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Discrete Energy Minimization
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Minimize partially separable function

Ef (x) = f0 +
∑
s∈V

fs(xs) +
∑
st∈E

fst(xs , xt),

over assignments (labelings): x = (xs ∈ Ls | s ∈ V)

studied as MAP MRF/CRF, WCSP
NP-hard to approximate (e.g. Orponen 1990 for TSP)
This work: reduce domains (sets of labels Ls) while retaining
some/all optimal solutions, in polynomial time
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Partial Optimality

Example to illustrate what is the hope here:

Stereo Reconstruction
(Model of Alahari et al. 2010)

Partial Optimality
(Method of Kovtun, 2010)

Can find a partial assignment that holds for any global
optimum, which is unknown
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Several Different Methods

There were proposed several substantially different methods:

Dead End Elimination (DEE)

Persistency in Quadratic Pseudo-Boolean Optimization
(QPBO)

MQPBO

Methods of Kovtun 04, 10

Methods of Swoboda et al. 13 (14)

What do they have in common?
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Improving Mappings
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Improving Mapping

s tt
′

Definition

Mapping p : L → L is improving if (∀x ∈ L) Ef (p(x)) ≤ Ef (x)
strictly improving if x 6= p(x) ⇒ Ef (p(x)) < Ef (x)

If x is optimal then p(x) is optimal

For strictly improving all optimal solutions are in p(L)

Composition: if p, q are improving ⇒ p ◦ q is improving:
Ef (p(q(x))) ≤ Ef (q(x)) ≤ f (x)
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Dead End Elimination (DEE)

Family of methods by Desmet et al. 1992, Goldstein 1994, etc.

st′

y

t′′

α

β

s

t

t′

Apply mapping in a single pixel s

Improving iff
fs(α)− fs(β) +

∑
t∈N (s)

min
xt∈Lt

[fst(α, xt)− fst(β, xt)] ≥ 0

(worst case energy change over neighbours assignment)

Compose many such mappings

Alexander Shekhovtsov, TU Graz Maximum Persistency in Energy Minimization



8/26

Introduction Mappings Generalized Sufficient Condition Maximum Persistency Experiments References

Quadratic Pseudo-Boolean Optimization (QPBO)

Nemhauser and Trotter 75, Hammer et al. 84, Boros et al. 02,
Rotheret al. 07
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Integral part of the LP relaxation is globally optimal
A ⊂ V, y = (ys | s ∈ A)

”Autarky”:
replace x with y on A (x [A ← y ]) is guaranteed not to
increase the energy
mapping x 7→ x [A ← y ] is improving
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Multilabel QPBO (MQPBO)

Kohli et al. 08, Windheuser et al. 12

max
x

min
x

Fixed linear ordering

Reduction to pseudo-Boolean + QPBO guarantees

”Autarky”: mapping x 7→ (x ∨ xmin) ∧ xmax is improving
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Kovtun one vs. all Method

Kovtun 2004, 2010

test labeling y

Builds auxiliary submodular 2-label energy for given y

”Autarky”: mapping x 7→ x [A ← y ] is improving
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Kovtun general Method

Kovtun 2004, 2010

found y

Builds auxiliary submodular multilabel energy and y

Mapping x 7→ (x ∨ y) is improving
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Iterative Pruning

Swoboda et al. 2013, 2014

found y

Iteratively builds auxiliary energy and solves its LP relaxation

”Autarky”: mapping x 7→ x [A ← y ] is improving
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Verification Problem

Verifying whether p : L → L is improving is NP-hard

e.g., Boros et al. 2006

Determining whether a partial assignment is an autarky is NP-hard

How do these methods find one? – Finer sufficient conditions.
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Generalized Sufficient Condition
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LP Relaxation

Schlesinger 76, Koster et al. 98, 99, Chekuri et al. 01, Wainwright et al.

02, Werner 08.
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¹2(1)
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mapping ±

Embedding: δ(x) ∈ RI

Ef (x) = 〈f , δ(x)〉
Relaxation:

min
x∈L
〈f , δ(x)〉 ≥ min

µ∈Λ
〈f , µ〉

Λ ⊃ conv(δ(L))
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Relaxed Improving Mapping

(1,0)
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(0,0)
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p s p t

mapping ± P(M)

Linear Extension

(∀x ∈ L) δ(p(x)) = Pδ(x)

Definition

Mapping p : L → L is Relaxed-improving if
(∀µ ∈ Λ) 〈f ,Pµ〉 ≤ 〈f , µ〉
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Relaxed Improving Mapping

Improving Relaxed-Improving

(∀x) Ef (p(x)) ≤ Ef (x) (∀µ ∈ Λ) 〈f ,Pµ〉 ≤ 〈f , µ〉

Λ ⊃ conv(δ(L))

Sufficient condition

Can be verified via LP: min
µ∈Λ
〈f , (I − P)µ〉 ≤ 0

Theorem

Relaxed-improving condition is satisfied for all methods:

Goldstein’s General DEE

QPBO

MQPBO (prev. work, Shekhovtsov et al. 07)

Methods of Kovtun (prev. work, Shekhovtsov et al. 12)

Methods of Swoboda et al. 13 (14*)
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Maximum Persistency
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Maximum Persistency

Given that verification problem is polynomially solvable,

Which method is better?

Proposition

Pose ”the best partial optimality” as optimization problem

Find the mapping p : L → L that delivers the maximum problem
reduction:

min
p∈P

∑
s

|p(Ls)| s.t. p is relaxed improving for f ,

P - class of mappings.
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Maximum Persistency

For pseudo-Boolean case is solved by QPBO (strong and weak
persistency)
Polynomial for further cases

All-to-one maps, strictly
improving

Subset-to-one maps

found y test labeling y

Covers:

Swoboda et al. 13 (14*)

QPBO

one vs. all Kovtun 04

General method of Kovtun

DEE if applied K times

Other case, if y selected by
LP
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Method

Maximum Persistency

min
p∈P

∑
s

|p(Ls)|

s.t. min
µ∈Λ
〈f , (I − P)µ〉 ≤ 0 ⇔ (∃ϕ) (I − P)Tf − ϕAT ≥ 0

Reformulate as a linear program, L1

Optimizes over relaxed mapping and reparametrization jointly

Optimal solution recovers optimal discrete mapping
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Experimental Validation

Random Potts Random Full
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All test problems have integrality gap (not LP-tight)

Verified correctness by solving LP
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Windowing
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Can restrict mapping to a window - global correctness
guarantees (generalization of DEE)

Conclusion

+ Generalized sufficient condition

+ Direct formulation of the maximum persistency

+ Optimal method in a range of cases

− Requires to solve LP
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