexpensive and can be run

after each sweep. It does not affect the correctness and

the worst case bound on the number of sweeps of S/P-

ARD.

6.2 Partial Discharge

Another heuristic which proved very efficient was sim-

ply to postpone path augmentations to higher bound-

ary vertices to further sweeps. This allows to save a lot

of unnecessary work, especially when used in combina-

tion with boundary-relabel. More precisely, on sweep

s the ARD procedure is allowed to execute only stages

up to s. This way, in sweep 0 only paths to the sink

are augmented and not any path to the boundary. Ver-

tices which cannot reach the sink (but can potentially

reach the boundary) get label 1. These initial labels may

already be improved by boundary-relabel. In sweep 1

paths to the boundary with label 0 are allowed to be

augmented and so on.

Note that this heuristic does not affect the worst

case complexity of S/P-ARD. Because labels can grow

only up to |B|, after at most |B| sweeps the heuris-

tic turns into full discharge. Therefore, the worst case

bound of O(|B2|) sweeps remains valid. In practice, we

found it to increase the number of sweeps slightly, while

significantly reducing the total computation time. Simi-

larly, in the case of push-relabel, it would make sense to

perform several sweeps of Region-relabel before doing

any pushes to get a better estimate of the distance.

6.3 Boundary Search Trees

We now redesign the implementation of ARD such that

not only the sink and source search trees are maintained

but also the search trees of boundary vertices. This al-

lows to save computation when the labeling of many

boundary vertices remains constant during the conse-

quent sweeps, with only a small fraction changing. Ad-

ditionally, knowing the search tree for each inner vertex

of the region determines its actual label, so the region-

relabel procedure becomes obsolete. The design of the

search tree data structures, their updates and other de-

tail are the same as proposed by Kolmogorov (2004),

only few changes to the implementation are necessary.

For each vertex v ∈ R, we introduce a mark d̃(v) which

corresponds to the root label of its tree or is set to a

special free mark if v is not in any tree. For each tree

we keep a list of open vertices (called active by Kol-

mogorov (2004)). A vertex is open if it is not blocked

by the vertices of the trees with the same or lower root

label (more precisely, v is open if it is not free and there

is a residual edge (u, v) such that u is free or its root

label is higher than that of v). The trees may grow only

at the open vertices.

Fig. 7 shows the correspondence between search

trees and the labels. The sink search tree is assigned

label −1. In the stage 0 of ARD, we grow the sink tree

and augment all found paths if the sink tree touches

the source search tree. Vertices, which are added to the

sink tree are marked with label d̃ = −1. In stage i + 1

of ARD, we grow trees with root at a boundary vertices

w with label d(w) = i, all vertices added to the tree are

marked with d̃ = i. When the tree touches the source

search tree, the found path is augmented. If the tree

touches a vertex u with label d̃(u) < i, it means that

u is already in the search tree with a lower root and

no action is taken. It cannot happen that a vertex is

reached with label d̃ > i during growth of a search tree
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Fig. 7 Search trees. (a) A region with some residual arcs. The region has only 3 boundary vertices, for simplicity, the numbers
correspond to the labels. (b) Search trees of the sink and boundary vertices: when a vertex can be reached by several trees,
it choses the one with the lowest label of the root. The sink is assigned a special label −1. The source search tree is empty in
this example. (c) Labels of the inner vertices are determined as their tree’s root label+1.

with root label i, this would contradict to the proper-

ties of ARD. The actual label of a vertex v at any time

is determined as d̃(v) + 1 if v ∈ R and d(v) if v ∈ BR.

Let us now consider the situation in which region R

has built some search trees and the label of a bound-

ary vertex w is risen from d(w) to d′(w) (as a result of

update from the neighboring region or one of the heuris-

tics). All the vertices in the search tree starting from

w were previously marked with d(w) and have to be

declared as free vertices or adopted to any other valid

tree with root label d(w). The adaptation is performed

by the same mechanism as in BK. The situation when

a preflow is injected from the neighboring region and

(a part of) a search tree becomes disconnected is also

handled by the orphan adaptation mechanism.

The combination of the above improvements al-

lows S-ARD to run in about the same time as BK

on all tested vision instance (§7.2), sometimes be-

ing even significantly faster (154sec. vs. 245sec. on

BL06-gargoyle-lrg).

7 Experiments

All experiments were conducted on a system with In-

tel Core 2 Quad CPU@2.66Hz, 4GB memory, Windows

XP 32bit and Microsoft VC compiler. Our implemen-

tation and instructions needed to reproduce the exper-

iments can be found at http://cmp.felk.cvut.cz/

~shekhovt/d_maxflow. We conducted 3 series of ex-

periments:

– Synthetic experiments, where we observe general de-

pendencies of the algorithms, with some statistical

significance, i.e. not being biased to a particular

problem instance. It also serves as an empirical val-

idation, as thousands of instances are solved. Here,

the basic implementation of S-ARD was used.

– Sequential competition. We study sequential ver-

sions of the algorithms, running them on real vision

instances. Only a single core of the CPU is utilized.

We fix the region partition and study how much

disk I/O it would take to solve each problem when

only one region can be loaded in the memory at a

time. In this and the next experiment we used the

efficient implementation of ARD. Note, in the pre-

ceeding publication (Shekhovtsov and Hlavac 2011)

we reported worse results with the earlier implemen-

tation.

– Parallel competition. Parallel algorithms are tested

on the instances which can fully fit in 2GB of mem-

ory. All 4 cores of the CPU are allowed to be used.

We compare our algorithms with two other state-of-

the-art distributed implementations.

7.1 General Dependences: Synthetic Problems

We generated simple synthetic problems to validate the

algorithms. The network is constructed as a 2D grid

with a regular connectivity structure. Fig. 8(a) shows

an example of such a network. The edges are added

to the vertices at the following relative displacements

(0, 1), (1, 0), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2), (0, 2),

(2, 0), (2, 2), (3, 3), (3, 4), (4, 2). By connectivity we mean

the number of edges incident to a vertex far enough

from the boundary. Adding pairs (0, 1), (1, 0) results in

connectivity 4 and so on. Each vertex is given an inte-

ger excess/deficit distributed uniformly in the interval

[−500 500]. A positive number means a source link and

a negative number a sink link. All edges in the graph are

assigned a constant capacity, called strength. The net-

work is partitioned into regions by slicing it in s equal

parts in both dimensions. Thus we have 4 parameters:

the number of vertices, the connectivity, the strength

and the number of regions. We generate 100 instances

for each value of the parameters.

Let us first look at the dependence on the strength

shown in Fig. 8(b). Problems with small strength are

easy, because they are very local – long augmentation

paths do not occur. On the other hand, long paths needs

to be augmented for problems with large strength. How-

ever, finding them is easy because bottlenecks are un-

http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
http://cmp.felk.cvut.cz/~shekhovt/d_maxflow
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Fig. 8 (a) Example of a synthetic problem: a network of
the size 6×6, connectivity 8, partitioned into 4 regions. The
source and sink are not shown. (b) Dependence on the in-
teraction strength, for size 1000×1000, connectivity 8 and 4
regions. Plots show mean values and intervals containing 70%
of the samples.
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Fig. 9 Dependence on the number of regions, for size
1000×1000, connectivity 8, strength 150.

likely. Therefore BK and S-ARD have a maximum in

the computation time somewhere in the middle. It is

more difficult to transfer the flow over long distances

for push-relabel algorithms. This is where the global re-

label heuristic becomes efficient and HIPR0.5 outper-
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Fig. 10 Dependence on the problem size, for connectivity 8,
strength 150, 4 regions.

4 8 12 16 20
0

50

100

150

200

connectivity

nu
m

be
r 

of
 s

w
ee

ps

 

 
S-ARD

S-PRD

4 8 12 16 20
0

10

20

30

40

connectivity

C
P

U
, s

ec
.

 

 
BK

HIPR0

HIPR0.5

HPR

S-ARD

S-PRD

Fig. 11 Dependence on the connectivity, for size 1000×1000,
strength = (150 · 8)/connectivity, 4 regions.

forms HIPR0. The region-relabel heuristic of S-PRD

allows it to outperform other push-relabel variants.

In general, we think all such random 2D networks

are too easy. Nevertheless, they are useful and instruc-

tive to show basic dependences. We now select the “dif-

ficult” point for BK with the strength 150 and study

other dependencies:

– The number of regions (Fig. 9). For this problem

family, both the number of sweeps and the compu-

tation time grows slowly with the number of regions.

– The problem size (Fig. 10). Computation efforts of

all algorithms grow proportionally. However, the

number of sweeps shows different asymptotes. It is

almost constant for S-ARD but grows significantly

for S-PRD.
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– Connectivity (Fig. 11). Connectivity is not indepen-

dent of the strength. Roughly, 4 edges with capacity

100 can transmit as much flow as 8 edges with capac-

ity 50. Therefore while increasing the connectivity

we also decrease the strength as 150 · 8 divided by

connectivity in this plot.

– Workload (Fig. 7.1). This plot shows how much time

each of the algorithms spends performing different

parts of computation. Note that the problems are

solved on a single computer with all regions kept

in memory, therefor the time on sending messages

should be understood as updates of dynamic data

structure of the region w.r.t. the new labeling and

flow on the boundary. For S-PRD more sweeps are

needed, so the total time spent in messages and gap

heuristic is increased. Additionally, the gap heuristic

has to take into account all vertices, unlike only the

boundary vertices in S-ARD.
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Fig. 12 Workload distribution, for size 1000×1000, connec-
tivity 8, 4 regions, strength 150. msg – passing the messages
(updating flow and labels on the boundary), discharge – work
done by the core solver (BK for S-ARD and HPR for S-PRD),
relabel – the region-relabel operation, gap – the global gap
heuristic.

7.2 Sequential Competition

We tested our algorithms on the maxflow problem

instances in computer vision University of Western
Ontario web pages (2008). The data consist of typ-

ical max-flow problems in computer vision, graphics,

and biomedical image analysis. Stereo instances are

sequences of subproblems (arising in the expansion

move algorithm) for which the total time should be

reported. There are two models: BVZ (Boykov et al

1998), in which the graph is a 4-connected 2D grid,

and KZ2 (Kolmogorov and Zabih 2001), in which there

are additional long-range links. Multiview 3D recon-

struction models LB06 (Lempitsky et al 2006) and

BL06 (Boykov and Lempitsky 2006). Graphs of these

problems are cellular complexes subdividing the space

into 3D cubes and each cube into 24 smaller cells. Sur-

face fitting instances LB07 (Lempitsky and Boykov

2007) are 6-connected 3D grid graphs. And finally,

there is a collection of volumetric segmentation in-

stances BJ01 (Boykov and Jolly 2001), BF06 (Boykov

and Funka-Lea 2006), BK03 (Boykov and Kolmogorov

2003) with 6-connected and 26-connected 3D grid

graphs.

To test our streaming algorithms, we used the

regulargrid hint available in the definition of the

problems to select the regions by slicing the problem

into 4 parts in each dimension – into 16 regions for 2D

BVZ grids and into 64 regions for 3D segmentation in-

stances. Problems KZ2 do not have such a hint (they

are not regular grids), so we sliced them into 16 pieces

just by the vertex number. The same we did for the mul-

tiview LB06 instances. Though they have a size hint,

we failed to interpret the vertex layout correctly (the

separator set, B, was unexpectedly large when trying to

slice along the dimensions). So we sliced them purely

by the vertex number.

One of the problems we faced is pairing the arcs

which are reverse of each other. While in stereo, sur-

face and multiview problems, the reverse arcs are con-

sequent in the files, and can be easily paired, in 3D seg-

mentation they are not. For a generic algorithm, not

being aware of the problem’s regularity structure, it

is actually a non-trivial problem requiring at least the

memory to read all of the arcs first. Because our goal is a

relative comparison, we did not pair the arcs in 3D seg-

mentation. This means we kept twice as many arcs than

necessary for those problems. This is seen in Table 1,

e.g . for babyface.n26c100, which is 26-connected, but

we construct a multigraph (has parallel arcs) with aver-

age vertex degree of 49. For some other instances, how-

ever, this is not visible, because there could be many

zero arcs, e.g . liver.n26c10 which is a 26-connected

grid too, but has the average vertex degree of 10.4 with

unpaired arcs. The comparison among different meth-

ods is correct, since all of them are given exactly the

same multigraph.

The results are presented in Table 1. We did mea-

sure the real time of disk I/O. However, it depends on

the hard drive performance, other concurrently running

processes as well as on the system file caching (which

has effect for small problems). We therefore report to-

tal bytes written/loaded and give an estimate of the

full running time for the disk speed of 100MB/s (see

Table 2). Note that disk I/O is not proportional to the

number of sweeps, because some regions may be inac-

tive during a sweep and thus skipped. For HIPR we do

not monitor the memory usage. It is slightly higher than

that of HPR, because of keeping initial arc capacities.

For verification of solvers, we compared the flow

values to the ground truth solution provided in the

dataset. Additionally, we saved the cut output from

each solver and checked its cost independently. Veri-

fying the cost of the cut is relatively easy: the cut can

be kept in memory and the edges can be processed form

the DIMACS problem definition file on-line. An inde-

pendent check of (pre-)flow feasibility would be neces-
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Table 1. Sequential Competition. CPU – the time spent purely for computation, excluding the time for parsing, construction and
disk I/O. The total time to solve the problem is not shown. K – number of regions. RAM – memory taken by the solver; for BK
in the case it exceeds 2GB limit, the expected required memory; for streaming solvers the sum of shared and region memory. I/O –
total bytes read or written to the disk.

problem BK HIPR0 HIPR0.5 HPR S-ARD S-PRD

name n(106) m/n CPU CPU CPU CPU CPU sweeps K CPU sweeps K
size RAM RAM RAM RAM RAM I/O RAM I/O

stereo

BVZ-sawtooth(20) 0.2 4.0 0.68s 3.0s 7.7s 3.8s 0.63s 6 16 3.7s 32 16
434×380, 14MB 14MB 17MB 0.3+0.9MB 114MB 0.8+1.1MB 0.7GB
BVZ-tsukuba(16) 0.1 4.0 0.36s 1.9s 4.9s 2.6s 0.35s 5 16 2.1s 29 16
384×288, 8.6MB 9.7MB 11MB 0.2+0.6MB 71MB 0.5+0.8MB 373MB
BVZ-venus(22) 0.2 4.0 1.2s 5.7s 15s 6.2s 1.1s 6 16 6.6s 36 16
434×383, 14MB 15MB 17MB 0.3+0.9MB 119MB 0.8+1.1MB 0.9GB
KZ2-sawtooth(20) 0.3 5.8 1.8s 7.1s 22s 6.1s 2.2s 6 16 7.4s 23 16
38MB 33MB 36MB 1.2+2.0MB 280MB 1.8+2.5MB 1.2GB
KZ2-tsukuba(16) 0.2 5.9 1.1s 5.3s 20s 4.4s 1.4s 6 16 5.9s 18 16
26MB 23MB 25MB 1.1+1.4MB 186MB 1.4+1.7MB 0.7GB
KZ2-venus(22) 0.3 5.8 2.8s 13s 39s 10s 3.4s 8 16 14s 36 16
38MB 34MB 37MB 1.2+2.1MB 330MB 1.9+2.5MB 1.8GB

multiview
BL06-camel-lrg 18.9 4.0 81s 63s 11 16 308s 418 16
100×75×105×24, 2.0GB 1.6GB 19+103MB 28GB 86+122MB 0.6TB
BL06-camel-med 9.7 4.0 25s 29s 77s 59s 20s 12 16 118s 227 16
80×60×84×24, 1.0GB 0.8GB 1.0GB 31+53MB 16GB 46+63MB 225GB
BL06-camel-sml 1.2 4.0 0.98s 1.5s 6.3s 1.8s 0.96s 9 16 4.2s 47 16
40×30×42×24, 115MB 106MB 124MB 8.0+7.0MB 1.4GB 6.9+8.2MB 9.1GB
BL06-gargoyle-lrg 17.2 4.0 245s 91s 154s 21 16 318s 354 16
80×112×80×24, 1.8GB 1.5GB 1.7GB 23+95MB 35GB 82+112MB 0.8TB
BL06-gargoyle-med 8.8 4.0 115s 17s 58s 37s 73s 16 16 143s 340 16
64×90×64×24, 0.9GB 0.8GB 0.9GB 37+50MB 14GB 44+58MB 235GB
BL06-gargoyle-sml 1.1 4.0 6.1s 1.2s 3.0s 1.7s 3.9s 10 16 4.4s 55 16
32×45×32×24, 106MB 97MB 114MB 9.3+6.6MB 1.3GB 6.9+7.7MB 9.4GB

surface
LB07-bunny-lrg 49.5 6.0 15s 6 64 416s 43 64
401×396×312, 6.6GB 5.7GB 130+87MB 49GB 226+99MB 276GB
LB07-bunny-med 6.3 6.0 1.6s 20s 41s 26s 2.1s 10 64 16s 27 64
202×199×157, 0.8GB 0.7GB 0.8GB 33+12MB 6.5GB 43+863MB 0.0MB
LB07-bunny-sml 0.8 5.9 0.17s 0.80s 1.8s 1.1s 0.32s 9 64 0.86s 19 64
102×100×79, 94MB 95MB 101MB 8.2+1.6MB 0.8GB 7.9+1.9MB 2.0GB

segm
liver.n26c10 4.2 10.4 6.4s 18s 18s 34s 14s 13 64 39s 157 64
170×170×144, 2.1GB 0.8GB 0.7GB 36+12MB 13GB 30+13MB 82GB
liver.n26c100 4.2 11.1 12s 26s 28s 39s 24s 15 64 35s 98 64
170×170×144, 2.1GB 0.8GB 0.7GB 38+13MB 16GB 30+14MB 66GB
liver.n6c10 4.2 9.8 7.2s 17s 25s 40s 14s 16 64 36s 151 64
170×170×144, 498MB 0.7GB 0.7GB 33+12MB 15GB 28+13MB 79GB
liver.n6c100 4.2 10.5 15s 30s 34s 44s 19s 17 64 32s 94 64
170×170×144, 512MB 0.8GB 0.7GB 35+12MB 14GB 29+13MB 70GB
babyface.n26c10 5.1 47.3 179s 38 64 222s 169 64
250×250×81, 2.5GB 3.7GB 156+56MB 102GB 173+58MB 0.6TB
babyface.n26c100 5.1 49.0 231s 44 64 262s 116 64
250×250×81, 2.7GB 3.8GB 156+56MB 115GB 180+57MB 0.6TB
babyface.n6c10 5.1 11.1 6.8s 38s 51s 68s 20s 17 64 100s 275 64
250×250×81, 0.6GB 1.0GB 0.9GB 22+16MB 19GB 37+17MB 261GB
babyface.n6c100 5.1 11.5 13s 71s 65s 87s 24s 19 64 74s 191 64
250×250×81, 0.6GB 1.0GB 0.9GB 22+16MB 18GB 37+17MB 189GB
adhead.n26c10 12.6 31.5 128s 17 64 224s 109 64
256×256×192, 6.5GB 6.2GB 153+83MB 84GB 195+86MB 0.8TB
adhead.n26c100 12.6 31.6 174s 21 64 269s 129 64
256×256×192, 1.6GB 2.5GB 34+36MB 36GB 77+39MB 354GB
bone.n26c10 7.8 32.3 25s 12 64 96s 148 64
256×256×119, 3.9GB 4.0GB 122+61MB 35GB 147+63MB 470GB
bone.n26c100 7.8 32.4 29s 14 64 68s 124 64
256×256×119, 4.1GB 4.0GB 122+61MB 39GB 147+63MB 321GB
bone.n6c10 7.8 11.5 7.7s 5.7s 17s 12s 7.2s 9 64 37s 195 64
256×256×119, 0.9GB 1.5GB 1.4GB 62+23MB 13GB 52+25MB 188GB
bone.n6c100 7.8 11.6 9.1s 9.1s 22s 14s 8.7s 10 64 23s 65 64
256×256×119, 1.0GB 1.6GB 1.5GB 62+23MB 13GB 52+25MB 104GB
bone subx.n6c100 3.9 11.8 7.1s 6.3s 12s 6.4s 5.5s 12 64 9.4s 42 64
128×256×119, 495MB 0.8GB 0.7GB 39+12MB 7.1GB 29+13MB 42GB
bone subxy.n26c100 1.9 32.2 5.9s 3.9s 6.1s 4.6s 7.3s 13 64 8.7s 33 64
128×128×119, 1.0GB 1.0GB 0.8GB 92+13MB 10GB 50+16MB 39GB
abdomen long.n6c10 144.4 11.8 179s 11 > 35
512×512×551, 19GB 29GB 410+403MB 196GB >1TB
abdomen short.n6c10 144.4 11.8 82s 11
512×512×551, 19GB 29GB 410+403MB 138GB
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problem S-ARD S-PRD

mem, MB time mem, MB time

BVZ-sawtooth 1.1 1.7s 1.9 11s

BL06-camel-lrg 122 6min 208 1.8h

BL06-gargoyle-lrg 118 8.5min 194 2.4h

LB07-bunny-lrg 217 8.6min 325 54min

babyface.n26c10 212 20min 231 1.9h

adhead.n26c10 236 16min 281 2.3h

adhead.n26c100 70 9min 116 1h

bone.n26c10 183 6.3min 210 1.4h

abdomen long.n6c10 813 36min ∼800 >3h

Table 2 Estimated running time for the algorithms in the
streaming mode, including the time for Disk I/O. The esti-
mate is computed for a disk speed of 100MB/s and does not
include initial problem splitting. The table also gives the total
amount of memory used by the solver.

sary for full verification of a solver. However, it would

require storing the full graph in the memory and was

not implemented.

Our new algorithms computed flow values for all

problems matching those provided in the dataset, ex-

cept for the following cases:

– LB07-bunny-lrg: no ground truth solution available

(we found flow/cut of cost 15537565).

– babyfacen26c10 and babyfacen26c100: we found

higher flow values than those which were provided

in the dataset (we found flow/cut of cost 180946 and

1990729 resp.).

The latter problems appear to be the most difficult for

S-ARD in terms of both time and number of sweeps.

Despite this, S-ARD requires much fewer sweeps, and

consequently much less disk I/O operations than the

push-relabel variant. This means that in the streaming

mode, where read and write operations take a lot of

time, S-ARD is clearly superior. Additionally, we ob-

serve that the time it spends for computation is com-

parable to that of BK, sometimes even significantly

smaller.

Next, we studied the dependency of computation

time and number of sweeps on the number of regions in

the partition. We selected 3 representative instances of

different problems and varied the number of regions in

the partition. The results are presented in the Fig. 13.

The instance BL06-gargoyle-sml was partitioned by

the vertex index and the remaining two problems were

partitioned according to their 3D vertex layout, using

variable number of slices in each dimension. The re-

sults demonstrate that the computation time required

to solve these problems is stable over a large range of

partitions and the number of sweeps required does not

grow rapidly. Therefore, for the best practical perfor-

mance the partition for S-ARD can be selected to meet

other requirements: memory consumption, number of
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Fig. 13 Dependence on the number of regions for the rep-
resentative instances of multiview, stereo and segmentation.
Top: CPU time used. Bottom: number of sweeps.

computation units, etc. We should note however, that

with refining the partition the amount of shared mem-

ory grows proportionally to the number of boundary

edges. In the limit of single-vertex regions, the algo-

rithm will turn into a very inefficient implementation

of pure push-relabel.

7.3 Parallel Competition

In this section, we test parallel versions of our algo-

rithms and compare them with two state-of-the-art

methods. The experiments are conducted on the same

machine as above (Intel Core 2 Quad CPU@2.66Hz)

but allowing the use of all 4 CPUs. The goal is to see

how the distributed algorithms perform in the simpli-

fied setting when they are run not in the network but

on a single machine. For P-ARD/PRD we expect that

the total required work would increase compared to the

sequential versions because the discharges are executed

concurrently. The relative speed-up therefore would be

sublinear even if we managed to distribute the work be-

tween CPUs evenly. The tests are conducted on small

and medium size problems (taking under 2GB of mem-

ory). For P-ARD and P-PRD we use the same partition

into regions as in Table 1. For other solvers, discussed

next, we tried to meet better their requirements.
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DD. The integer dual decomposition algorithm by

Strandmark and Kahl (2010)7 uses adaptive vertex-wise

step rule and randomization. With or without random-

ization, this algorithm is not guaranteed to terminate.

However, while without randomization there is an ex-

ample with 4 vertices such that the algorithm never ter-

minates, with randomization there is always a chance

that it does. Interestingly, on all of the stereo problems

the algorithm terminated in a small number of iter-

ations. However, on larger problems partitioned into 4

regions it exceeded the internal iterations bound (1000)

in many cases and returned without optimal flow/cut.

In such a case it provides only an approximate solution

to the problem. Whether such a solution is of practical

value is beyond us. We tested it with partitions into 2

and 4 regions (denoted DDx2 and DDx4 resp.). Nat-

urally, with 2 regions the algorithm can utilize only 2

CPUs. When the number of regions is increased, the

random event of termination is expected to happen less

likely, which is confirmed by our experiments.

RPR.A recently published implementation of Re-

gion Push Relabel (Delong and Boykov 2008) by Sameh

Khamis (v1.01, http://vision.csd.uwo.ca/code/).

For RPR we constructed partition of the problem

into smaller blocks. Because regions in RPR are com-

posed dynamically out of blocks (default is 8 blocks per

region) we partitioned 2D problems into 64 = 82 blocks

and 3D problems into 512 = 83 blocks. This partition

was also empirically faster than a coarser one. The pa-

rameter DischargesPerBlock was set by recommenda-

tion of authors to 500 for small problems (stereo) and

to 15000 for big problems. The implementation is spe-

cialized for regular grids, therefore multiview and KZ2

problems which do not have regulargrid hint cannot

be solved by this method. Because of the fixed graph

layout in RPR, arcs which are reverse of each other are

automatically grouped together, so RPR computes on a

reduced graph compared to other methods. Let us also

note that because of the dynamic regions, RPR is not

fully suitable to run in a distributed system.

The method of Liu and Sun (2010) (parallel, but not

distributed) would probably be the fastest one in this

competition (as could be estimated from the results re-

ported by Liu and Sun (2010)), however the implemen-

tation is not publicly available.

Results. The results are summarized in Table 3.

The time reported is the wall clock time passed in the

calculation phase, not including any time for graph con-

struction. The number of sweeps for DD has the same

meaning as for P-ARD/PRD, it is the number of times

all regions are synchronously processed. RPR however

is asynchronous and uses dynamic regions. For it, we de-

fine sweeps = block_discharges/number_of_blocks.

7 Multi-threaded maxflow library http://www.maths.lth.

se/matematiklth/personal/petter/cppmaxflow.php

Comparing to Table 1, we see that P-ARD on 4

CPUs is about 1.5− 2.5 times faster than S-ARD. The

speed-up over BK varies from 0.8 on livern6c10 to

more than 4 on gargoyle.

We see that DD gets lucky some times and solves

the problem really quickly, but often it fails to termi-

nate. We also observe that our variant of P-PRD (based

on highest first selections rule) is a relatively slow, but

robust distributed method. RPR, which is based on

LIFO selection rule, is competitive on the 3D segmen-

tation problems but is slow on other problems, despite

its compile-time optimization for the particular graph

structure. It is also uses relatively higher number of

blocks, The version we tested always returned the cor-

rect flow value but often a wrong (non-optimal) cut.

Additionally, for 26 connected bone_subxy.n26c100 it

failed to terminated within 1 hour.

7.4 Scalability with Processors

We performed additional tests of P-ARD in the shared

memory mode using 1-8 CPUs. This experiment is con-

ducted on a system with Intel(R) Core(TM)i7 CPU

870@2.9GHz, 16GB memory, linux 64bit and gcc com-

piler. The plot in Fig. 14 shows the speedup of solv-

ing the problem (excluding initialization) using multi-

ple CPUs over the time needed by a single CPU. For

this test, we selected medium and large size problems

of different kind which can fully fit in 16GB of memory.

The two problems which were taking longer in the se-

rial implementation scaled relatively well. On the other

side, the largest LB07-bunny problem did not scale well.

We believe that the limiting factor here is the mem-

ory bandwidth. We inspected that the sequential part

of the computation (boundary relabel heuristic, syn-

chronous message exchange) occupy less than 10% of

the total time for all four problems. The fully parallel

part should exhibit a linear speed-up in the ideal case of

even load. The load for LB07-bunny should be relatively

even, since we have enough regions (64) to be processed

with 8 CPUs. Still, there is no speed-up observed in the

parallel part of the first sweep (where most of the work

is done) when scaling from 4 to 8 CPUs.

It is most probable that reducing memory require-

ments (e.g. by having dedicated graph implementation

for regular grids) would also lead to a speed-up of the

parallel solver. We also observed that 32bit compilation

(pointers take 32bits) runs faster than 64bit compila-

tion. It is likely that our implementation can be op-

timized further for the best parallel performance. We

should however consider that preparing the data for the

problem and splitting it into regions is another time-

consuming part, which needs to be parallelized.

http://vision.csd.uwo.ca/code/
http://www.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
http://www.maths.lth.se/matematiklth/personal/petter/cppmaxflow.php
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Table 3: Parallel Competition

problem BK DDx2 DDx4 P-ARD P-PRD RPR
time time, sweeps

stereo

BVZ-sawtooth(20) 0.68s 0.52s 7 0.37s 11 0.30s 7 2.4s 31 4.8s 274
BVZ-tsukuba(16) 0.36s 0.28s 6 0.20s 8 0.17s 5 1.5s 33 2.1s 197
BVZ-venus(22) 1.2s 0.84s 7 0.59s 9 0.50s 7 4.9s 36 8.0s 466
KZ2-sawtooth(20) 1.8s 1.2s 11 0.91s 16 0.96s 6 4.9s 23
KZ2-tsukuba(16) 1.1s 0.67s 7 0.52s 11 0.70s 8 4.9s 22
KZ2-venus(22) 2.8s 1.9s 7 1.3s 12 1.5s 10 10s 39

multiview
BL06-camel-med 25s 18s 221 13s 260 8.7s 14 81s 322
BL06-camel-sml 0.98s 0.63s 11 0.49s 27 0.49s 10 2.5s 70
BL06-gargoyle-lrg 245s 120s 517 mem 58s 23 mem
BL06-gargoyle-med 115s 59s 20 38s 50 27s 21 79s 219
BL06-gargoyle-sml 6.1s 3.0s 19 1.9s 19 1.6s 10 2.4s 52

surface
LB07-bunny-med 1.6s 1.3s 11 1.1s 11 1.3s 13 12s 35 37s 349
LB07-bunny-sml 0.17s 0.12s 11 0.12s 11 0.21s 8 0.58s 21 3.5s 99

segm
liver.n6c10 7.2s X 7.6s 1000 X 22s 1000 8.9s 23 23s 164 5.1s 1298
liver.n6c100 15s 17s 31 X 21s 1000 12s 17 23s 102 7.3s 1722
babyface.n6c10 6.8s 8.8s 61 X 24s 1000 12s 22 61s 135 17s 4399
babyface.n6c100 13s 16s 338 X 20s 1000 17s 23 61s 179 22s 4833
bone.n6c10 7.7s 5.2s 22 X 8.2s 1000 4.9s 17 16s 182 6.3s 918
bone.n6c100 9.1s 5.3s 12 4.1s 17 6.2s 13 14s 70 7.9s 1070
bone subx.n6c100 7.1s 6.3s 24 5.2s 34 3.9s 17 5.8s 48 1.5s 747
bone subxy.n26c100 5.9s 3.4s 11 3.2s 12 5.8s 16 6.0s 37 hang

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

#CPUs

S
pe

ed
up

 

 
Parallel portion: 90%
Parallel portion: 95%

problem regions MEM 1CPU 8CPUs

–•— BL06-gargoyle-lrg 16 1.6GB 137.4s 38.82s

–◦— BL06-camel-lrg 16 1.8GB 67.14s 16.00s

–�— LB07-bunny-lrg 64 12GB 12.94s 7.11s

–•— liver.n6c100 64 0.9GB 18.41s 12.21s

Fig. 14 Speedup of P-ARD with the number of CPUs used.
The extended legend shows the time to solve each problem
with 1 and 8CPUs (does not include initialization). Dashed
lines correspond to the speedup in the ideal case (Amdahl’s
law) when the parallel portion of the computation is 90% and
95%.

8 Region Reduction

In this section, we attempt to reduce the region network

as much as possible by identifying and eliminating ver-

tices which can be decided optimally regardless of the

reminder of the full network outside of the region. If

it was possible to decide about many vertices globally

optimally inside a region network, the whole problem

would simplify a lot. It would require less memory and

could be potentially solved without distributing and or

partitioned again into larger regions. We propose an

improved algorithm for such a reduction and its exper-

imental verification. This preprocessing is studied sep-

arately and was not applied in the tests of distributed

algorithms above. Experiments with vision problems

(Table 4) showed that while 2D problems can be signifi-

cantly reduced, many of the higher-dimension problems

do not allow a substantial reduction.

Some vertices become disconnected from the sink in

the course of the studied algorithms (S/P-ARD, S/P-

PRD). If they are still reachable from the source, they

must belong to the source set of any optimal cut. Such

vertices do not participate in further computations and

the problem can be reduced by excluding them. Un-

fortunately, the opposite case, when a vertex must be

strictly in the sink set is not discovered until the very

end of the algorithms.

The following algorithm attempts to identify as

many vertices as possible for a given region. It is based

on the following simple consideration: if a vertex is dis-

connected from the sink inGR as well as from the region

boundary, BR, then it is disconnected from the sink in

G; if a vertex is not reachable from the source in GR

as well as from BR then it is not reachable from the

source in G.
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Let us say that a vertex v is a strong source vertex

(resp. a strong sink vertex) if for any optimal cut (C, C̄),

v ∈ C (resp. v ∈ C̄). Similarly, v will be called a weak

source vertex (resp. weak sink vertex), if there exists an

optimal cut (C, C̄) such that v ∈ C (resp. v ∈ C̄).

Kovtun (2004) suggested to solve two auxiliary

problems, modifying network GR by adding infinite ca-

pacity links from the boundary vertices to the sink and

in the second problem adding infinite capacity links

from the source to the boundary vertices. In the first

case, if v is a strong source vertex in the modified net-

work GR, it is also a strong source vertex in G. Sim-

ilarly, the second auxiliary problem allows to identify

strong sink vertices in G. It requires solving a maxflow

problem on GR twice. We improve this construction

by reformulating it as the following algorithm finding a

single flow in GR.

Algorithm 3: Region Reduction (GR, BR)

/* Input: network GR, boundary BR */

1 Augment(s, t);
2 BS := {v | v ∈ BR, s→ v}; /* source boundary set */

3 BT := {v | v ∈ BR, v → t}; /* sink boundary set */

4 Augment(s,BS);
5 Augment(BT , t);
6 foreach v ∈ R do
7 if s→ v then v is strong source vertex;
8 if v → t then v is strong sink vertex;
9 otherwise

10 if v 9 BR then v is weak source vertex;
11 if B 9 vR then v is weak sink vertex

Statement 12 Sets BS and BT constructed in step 2

are disjoint.

Proof We have s 9 t after step 1, hence there cannot

exist simultaneously a path from s to v and a path

from v to t. ut

After step 1, the network GR is split into two discon-

nected networks: with vertices reachable from s and ver-

tices from which t is reachable. Therefore, any augmen-

tations occurring in steps 4 and 5 act on their respective

subnetworks and can be carried independently of each

other. On the output of Alg. 3, we have: s 9 BR ∪ {t}
and BR∪{s}9 t. The classification of vertices is shown

in Fig. 15.

Augmenting on (s, t) in step 1 and on (s,BS) in the

step 4 is the same work as done in ARD (where (s,BS)

paths are augmented in the order of labels of BS). This

is not a coincidence, these algorithms are very much re-

lated. However, the augmentation on (BT , t) in step 5

cannot be executed during ARD. It would destroy va-

lidity of the labeling. We therefore consider Alg. 3 as a

separate general preprocessing.

(a) (b)

Fig. 15 Classification of vertices in V R build by Alg. 3. Ver-
tices reachable from s are strong source vertices. Vertices from
which t is reachable are strong sink vertices. The remaining
vertices can be classified as weak source (a) if they cannot
reach boundary, or as weak sink (b) if they are not reachable
from the boundary. Some vertices are both: weak source and
weak sink, this means they can be on both sides of an optimal
cut (but not independently).

If v is a weak source vertex, it follows that it is not

a strong sink vertex. In the preflow pushing algorithms,

we find the cut (T̄ , T ), where T is the set of all strong

sink vertices in G. We consider that v is decided if it is

a strong sink or a weak source vertex.

Table 4 gives the percentage of how many vertices

are decided (and hence can be excluded from the prob-

lem) by Alg. 3 for computer vision problems. It is seen

that in stereo problems, a large percent of vertices is de-

cided. These problems are rather local and potentially

can be fully solved by applying Alg. 3 on several over-

lapping windows. In contrast, only a small fraction can

be decided locally for many other problems.

9 Tightness of O(n2) bound for PRD.

In this section, we give an example of a network, its

partition into regions and a sequence of valid push and

relabel operations, implementing PRD, such that S/P-

PRD runs in Ω(n2) sweeps.

We start by an auxiliary example, in which the pre-

flow is transfered from a vertex to a boundary vertex

with a higher label. In this example, some inner vertices

of a region are relabeled, but not any of the boundary

vertices. It will imply that the total number of sweeps

cannot be bounded by the number of relabellings of

boundary vertices alone.

Example 1 Consider a network of 6 regular vertices

in Fig. 16. Assume all edges have infinite capacity, so

only non-saturating pushes occur. There are two re-

gions R1 = {1, 2, 3, 4, 5} and R2 = {6}. Fig. 16 shows a

sequence of valid push and relabel operations. We see

that some vertices get risen due to relabel, but the net

effect is that flow excess from vertex 1 is transfered to

vertex 6, which had a higher label initially. Moreover,

none of the boundary vertices (vertices 5,6) are rela-

beled.
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BVZ-sawtooth(20) 80.0% LB07-bunny-sml 15.6% bone.n26c100 6.9% bone subxyz.n6c100 6.6%

BVZ-tsukuba(16) 72.8% liver.n26c10 7.1% bone.n6c10 8.8% bone subxyz subx.n26c10 7.9%

BVZ-venus(22) 70.2% liver.n26c100 5.3% bone.n6c100 7.0% bone subxyz subx.n26c100 6.6%

KZ2-sawtooth(20) 85.0% liver.n6c10 7.2% bone subx.n26c10 6.6% bone subxyz subx.n6c10 8.2%

KZ2-tsukuba(16) 69.9% liver.n6c100 5.3% bone subx.n26c100 6.6% bone subxyz subx.n6c100 6.6%

KZ2-venus(22) 75.8% babyface.n26c10 29.3% bone subx.n6c10 6.3% bone subxyz subxy.n26c10 11.3%

BL06-camel-lrg 2.0% babyface.n26c100 30.9% bone subx.n6c100 6.3% bone subxyz subxy.n26c100 9.5%

BL06-camel-med 2.3% babyface.n6c10 35.4% bone subxy.n26c10 6.6% bone subxyz subxy.n6c10 12.7%

BL06-camel-sml 4.6% babyface.n6c100 33.7% bone subxy.n26c100 6.6% bone subxyz subxy.n6c100 9.3%

BL06-gargoyle-lrg 6.0% adhead.n26c10 0.3% bone subxy.n6c10 6.4% abdomen long.n6c10 1.7%

BL06-gargoyle-med 2.4% adhead.n26c100 0.3% bone subxy.n6c100 6.3% abdomen short.n6c10 6.3%

BL06-gargoyle-sml 9.8% adhead.n6c10 0.2% bone subxyz.n26c10 6.6%

LB07-bunny-lrg 11.4% adhead.n6c100 0.1% bone subxyz.n26c100 6.6%

LB07-bunny-med 13.1% bone.n26c10 8.7% bone subxyz.n6c10 6.6%

Table 4 Percentage of vertices which can be decided by preprocessing. The problems are partitioned into regions the same
way as in Table 1. For stereo problems the average number over subproblems is shown.

1
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4

5

6

R1 R2

(a) (b) (c) (d) (e) (f)

Fig. 16 Steps of Example 1. The height of a vertex corre-
spond to its label. The black box shows the vertex with ex-
cess in each step. The source and the think vertices are not
shown. (a)-(b) flow excess is pushed to vertex 2; (c) vertex
2 is relabeled, so that two pushes are available and excess is
pushed to vertex 3; (d-f) similar.
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Fig. 17 Steps of Example 2. Top left: a network with several
chains of vertices like in Example 1. Nodes 1,5,6 are common
for all chains but there are separate copies of vertices 2,3,4
denoted by letters. In addition, there is a reverse arc from
vertex 6 to vertex 1. From left to right, top to bottom: one
step of transferring a flow from vertex 1 to vertex 6 using
one of the chains and then pushing it through the arc (6,1),
relabeling 6 when necessary. The label of the first vertex is
increased three times by 2.

Example 2 Consider the network in Fig. 17. The first

step corresponds to a sequence of push and relabel

operations (same as in Fig. 16) applied to the chain

(1, 2a, 3a, 4a, 5, 6). Each next step starts with the ex-

cess at vertex 1. Chains are selected in turn in the order

a, b, c. It can be verified from the figure that each step

is a valid possible outcome of PRD applied first to R1

and then to R2. The last configuration repeats the first

one with all labels raised by 6, so exactly the same loop

may be repeated many times.

It is seen that vertices 1, 5, 6 are relabeled only dur-

ing pushes in the chains a and b and never during pushes

in chain c. If there were more chains like chain c, it

would take many iterations (= number of region dis-

charge operations) before boundary vertices are risen.

Let there be k additional chains in the graph (denoted

d, e,. . . ) handled exactly the same way as chain c. The

total number of vertices in the graph is n = 3k+ const.

Therefore, it will take Ω(n) region discharges to com-

plete each loop, raising all vertices by a constant value.

The number of discharges needed in order that vertex 1

reaches a label D, is Ω(nD). To make the example com-

plete, we add a chain of vertices initially having labels

1,2,3,. . .D to the graph such that there is a path from

vertex 1 to the sink through a vertex with label D.

Clearly, we can arrange that D = Ω(n). The algorithm

needs Ω(n2) discharges on this example.

Because there is only one active vertex at any time,

the example is independent of the rule used to select

the active vertex (highest label, FIFO, etc.). By the

same reason, it also applies to parallel PRD. Because

the number of regions is constant, the number of sweeps

required is also Ω(n2).

For comparison, noting that the number of bound-

ary vertices is 3, we see that S-ARD algorithm will ter-

minate on this example in a constant number of sweeps

for arbitrary k.
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Fig. 18 Interpretation of the dual decomposition. (a) Exam-
ple of a network with denoted capacities. Terminal capacities
are shown in circles, where “+” denotes s-link and “−” de-
notes t-link. M ∩ N is a separator set. (b) The network is
decomposed into two networks holding copies of the separa-
tor set. The associated capacities are divided (not necessarily
evenly) between two copies. The variable λ1 is the Lagrangian
multiplier of the constraint xv = yv. (c) Introducing edges of
infinite capacity enforces the same constraint, that v′ and v′′

are necessarily in the same cut set of any optimal cut. (d) A
maximum flow in the network (c), the flow value on the red
edges corresponds to the optimal value of the dual variables λ.

10 Relation to Dual Decomposition

In our approach, we partition the set of vertices into

regions and couple the regions by sending the flow

through the inter-region edges. In the dual decomposi-

tion for mincut (Strandmark and Kahl 2010) detailed

below, a separator set of the graph is selected, each sub-

problem gets a copy of the separator set and the cou-

pling is achieved via the constraint that the cut of the

separator set must be consistent across the copies. We

now show how the dual variables of Strandmark and

Kahl (2010) can be interpreted as flow, thus relating

their approach to ours.

Decomposition of the mincut problem into two

parts is formulated by Strandmark and Kahl (2010) as

follows. Let M,N ⊂ V are such that M ∪ N = V ,

{s, t} ⊂ M ∩ N and there are no edges in E from

M\N to N\M and vice-versa. Let x : M → {0, 1} and

y : N → {0, 1} be the indicator variables of the cut set,

where 0 corresponds to the source set. Then the min-

cut problem without excess can be reformulated as:

min
x,y

CM (x) + CN (y),

s.t.


xs = ys = 0,

xt = yt = 1,

xi = yi, ∀i ∈M ∩N,

(15)

where

CM (x) =
∑

(i,j)∈EM

cM (i, j)(1− xi)xj , (16a)

CN (y) =
∑

(i,j)∈EN

cN (i, j)(1− yi)yj ; (16b)

cM (i, j) + cN (i, j) = c(i, j), (17a)

cM (i, j) = 0 ∀i, j ∈ N\M, (17b)

cN (i, j) = 0 ∀i, j ∈M\N, (17c)

EM = (M,M)
def
= (M×M)∩E and EN = (N,N). The

minimization over x and y decouples once the constraint

xi = yi is absent. The dual decomposition approach is

to solve the dual problem:

max
λ

[
min
x

xs=0
xt=1

(
CM (x) +

∑
i∈M∩N

λi(1− xs)xi
)

+

min
y

ys=0
yt=1

(
CN (y)−

∑
i∈M∩N

λi(1− ys)yi
)]
,

(18)

where the dual variable λ is multiplied by the extra

terms (1 − xs) = (1 − ys) = 1 to show explicitly that

the inner minimization problems are instances of the

minimum cut problem.

We observe that dual variables λ correspond to the

flow on the artificial edges of infinite capacity between

the copies of the vertices of the separator set as illus-

trated by Fig. 18. Indeed, consider a vertex v in the

separator set. The dual variable λv contributes to the

increase of the terminal link (v′, t) in the subproblem

M and to the decrease of the terminal link (v′′, t) in the

subproblem N . This can be equivalently represented as

an augmentation of flow of λv on the cycle v′, t′, v′′ in

the network Fig. 18(c). The optimal flow in the net-

work Fig. 18(c) on the constraint edges will therefore

correspond to the optimal λ. This construction could

be easily extended to the case when a vertex v from the

separator set is shared by more than two subproblems.

There exist an integer optimal flow for a problem

with integer capacities. This observation provides an al-

ternative proof of the theorem (Strandmark and Kahl
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2010, Theorem 2)8, stating that there exist an inte-

ger optimal λ. Despite the existence of an integer so-

lution, the integer subgradient algorithm (Strandmark

and Kahl 2010) is not guaranteed to find it.

The algorithm we introduced could be applied to

such a decomposition by running it on the extended

graph Fig. 18(c), where vertices of the separator set

are duplicated and linked by additional edges of infi-

nite capacity. It could be observed, however, that this

construction does not allow to reduce the number of

boundary vertices or the number of inter-region edges,

while the size of the regions increases. Therefore it is

not beneficial with our approach.

11 Conclusion

We developed a new algorithm for mincut problem

on sparse graphs, which combines augmenting paths

and push-relabel approaches. We proved the worst case

complexity guarantee of O(|B|2) sweeps for the sequen-

tial and parallel variants of the algorithm (S/P-ARD).

While there are many algorithms in the literature with

complexities in terms of elementary arithmetic opera-

tions better than we could possibly prove, we showed

that our algorithms are fast and competitive in prac-

tice, even in the shared memory model. We proposed

an improved algorithm for local problem reduction (§8)

and determined that most of our test instances are dif-

ficult enough in the sense that very few vertices can be

decided optimally by looking at individual regions. The

result that S/P-ARD solves test problem in few tens of

sweeps is thus non-trivial. We also gave a novel parallel

version of the region push-relabel algorithm of Delong

and Boykov (2008) and a number of auxiliary results,

relating our approach to the state-of-the.

Both in theory and practice (randomized test), S-

ARD has a better asymptote in the number of sweeps

than the push-relabel variant. Experiments on real in-

stances showed that when run on a single CPU and the

whole problem fits into the memory, S-ARD is compa-

rable in speed with the non-distributed BK implemen-

tation, and is even significantly faster in some cases.

When only a single region is loaded into memory at a

time, S-ARD uses much fewer disk I/O than S-PRD.

We also demonstrated that the running time and the

number of sweeps are very stable with respect to the

8 Strandmark and Kahl (2010) stated their theorem for
even integer costs in the case of two-subproblem separator
sets. They remarked that a multiple of 4, resp., 8 is needed
in the cases of decompositions for 2D and 3D grids. However,
this multiplication is unnecessary if we chose to split the cost
unevenly but preserving the integrality (like we did in the
example).

partition of the problem into up to 64 regions. In the

parallel mode, using 4 CPUs, P-ARD achieves a relative

speedup of about 1.5− 2.5 times over S-ARD and uses

just slightly larger number of sweeps. P-ARD compares

favorably to other parallel algorithms, being a robust

method suitable for a use in a distributed system.

Our algorithms are implemented for generic graphs.

Clearly, it is possible to specialize the implementation

for grid graphs, which would reduce the memory con-

sumption and might reduce the computation time as

well.

A practically useful mode could be actually a com-

bination of a parallel and sequential processing, when

several regions are loaded into the memory at once and

processed in parallel. There are several particularly in-

teresting combinations of algorithm parallelization and

hardware, which may be exploited: 1) parallel on sev-

eral CPUs, 2) parallel on several network computers, 3)

sequential, using Solid State Drive, 4) sequential, using

GPU for solving region discharge.

There is the following simple way how to allow re-

gion overlaps in our framework. Consider a sequential

algorithm, which is allowed to keep 2 regions in mem-

ory at a time. It can then load pairs of regions (1, 2),

(2, 3), (3, 4). . . , and alternate between the regions in a

pair until both are discharged. With PRD, this is ef-

ficiently equivalent to discharging twice larger regions

with a 1/2 overlap and may significantly decrease the

number of sweeps required. In the case of a 3D grid,

it would take 8 times more regions to allow overlaps

in all dimensions. However, to meet the same memory

limit, the regions have to be 8 times smaller. It has to

be verified experimentally whether it is beneficial. In

fact, the RPR implementation of Delong and Boykov

(2008) uses exactly this strategy: a dynamic region is

composed out of a number of smaller blocks and blocks

are discharged until the whole region is not discharged.

It is likely that with this approach we could further

reduce the disk I/O in the case of the streaming solver.

Future Work. We plan to provide also a dis-

tributed MPI-based implementation as well as address

the question of dynamic updates of the problem and

implement a more efficient input-output interface for

the use in real applications. The memory-efficient rep-

resentation of graphs having repetitive structure is also

possible.
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