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verview

e Discrete Optimization in Computer Vision (Energy Minimization)

—— o (ases Reducible to Minimum Cut

L Contribution: Distributed mincut/maxflow algorithm

—— o (General NP-hard case

Contribution: Methods to find a Part of Optimal Solution
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Minimum Cut Problem

Capacitated network Cut cost: > c¢(u,v) — min
(u,v)EE sgS
véS

c(u,v) > 0 — arc capacities
Source set S

Cut (S, V\8)

Sink set T'=V'\S



Introduction

®* Distributed Model — Divide Computation AND Memory

Distributed Sequential

Mem

Slow

Solve large problem on a
single computer

Split data in parts: [

Disk

Distributed Parallel

Mem Mem
Quick [ [ ]
CPU
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Slow

on more computers
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Introduction

® Sequential Algorithms

n = |V| — number of vertices
m = |E| — number of edges
Orlin (2012), Max flows in O(nm) time or better

In case m = O(n), in O(n?/logn) time

®* Parallel Algorithms

parallel push-relabel, Goldberg (1987) and
Cheriyan and Maheswari (1988)

O(n?) time using O(n) processors and|O(n?/m)| messages

Our goal is to improve on this —/




Main Result

Choose Disjoint Regions Alternative Construction:

Choose separator set e

boundary arcs Ep : v-la,:E- \

o= 5
| 7o
W boundary vertices B Bt

e N

. .

Only inter-region messages count S %
Push-relabel approaches (different variants) need (n?) messages

(Proportional to the full problem size)

* Main Result: New Algorithm uses O(|B|?|Eg|) messages
(Proportional to the size of the separator set)



Main Idea

® New distance function

\. o .)\. o .)

length of the path = number of boundary edges

distance = length of a shortest path to the sink

corresponds to costly operations

Algorithm: push-relabel between regions, augmenting path inside
regions



Experimental Confirmation

Synthetic instances: Grid graph with random capacities,
partitioned into 4 regions

sweep = synchronously send messages on all boundary arcs
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nstances iIn Computer Vision 9/21

® Dataset Published by Vision Group at University of Western Ontario

Stereo
Boykov et al. 1998
Kolmogorov and Zabih 2001

Multiview Reconstruction
Lempitsky et al. 2006
Boykov and Lempitsky 2006

Surface Fitting
Lempitsky and Boykov 2007

3D Segmentation

Boykov and Joly 2001
Boykov and Funka-Lea 2006
Boykov and Kolmogorov 2003




Sequential Variant for Limited Memory Model

* uses BK (Boykov and 5
Kolmogorov) inside regions speedup: Ours/BK

® sometimes faster than BK ot

(CPU time excluding I/0)

® robust over partition size
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Sequential Variant for Limited Memory Model

®* Messages (sweeps) speedup over push-relabel
(distributed version of Delong and Boykov 2008)

100 -

/0 speedup

instancest



Parallel Variant

Competitive with shared memory model methods

Speedup bounded by memory bandwidth

8_

= = = Parallel portion: 90%
7+l = = = Parallel portion: 95%

#CPUs
problem regions| MEM | 1CPU |8CPUs
—eo— BLOG-gargoyle-lrg| 16 |1.6GB|[137.4s| 38.82s
BLO6-camel-Irg 16 |1.8GB|[67.14s| 16.00s
= LBO7-bunny-Irg 64 12GB [12.94s| 7.11s
—e— liver.n6¢100 64 [0.9GB|18.41s| 12.21s




Conclusion

New distributed algorithm
Terminates in at most B2+1 sweeps (few in practice)

Sequential Algorithm
1) competitive with sequential solvers
2) uses few sweeps (= loads/unloads of regions)

3) suitable to run in the limited memory model

Parallel Algorithm
1) competitive with shared memory algorithms
2) uses few sweeps (= rounds of message exchange)

3) suitable for execution on a computer cluster

Implementation can be specialized for regular grids (less memory /faster)

(?7) no good worst case complexity bound in terms of elementary operations




Discrete Energy Minimization
Problem

Minimize over labelings (assignments) z = (zs € Ls |s € V)

Search space £ =[], L




Partial Optimality

Energy model for stereo, Find optimal solution
minimization NP-hard in some pixels

o -
A Pt
solution unknown /

solution globally optimal
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WMINCUTD,, Part. Optimality
Partial Optimality

A

Partial assignment (A,y), ACV, y= (ys|s € A):
e Strong optimal
for any minimizers x*: Ty =Yy
e Weak optimal
exists minimizer z*: 2% =y (v is extendible to a minimizer)

! Verifying weak /strong optimality of a partial assignment is NP-hard



WMINCUL, Part. Optimality
Partial Optimality (Multilabel)

______

Domain reduction K = (K; C Ls|s € V):
e Strong optimal
for any minimizers z*:  x} € K,
e Weak optimal
exists minimizer z*:  x} € K,

(remark: can be reformulated as a partial assignment)

! Verification is NP-hard



wMINGUT,, Part. Optimality

Overview

Context:
e Verification of partial optimality is NP-hard

e There are methods that find some partial optimality
e How this is possible in principle?
e They use different sufficient conditions

Contribution:

e Introduce new sufficient condition verifiable in polynomial time

e Show that it includes different conditions in the literature as special
cases.

* Methods for finding the largest partial assignment (identifiable by
the proposed condition)
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Dead End Elimination 19/35

~
~
N
~

~
~
~
~
~
~
N
~
/ <
~
~
~
~
~
N
_____ So
] | a _______
~
1 1 15 1
! 1 1SS
! ! ¢ [—4 !
1 1 P 1. 1
1 1 . )’ 1
1 1 // z1 1
I 1 ’ 7 1
1 | . [ |
4 d
1 1 . 4 1 1
7z 4
! 1 P , 1 1
1 1 R4 4 ] 1
! 1 - 4 1 1
1 | . ’ |
. , 1
| 1 ’ ’ 1 1
.
: 1, e 1 1
i ’ 1 1
.
1 00 L 1 1
! ‘ ! 7’ 1 1
| | ’ ] 1
! 1 e 1 1
| ] v 1 1
______ , ——————
’
4
4
d

t’ 5
t
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Desmet et al. (1992), Goldstein (1994), Lasters et al. (1995),Pierce et al. (2000),
Georgiev et al. (2006)



Improving Mapping

Let p be an improving mapping:
(Vo € L) Ef(p(z)) < Ef(z) (%)

Then exists a minimizer x* in p(L)

I Verification of improving property (x) is still NP-hard

@




Linear Embedding

_________________

M = conv (L)

Embed labelings into Eucledian space R” to linearize E ¥

Ef(z) = fo+ Y fs(ms) + > fot(xe,m) = (f,0(7))pz

sey ste&
5(%)0 =1

6(2)s() = [zs =1] —— fs(zs) =D, fs(2)d(x)s(4)

5($)st(i7j) — [[xs — 7’]] [[xt = .7]]

T={0}YU{(s,9)|s€V, i€ L}U{(st,ij)|st€E, ij € Lt}.




Linear Embedding

5 A

L o(£) LP-relaxation
- : = : | > min(f.
min Fy(z) —s Mgg&)ﬁ ) #Ecgrllgg( £3<f py 2 mindf, )
Y
A = aff(M) NRL M ~_

remark:
- more vertices but fewer facets
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Linear Embedding of Maps
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wMINCGUT,, Part. Optimality
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Linear Embedding of Maps

(1,1)

I
I
p12(1,1) 5 :

pa(1) Q”m(l’ o pa(1)

/
(| <K

A )

(0,0) 10 Hi(1)

p: L= L —> P:RT 5 R?
p idempotent —— P? = P, projection

Improving property:
(Vre L) Eip()<Eiz) &  (YweM) (f,Pu) <(fu
Sufficient condition, A-improving:  (Vu € A) {(f, Pu) < {f,n)

! Verifiable: meln(f,(f P)u)y >0
7



wMINCGUT,, Part. Optimality
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Linear Embedding of Maps

(1,1)

I
I
p12(1,1) 5 :

pa(1) Q”m(l’ o pa(1)

/
(| <K

A )

(0,0) 10 Hi(1)

p: L= L —> P:RT 5 R?
p idempotent —— P? = P, projection

Improving property:
(Vre L) Eip()<Eiz) &  (YweM) (f,Pu) <(fu
Sufficient condition, A-improving:  (Vu € A) {(f, Pu) < {f,n)

! Verifiable: meln(f,(f P)u)y >0
7



wMINCGUT,, Part. Optimality

More General Projections/Maps

Projection P: RT — R?

defined pixel-wise, by matricies P;

1"P, =1
P, >0
Condition:
(VueA) (f,Pu) <(f u
Verifiable:
min{(/ — PT)f,u) >0

Provides problem reduction:

min £y (z) = min (f. 1) =

0.5 < %3\

6 =0
a | X6
05< 7 PO

O‘S/t

ué?%%)(f’ 1)



wMINCGUT,, Part. Optimality
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28/35

A-lmproving Characterization

Let P be a pixel-wise projection

satisfying (global) improving property:
(VueA) (f,Pu) <(fu

Characterization Theorem: Exists equivalent function g
(Vo)  Ep(xr) = E4(x)
for which P satisfies local improving property:

(Pg)s(i) 2 gs(i)
(Pg)st(i, ) > gs:(3, )



wMINCGUT,, Part. Optimality

Special Cases

Methods that can be explained by the proposed condition:

®* DEE conditions by Desmet (1992) and Goldstein (1994)

* (Weak/strong) Persistency in Quadratic Pseudo-Boolean Optimization
(QPBO) by Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et

al. (2002)

® Multilabel QPBO Kohli et al. (2008), Shekhovtsov et al. (2008)
® Submodular Auxiliary problems by Kovtun (2003, 2010)
* Iterative Pruninig by Swoboda et al. (2013)

Common properties, Only (M)QPBO was previously related to LP
relaxation



Maximum A-Improving
Projections

Problem: Find the mapping that maximizes domain reduction

min Y [ps(Ls)| subject to  p € WI(A, f) MAX-WI
P s

(weakly A-improving maps)

subject to  p € SI(A, f) MAX-SI
(strictly A-improving maps)




wMINCGUT,, Part. Optimality

Maximum A-Improving

Projections
® Thesis
problem MAX-SI MAX-WI o)
L]=2 Pl | PRl <°
2-label maps | P P e
1O
* Follow-up work, submitted to CVPR
problem MAX-SI MAX-WI -
@
L] > 3 NP NP gi.i (
subset-to-one P p o o
all-to-one unknown P NP ( o @

[1] Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et al. (2002)
[2] Picard & Queyranne (1977) (Vertex Packing)




onclusions




WMINCGUL,y Part. Optimality @

Higher Order 33/35

e Many methods for higher order 0-1 problems not covered in this work:

-Adams, W. P., Lassiter, J. B., and Sherali, H. D. (1998). Persistency in
0-1 polynomial programming.

-Kolmogorov, V. (2012). Generalized roof duality and bisubmodular
functions.

-Kahl, F. and Strandmark, P. (2012). Generalized roof duality.

-Lu, S. H. and Williams, A. C. (1987). Roof duality for polynomial 0-1
optimization.

-Ishikawa, H. (2011). Transformation of general binary MRF
minimization to the first-order case.

-Fix, A. et al. (2011). A graph cut algorithm for higher-order Markov
random fields.



solution completeness, %

Algorithm proposed:

e subset-to-one maps

e MAX-WI reduced to a linear program (L1)

Follow-up Work

<

Experiments: solution completeness on random problems
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Follow-up Work

®* Experiments: solving large scale problems by parts

Restrict the method to a local window

Find globally optimal reduction

partial labeling 7 remaining labels



