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Abstract. We consider the problem of selecting labels in vertices of the graph in order to maximize 

sum of weights, assigned to pairs of labels ( (max,+) problem, MAP MRF, minimization of Gibbs 

energy). We construct upper bounds on the goal function as sum of two auxiliary super- and 

submodular problems. The tightest possible bound of this type can be found by solving a special case 

of LP. It's solution allows to fix some part of optimal configuration of the initial problem. 

 

 Introduction. In the pattern recognition we know fundamental problems, which arise as estimation 

of maximal a posteriori probability configuration of Markov Random Field, as search of the optimal 

labeling, as minimization of Gibbs energy. Optimization models of this type play an important role in 

other areas: in statistical mechanics they arise as minimization of Hamiltonian energy of spin glass 

systems, in communication theory as problems of optimal error-correcting decoding. Their abstract 

formulations are studied in operations research, discrete mathematics, combinatorial theory. 

Problem formulation. Let = ( , )G T E  be a directed graph, where ( )2
TE ⊆ . Elements of set T  we’ll 

refer as objects, and elements of E  as pairs. United set = T Eℑ ∪  we’ll call as structure of the 

problem. Let K  be finite set of labels. Let us call mapping :k T K→  a labeling ( Tk K∈ ). By 

:k Kτ τ →  ( k Kτ
τ ∈ ) we’ll denote restriction of labeling k  to the subset τ ∈ ℑ . Let ;kτ τ

θ ∈R  be 
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parameters, associated to each pair ( , )kττ , where τ ∈ ℑ , and k Kτ
τ ∈ . Pairs of type ( , )ee k , e E∈  we 

will refer as edges, and pairs ( , )tt k , t T∈  as nodes. 

We consider the problem of finding a labeling with best total quality of edges and nodes: 

   ;argmax .kTk K
τ τ

τ

θ
∈ ∈ℑ

∑   (1) 

Following the terminology of [1], where a general formulation of the problem in arbitrary semiring is 

considered, we will use notation of semiring operations to denote problem (1), namely ( , )max +  

problem. It is known that ( , )max +  problem is an NP-complete one, and that it can be reformulated as 

searching the maximal cut in network (MAX-CUT). There exists "supermodular" subclass of ( , )max +  

problems, which is equivalent to (solvable) MAX-CUT problems with non positive edge capacities. 

This solvable subclass is widely exploited in modeling of some applied problems in pattern recognition 

and image analysis. Except of supermodular ( , )max + , problems with tree structure of the graph are 

solvable by means of dynamic programming. The latter subclass is else widely applicable mostly 

because it’s simplicity. Unfortunately, there is a lot of applied tasks, which we could model with 

(max, )+  optimization, but they do not fit in before mentioned solvable subclasses. 

In [2] the notion of equivalent (max, )+  problems was proposed: problems, in which the same quality 

function is represented with different vectors of parameters θ . Indeed, we could e.g. omit using node 

weights (set them to 0), and define the same quality function using edge weights only. It is shown, that 

if there exists such equivalent representation, where an optimal labeling can be constructed from 

locally maximal edges, i.e. edges ;( , ) ( ,arg max )
e

e e kek
e k e θ= , e E∈ , by polynomial algorithm, then the 

representation itself can be found in polynomial time. It is known [3] that subclass of problems 

solvable in this way, includes all the supermodular problems, as well as all tree-structured problems. 

Special algorithms for trivializing the ( , )max +  problem were proposed in [4, 5], algorithms in [6, 7] 

can be else viewed as finding the trivial equivalent problem. 

Recently techniques of constructing special auxiliary problems were proposed [8, 9], which allows to 
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find a part of an optimal solution for general class of (max,+) problems. There exists methods for 

upper bounding the goal function [10, 11], which else allows to find a part of optimal solution for these 

hard problems. We introduce some new properties of supermodular ( , )max +  problems, which allows 

us to construct another upper bound on the goal function, and to analyze the set of optimal solutions of 

the ( , )max +  problem. Proposed technique, when applied to ( , )max +  problems with = 2K , provides 

the same bound and part of optimal solution as [10]. There are some useful consequences for problems 

with > 2K . In particular our technique allows recovering partial optimality in the form of restricted 

intervals of labels in each object. For supermodular problems our approach gives an exact solution, 

this result is else in accordance with [10] and [3]. Unfortunately for chain-structured problems with 

> 2K  our approach does not provide an exact solution anymore. In more details these results of this 

paper outlined in [12]. 

Upper bound. Let us write problem (1) in the form of scalar product: 

 ; ; { = }max = max = max , ( ) ,k k k kT T Tk K k K k Kk

kτ ττ τ τ τ
τ τ τ

θ θ θ φ′ ′
∈ ∈ ∈′∈ℑ ∈ℑ

∑ ∑∑ 1   (2) 

where ; { = }( ) =k k kk τ τ τ τ
φ ′ ′1 . Using this representation it is easy to see that the following inequality holds: 

 max , ( ) max , ( ) ,  whenever = .i i

T Tk K k Ki i

k kθ φ θ φ θ θ
∈ ∈

≤ ∑ ∑   (3) 

It establishes an upper bound on the quality of best labeling ( ) := max , ( )
Tk K

kθ θ φ
∈

Φ  as the sum of 

qualities of best labelings of auxiliary problems ( ) := max , ( )i i

Tk K
kθ θ φ

∈
Φ . The following lemma states 

a connection between solutions of auxiliary problems and solution of original problem, in the case 

when (3) holds as equality. 

Lemm 1 ([6]). Inequality (3) holds as equality, if and only if  O ( )i

i
PT θ ≠ ∅∩ , where 

O ( ) = Arg max , ( )i i

Tk K
PT kθ θ φ

∈
 – set of optimal labelings for iθ . 

If the upper bound (3) provides iθ , satisfying * O | ( )i

i
k PT θ∃ ∈∩ , then *k  is an optimal solution of 
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the original problem. Generally, evaluating the value O | ( )i

i
PT θ ≠ ∅∩  appears to be an NP-hard 

problem, however in some special cases it is known to be polynomially solvable. 

Tree decomposition. Let us consider a decomposition =i
i
θ θ∑ , proposed in [6], when problems 

( ) = max , ( )i

Tk K
kθ θ φ

∈
Φ  constructed to appear solvable as tree-structured problems. Let for each i :  

( , )i iV E  be a tree, which is a subgraph of G . Let iΘ
r

 be a set of parameter vectors, respecting the 

structure of the tree: ;= { | = 0 for all , and all }.i i
k i i

i V E kτ ττ
θ θ τΘ ∉ ∪

r
 

Each problem ( )iθΦ  appears then to be easily solvable as ( , )max +  problem on the tree ( , )i iV E . 

A tree decomposition is searched, which provides the tightest possible bound: 

 
=

min ( ) ( ).
i i

i

i

i

i
θ

θ θ

θ θ
∈Θ

∑

Φ ≥ Φ∑r   (4) 

Equality =i
i
θ θ∑  must hold, therefore each nonzero element ;kτ τ

θ  must be represented in at least one 

nonzero element ;
i

kτ τ
θ , from which it follows that trees ( , )i iV E  must cover the graph G . Following 

theorem gives a complete description of upper bound (4), which is independent of selection of trees 

( , )i iV E  covering G . 

Theorem 1 (LOCAL2 relaxation , [6]). Lagrangian dual to minimization problem (4) is the 

maximization problem:  
L 2( )
max , ,
OCAL Gµ

θ µ
∈

   (5) 

where LOCAL2( )G  — is a set of node-agreed distributions over Kτ : 

 ; ; ; ;LOCAL 2( ) = 0, = 1, = .k k tt k t ktt t
k kt

G tt Eτ ττ τ
τ

µ µ µ µ µ′ ′
′

  ′≥ ∀ ∈ 
  

∑ ∑   (6) 

Set LOCAL2( )G  is a convex polyhedron, restricted with polynomial number of linear constraints, 

namely  2( | | )O Kℑ  constraints, thus problem (5) is polynomially solvable as linear programming 

(LP) task, and consequently (4) is. Efficiency of general LP solvers is not sufficient for large scale 
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problems. There were proposed several algorithms aimed at direct solution of (4). As far as it does not 

influence the value of (4) we can select the set of trees, covering the graph, as minimal spanning trees 

[6], or as chains [7], or as separate edges of G . In the last case it appears, that problem (5) can be else 

solved by means of equivalent transformations technique [2](See else further research in  [3, 1]), 

proposed by Schlesinger in 1976, for which convergent algorithms were developed [4, 5] with 

stationary point properties fully analogues to that of  [7]. 

Following representation of initial problem (2) in the form of linear programming task, shows that 

problem (5) is indeed a relaxation of (2). 

Let { }= :  ( ) = 1 , ( ) 0T
Tk K

p K p k p k
∈

→ ≥∑RP  denote the set of distributions over TK . The 

initial ( , )max +  problem can be written in the form: 

 max , ( ) = max ( ) , ( ) ,
T pk K k

k p k kθ φ θ φ
∈∈

∑P
  (7) 

where equality holds, because ( ) , ( ) max , ( )
k Tk K
p k k kθ φ θ φ

∈
≤∑  as convex combination of , ( )kθ φ , 

and, because ( ) , ( ) = max , ( )
Tk Kk

p k k kθ φ θ φ
∈

∑  for *{ = }
( ) =

k k
p k ∈1 P . 

Further, using the linearity of ,θ ⋅ : 

 
MARG( )

max ( ) , ( ) = max , ( ) ( ) = max , ,
p p G

k k

p k k p k k
µ

θ φ θ φ θ µ
∈ ∈ ∈

∑ ∑P P
  (8) 

where MARG( ) =   : = ( ) ( ) .
k

G p p k kµ µ φ
 

∃ ∈ 
 

∑P  

Let us note that for vector µ  from MARG( )G  it holds: ; ; { = }= ( ) ( ) = ( ) .k k k k
k k

p k k p kτ ττ τ τ τ
µ φ′ ′ ′∑ ∑ 1  Thus, 

;( )τµ ⋅  are defined as marginal probabilities of some distribution p ∈P , so we will refer vector µ  from 

MARG( )G  as marginal vector. Set MARG( )G  is a convex polyhedron, bounded with exponentially 

large number of linear constraints. It’s easy to see that MARG( ) LOCAL2( )G G⊆ , i.e. some 

constraints defining  MARG( )G , are relaxed in LOCAL2( )G . Therefore next inequality holds: 
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MARG( ) LOCAL2( )
max , max , .

G Gµ µ
θ µ θ µ

∈ ∈
≤   (9) 

Inequality (9) can be obtained else another way around, using duality: 

 
MARG( ) LOCAL2( )

=

max , = ( ) min ( ) = max , .
i i

i

i

i

G G
i

µ µθ

θ θ

θ µ θ θ θ µ
∈ ∈∈Θ

∑

Φ ≤ Φ∑r   (10) 

Supermodular (max,+) problems. Let U  be a finite set. Function of subsets : 2UF → R  is 

called supermodular, if: , : ( ) ( ) ( ) ( )A B U F A F B F A B F A B∀ ⊆ + ≤ ∩ + ∪ . Definition of 

submodular function is different in inequality sign ≥ . 

It is known, that the problem of supermodular function maximization i.e. the problem argmax ( ),
X U

F X
⊆

 

it polynomially solvable. On this basis we distinguish supermodular ( , )max +  problems as such, that 

could be converted (in polynomial time) to problem of maximizing a supermodular function of 

subsets. Supermodular (max,+) problems of second order can be converted to MAX-CUT problem 

with nonpositive capacities2 [13, 14, 15, 16, 17], for which there exists efficient algorithms [18, 19, 

20]. On the other hand, any MAX-CUT problem with nonnegative capacities can be converted to 

supermodular (max,+) problem (e.g. [17]). 

We will give the direct definition of supermodular ( , )max +  problem, after [8]. 

Let set K  be completely ordered. Let us define := max( , )t t t tk k k k′ ′ò , and := min( , )t t t tk k k k′ ′ó , where 

t T∈ . Let set of labelings TK  be partially ordered with respect to order in K : for any two labels 

, Tk k K′∈  we will define maximal labeling ( ) := t tt
k k k k′ ′ò ò , and minimal ( ) := t tt

k k k k′ ′ó ó . 

Let ( ) = , ( )Q k kθ φ  denote the quality of labeling. 

Definition 1. Function : TQ K → R is called supermodular, if: 

, : ( ) ( ) ( ) ( ).Tk k K Q k Q k Q k k Q k k′ ′ ′ ′∀ ∈ + ≤ +ò ó  

Theorem 2 ([21, 8, 9]). Function : TQ K → R  is supermodular if and only if: 

                                                 
2The same  as MIN-CUT problem with nonnegative edge capacities. 
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2

{ , } , <| |, <| |: ( ) 0,t t
t t

t t E k K k K Q k
k k′

′

∂′∀ ∈ ∀ ∀ ≥
∂ ∂

  (11) 

where 
1 | | 1 | | 1 | |

( , , ) = ( , 1, ) ( , , )t t t t t t t t tT T T
t

Q k k k Q k k k Q k k k
k
∂

+ −
∂

… … … … … … . 

(In [21] this criterion is proposed for set functions : 2TQ → R ). 

Corollary 1 ([8, 9]). Let = g qθ + , where3 = |Eg θ  ? = |Tq θ . 

Function Q  is supermodular ⇔  
2

{ , }; { , }
{ , } , <| |, <| |: 0.t t t t k t t

t t

t t E k K k K g
k k′ ′ ′

′

∂′∀ ∈ ∀ ∀ ≥
∂ ∂

 

Supermodularity of Q  is strongly dependent on the order selected in K . Instead of single set K , we 

will consider different sets tK , associated witch each t T∈ , and supplied their own order. Operations 

,ó ò  on labelings are defined as element-wise, so all the above stated remains intact. 

Supermodular decomposition. Let 2:g K → R  be function, defined on labels of  single edge of 

graph G . Let supM  denote the class of supermodular functions. Let subM  denote the class of 

submodular functions. 

Lemma 2. ∀  2:g K → R  1g supM∃ ∈  , 2g subM∃ ∈ : 1 2=g g g+ . 

Proof. From the representation 
= 1
= 1

= ,ij i j i j
i i K
j j K

g c a b′ ′
′ −
′ −

+ +∑
…
…

 where 

2

1 1 1 1= = , = 1 1,ij ij ij i j i j i jc g g g g g i j K
i j + + + +
∂

+ − − ∀ −
∂ ∂

…  

= ,i iKa g  = , = 1j Kj KKb g g i j K− ∀ … , 

we select 1
{ 0}=ij ij cij

c c ≥1  and 2
{ <0}=ij ij cij

c c 1 , in order they satisfy 1 2 = ,ij ij ijc c c ij+ ∀ . 

Let us put4: 1 1 2 2

= 1 = 1
= 1 = 1

= , = .ij i j i j ij i j
i i K i i K
j j K j j K

g c a b g c′ ′ ′ ′
′ ′− −
′ ′− −

+ +∑ ∑
… …
… …

 

It can be directly verified that 1 2=g g g+  and that 1g supM∈  and 2g subM∈ . ,  

                                                 
3 With x A

ℑ∈R  we will denote projection of x  onto A , such that: { }:  ( ) Tx xA τ τ ττ ∈∀ ∈ ℑ = 1 . 

4How to share one-variable functions a  and b  between 1g  and 2g  does not matter. 
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Lemma 3 (Twisting). ( ), ,( )i j i K jg subM g supM−∈ ⇒ ∈ . 

Proof. 
2

0,ijg subM g
i j
∂

∈ ⇒ ≤
∂ ∂

 and so 
2 2

, ,= 0.
( )i K j i K jg g

i j i j− −
∂ ∂

− ≥
∂ ∂ ∂ ∂ −

 ,  

Corollary 2. If the graph G  is twocolorable (or, what is the same, bipartite), then any submodular 

( , )max +  problem on G  can be converted to supermodular, and thus can be solved in polynomial time. 

Indeed, for twocolorable graph we can reverse order in all odd vertices. All functions , ,eg e E∈  will 

convert from subM  to supM  by Lemma 3. This is an exclusive situation, because submodular 

(max,+) problems without restrictions on graph structure are NP-complete. 

Upper bound with supermodular decomposition. Any decomposition θ  in a sum allows us 

to build an upper bound on the initial problem ( )θΦ . Let us consider the following, tightest among 

obtainable by Lemma 2, bound: 

 
1 2

1

2

1 2

=
min ( ) ( ) ( ).

supM
subM

θ θ θ
θ
θ

θ θ θ
+
∈
∈

 Φ + Φ ≥ Φ    (12) 

Notice, that modification of parameters ; ,  ,i
t k t Tθ ∈  preserving the equality 1 2 =θ θ θ+  does not violate 

constraints in (12). Let us weaken (12) down to following: 

 1 2min ( ) ( ) ( ),
q

q qθ θ θ
∆

Φ + ∆ + Φ − ∆ ≥ Φ   (13) 

where =q q T∆ ∆  – nodes values only, 1 2,supM subMθ θ∈ ∈ , 1 2 =θ θ θ+ . 

Following, dual to (13), formulation will play an important role in consequent. 

Theorem 3 (2MARG relaxation). Lagrangian dual to minimization problem (13) is the maximization 

problem: 

 
1 2

1 1 2 2

( , ) 2MARG( )
max , , ,

Gµ µ
θ µ θ µ

∈
+   (14) 

 
1 2

1 2
1 2
; ;

MARG( ), MARG( )
2MARG( ) = ( , ) .

=t k t k tt t

G G
G

t k

µ µ
µ µ

µ µ′ ′

 ∈ ∈ 
 ′∀ ∀  

  (15) 

Proof. Using strong duality theorem and some substitution of variables.  ,  
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Set of constraints 2MARG is of following form: 1µ  and 2µ  must be true marginal vectors and they 

must be node-agreed. 

Minimum characterization. Let 1 2=θ θ θ+  be supermodular decomposition. Let 

OPT( ) = Arg max , ( )
Tk K

kθ θ φ
∈

. Let S  be a set of labelings. Let { }( ) = ( , ) | : =tS t l k S k l∃ ∈A  denote the 

set of nodes, for which there exists a labeling from S  passing through. Let ( ; ) :
( ) = max , ( )

t

t l k
k l

kθ θ φ
=

Φ  

denote max-marginal values for θ  in node ( , )t l . Let { }( ; )( ) := (OPT( )) = ( , ) | ( ) = ( )t lt lθ θ θ θΦ ΦA A  

denote set of nodes, there exists an optimal labeling, passing through. 

Statement 1 (Agreement on nodes). For the minimum of 1 2( ) ( )q qθ θΦ − ∆ + Φ + ∆  to be attained at 

= 0q∆  it is necessary that: 

 1 2S1 OPT( ), S2 OPT( ) : (S1) = (S2) .θ θ∃ ⊆ ∃ ⊆ ≠ ∅A A   (16) 

Proof. Let 11 = ( )θA A  and let 22 = ( )θA A . We will modify 1 2( , )θ θ  by means of the following 

procedure: 

Suppose 1 2≠A A , consider, for certainty, that ( , ) 1: ( , ) 2t l t l∃ ∈ ∉A A . 

Then: 1 1
( ; ) ( ) = ( )t l θ θΦ Φ  and 2 2

( ; ) ( ) < ( )t l θ θΦ Φ . 

There exists such > 0dq , that: 

 
1 1

( ; ) ( ; )( ; )

2 2
( ; ) ( ; )

( ) = ( )

( ) < ( ) .

t l t lt l

t l t l

dq dq

dq

θ θ

θ θ

Φ − Φ −


Φ + Φ
  (17) 

Let us put 1
( ; )t l dqθ − =  , 2

( ; )t l dqθ + = . If 1( )θΦ  has decreased, then we else decreased the sum 

1 2( ) ( )θ θΦ + Φ , which in contradiction to attainability of minimum at = 0q∆ . Otherwise we get 

1 1
( ; ) ( ) < ( )t l θ θΦ Φ  and thus set 1A  has shrunk at least by one node, when at the same time 2A  

remained. Symmetrical considerations for the case of ( , ) 2 : ( , ) 1t l t l∃ ∈ ∉A A , will lead to that either 

2( )θΦ  will decrease, either 2A  will shrink. 
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Repeat (no more then | | ( 1)T K −  times) of this procedure will lead to uncovering a contradiction, or 

to stop with 1 = 2 ≠ ∅A A  for some modified parameters 1θ% , 2θ% . Let then 1 2:= ( ) = ( )θ θ% %A A A . Let 

us put 11 = O ( )S PT θ% . By the construction of set A , parameters 1θ A  were not touched by the 

procedure, that is why 11 ( )S OPT θ⊆ . By analogy 2 22 = O ( ) ( )S PT OPTθ θ∃ ⊆% . ,  

Notice, that for point of minimum 1 2( , )θ θ , satisfying (16), using the procedure in the proof, one can 

obtain point of minimum 1 2( , )θ θ% % , satisfying complete agreement on nodes: 

1 2(O ( )) = (O ( ))PT PTθ θ% %A A . 

Let us show, that conditions (16) of minimum (13) are in fact sufficient. We’ll need the following 

lemma. 

Lemma 4 (The uppermost optimal labeling, [8]). Let supMθ ∈ . Then there exists the uppermost (with 

respect ot operation  ò ) optimal labeling up OPT( )k θ∈ . 

Proof. From the definition of supermodular function it follows, that if OPT( )k θ∈ , OPT( )k θ′∈ , then  

OPT( )k k θ′∈ò  (and else OPT( )k k θ′∈ó ). Taking maximum over finite set of optimal labelings we 

get the desired upk .  ,  

Theorem 4 (Sufficiency). If 1 2( , )θ θ  satisfies (16), 1 supMθ ∈ , 2 subMθ ∈ , then 

 1 2 1 2( ) ( ) = min ( ) ( ) .
q

q qθ θ θ θ
∆

 Φ + Φ Φ + ∆ + Φ − ∆    (18) 

Proof. We can modify iθ  in order they satisfy complete agreement on nodes, which of course will not 

alter the value of ( )i
i

θΦ∑ . 

1 supMθ ∈  ⇒  there exists the uppermost optimal labeling 1up 1OPT( )k θ∈  and else the lowermost 

optimal labeling 1dwn 1OPT( )k θ∈ . 

2 subMθ ∈  ⇒  there exists the uppermost optimal labeling 2up 2OPT( )k θ∈ , with respect to modified 

by Corollary 2 order in TK , and, by analogy, 2dwn 2OPT( )k θ∃ ∈ . 
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OPT1 and OPT2 are in complete agreement on A , consequently the following equality holds: 

 
2up 2dwn

t1up 1dwn

2dwn 2up
t

( , ),  if K  was not reversed,
: ( , ) =

( , ),  if K  was reversed .
t t

t t

t t

k k
t T k k

k k

∀ ∈ 


  (19) 

 Let 1 1up 1dwn1 1
= ( ) ( )

2 2
k kµ φ φ+  and 2 2up 2dwn1 1

= ( ) ( )
2 2

k kµ φ φ+ .  (20) 

It can be verified, that 1 MARG( )Gµ ∈ , 2 MARG( )Gµ ∈ , and that they are node-agreed. 

Booth µ  are convex combinations of optimal marginal vectors, corresponding to labelings 1upk , 1dwnk  

and  2upk , 2dwnk , thus { }1 1 1 1( ) = max , ( ) = ,
k

kθ θ φ θ µΦ , 

2 2 2 2( ) = max , ( ) = ,
k

kθ θ φ θ µΦ . Consequently 1 2 1 1 2 2( ) ( ) = , , =θ θ θ µ θ µΦ + Φ +  

1 2

1 1 2 2

ˆ ˆ( , ) 2MARG( )
ˆ ˆmax , ,

Gµ µ
θ µ θ µ

∈
+ , which, by duality (Theorem 3), coincides with value 

1 2min ( ) ( )
q

q qθ θ
∆

Φ − ∆ + Φ + ∆ . See. Fig. 1.  ,  

 
Fig. 1. A pair 1up 1dwn( , )k k  of optimal labelings of 1θ  agrees on nodes with pair 2up 2dwn( , )k k  of optimal 
labelings of 2θ . The problem 2θ  is supermodular in the order on TK , where objects, marked with ⇓ , 

are reversed. 
 

Thus, we have formulated necessary and sufficient conditions of minimum (13), which can be easily 

tested and allow to construct a pair of node-agreed marginal labelings. 

Partial optimality. We will show, that pairs of optimal labelings we have constructed from the 

minimum conditions, 1up 1dwn( , )k k , 2up 2dwn( , )k k , allows to restrict intervals of labels in some objects of 

original problem, preserving the set of optimal labelings of it intact. 
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Lemma 5 ([2]). Let Q  be supermodular function,let * Arg max ( )
k

k Q k∈ . 

Then *: ( ) ( )Tk K Q k k Q k∀ ∈ ≥ó  ?  *( ) ( )Q k k Q k≥ò . 

Proof. We’ll show the former. Labeling *k  is optimal ⇒  * *( ) ( )Q k k Q k≤ò . From the 

supermodularity we conclude that * * *( ) ( ) ( ) ( )Q k Q k Q k k Q k k+ ≤ +ó ò . Adding this two inequalities 

we get what was stated.   ,  

Theorem 5 (Partial optimality). If 1 supMθ ∈ , 2 subMθ ∈ , 1 2=θ θ θ+ , 

if 1OPT( )θ  and 2OPT( )θ  are in complete agreement on nodes, 

then * 1dwn * 1upOPT( ) :k k k kθ∀ ∈ ≤ ≤ . 

Proof. Let 1 1 2 2( ) = , ( ) ,  ( ) = , ( )Q k k Q k kθ φ θ φ . 1Q supM∈ , 2Q subM∈ . 

Suppose for contradiction that :t T∃ ∈  * 1up>t tk k , then 

(1)  * OPT1k ∉  ⇒  1 * 1up 1dwn 1 *(( ) ) > ( )Q k k k Q kó ò , 

(2)  ( * OPT1k ∉ , OPT1 agrees on nodes with OPT2) ⇒  * OPT2k ∉  ⇒  

2 * 2up 2dwn 2 *(( ) ) > ( )Q k k k Q kó ò . 

From the complete agreement on nodes and (19) we conclude, that: 

 * 1up 1dwn * 2up 2dwn **( ) = ( ) =: .k k k k k k kó ò ó ò   (21) 

And consequently ** 1 ** 2 ** 1 * 2 * *( ) = ( ) ( ) > ( ) ( ) = ( )Q k Q k Q k Q k Q k Q k+ + , 

Which is in contradiction to the optimality of *k . 

Thus inequality * 1up
t tk k≤  is justified, and the proof of * 1dwn

t tk k≥  is analogously. See. Fig.  2. ,  
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Fig 2. If for some solution *k  restrictions 1dwn * 1upk k k≤ ≤  break down, then labeling 

** * 1up 1dwn:= ( )k k k kó ò  appears to be strictly better, then *k . 

 

For some objects t  it can happen, that 1up 1dwn=t tk k , i.e. in this object uppermost and lowermost 

labelings coincide. In this case any optimal solution of initial problem is guaranteed to pass exactly 

through this label. Fixation of labels in all such objects would obviously be an assured part of any  

optimal solution. Thus we can recover a part of optimal solution, whereas the rest part may remain an 

NP-hard problem. 

Inclusion of solvable subclasses. We have proposed a new approach to building upper bounds 

on the ( , )max +  problem, and grounded on it construction of restrictions on the set of optimal labelings 

/ search for part of optimal labeling. The important question is a interrelation between proposed bound, 

and bounds proposed by other methods. In particular, we are interested in what cases partial optimality 

allows to specify the complete solution. 

First we propose comparison to LOCAL2 relaxation in the case = 2K . 

Theorem 6 (2MARG ∼  LOCAL2 when K=2). For K=2 bounds (14) and (5) are equal: 

 
1 2

1 1 2 2

LOCAL2( )( , ) 2MARG( )
max , , = max , ,

GG µµ µ
θ µ θ µ θ µ

∈∈
+   (22) 

moreover,optimal solution of one of them allows for an easy construction of optimal solution for 

another and visa versa. 
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Proof. (1) Let 1 2( , ) 2MARGµ µ ∈ . Let, for all e E∈ , eg  be decomposed in 1 2
e eg g+  by Lemma 2. 

Then for = 2K  there exists only one mixed second derivative ec , and thus, either 1 0eg ≡% , either 

2 0eg ≡% . Let us build LOCAL2µ ∈  as following: we put 1 2
{ 0} { <0}:=e e c e ce e

µ µ µ≥ +1 1 , e E∀ ∈ , and 

1 2:= =t t tµ µ µ  t T∀ ∈ . It can be seen,  that µ  is indeed in LOCAL2  and that 

1 1 2 2 1 2, , = ,θ µ θ µ θ θ µ+ + . Thus 

 
1 2

1 1 2 2

LOCAL2( )( , ) 2MARG( )
max , , max , ,

GG µµ µ
θ µ θ µ θ µ

∈∈
+ ≤   (23) 

(2) Let 
ˆ LOCAL2( )

Arg max ,
Gµ

µ θ µ
∈

∈ % . In the case = 2K  decomposition 1 2=θ θ θ+ , 1 supMθ ∈ , 

2 subMθ ∈ ,  can be selected in such a way, that µ  will be LOCAL2-optimal for booth problems: 1θ  

and 2θ . Let us build two labelings 1up( )k µ , and 1dwn ( )k µ  as following: 

 
;;

1up 1dwn

::
>0>0

( ) := max , ( ) := min .
t kt k

t t kk
k k k k

µµ

µ µ   (24) 

We state (follows from [9]), that 1 1 1up 1 1dwn, = , ( ( )) = , ( ( ))k kθ µ θ φ µ θ φ µ . 

Let us put 1* 1up 1dwn1 1
= ( ) ( )

2 2
k kµ φ φ+ , for which it will hold 1 1 1*, = ,θ µ θ µ . 

Let us put 2* 2up 2dwn1 1
= ( ) ( )

2 2
k kµ φ φ+  applying the analogous considerations for 2θ . 

It can be verified, that 1* 2*( , ) 2MARGµ µ ∈ , moreover 1 1* 2 2*, , = ,θ µ θ µ θ µ+ . Thus 

 
1 2

1 1 2 2

LOCAL2( )( , ) 2MARG( )
max , , max , .

GG µµ µ
θ µ θ µ θ µ

∈∈
+ ≥   (25) 

  ,  

From the abovestated theorem for case = 2K  we immediately conclude, that for solution µ  of 

LOCAL2 relaxation problem, partial optimality holds as well, i.e. if some nonzero weight µ  is 

assigned to only one of two labels in some object t , then any optimal solution of the initial ( , )max +  

problem has to pass exactly through this label. 
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Supermodular and submodular functions are optimized exactly by booth: LOCAL2-relaxation, and 

2MARG relaxation. It can be verified, that for problems, where for each edge e , functions |eg  are 

either super- or submodular, the abovestated theorem is else valid, and these problems appear to be 

tractable for booth methods. 

Unfortunately, for > 2K  solution of LOCAL2 relaxation, in general, has nothing in common with set 

of optimal labelings. On the other hand for 2MARG relaxation there is trivial example with = 3K  

labels and with two objects, for which solution of 2MARG relaxation does not allow to construct any 

restrictions on the set of optimal labelings. Thus, problems on trees, which are solvable exactly by 

LOCAL2 relaxation, forms a hard subclass for 2MARG relaxation. 

We have noted, that verification of tightness of bound obtained with  LOCAL2 relaxation is a hard 

problem. For 2MARG relaxation it is not so. Let us give without  proof  following statement: 

Statement 2. If 1 supMθ ∈ , 1 subMθ ∈ ,then condition 1 2O ( ) O ( )PT PTθ θ∩ ≠ ∅  can be polynomially 

verified, and if it holds, it is possible to find a labeling * 1 2OPT( ) OPT( )k θ θ∈ ∩ . 

The proof of this statement utilizes solvability of subclass of so-called "interval" ( , )∨ ∧  problems, 

proposed in [3]. The statement itself allows constructing a new subclass of solvable ( , )max +  

problems. Thus our recommendations have the following form: search for pair 1 2( , )θ θ  giving the 

tightest bound, then verifying 1 2OPT( ) OPT( )θ θ∩ ≠ ∅ . If it holds, we found an exact solution (the 

problem is recognized to be in solvable subclass), otherwise we restricted the search area of optimal 

solution with Theorem 5. 

Conclusion. We have showed, how it is possible to build upper bounds on the initial problem with 

it’s decomposition into sum of super- and submodular. We found such decomposition, which allows to 

construct the tightest bound in some subclass. We showed, that from this bound restrictions of the form 

1dwn 1upk k k≤ ≤  follow for all optimal labelings *k  of the initial problem. 

For pattern recognition tasks, our experience tells, that if for some part of image we failed to recover 

optimal solution (with previously developed techniques), then on this part, a lot of approximately 
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equivalent solutions is possible. So such approach to hard problems is very useful in practice, as for 

retrieval of guaranteed optimal part, as for building approximate algorithms. It can happen that 

proposed approach will fail to construct any restrictions on the set of optimal labelings. We show with 

Theorem 6, that for problems with 2 labels proposed approach is at least no worse then known once. 

One can observe a rother interesting fact, that several, substantially different techniques lead to one 

and the same upper bound. 
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