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 Discrete Optimization in Computer Vision (Energy Minimization)

Contribution: Distributed mincut/maxflow algorithm

 Cases Reducible to Minimum Cut

 General NP-hard case

Contribution: Methods to find a Part of Optimal Solution 
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Minimum Cut Problem
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Introduction
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Distributed Parallel

 Distributed Model – Divide Computation AND Memory

Solve large problem on a 
single computer

on more computers

Split data in parts:
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Introduction

 Sequential Algorithms

 Parallel Algorithms

Our goal is to improve on this



6/21

MINCUT

Main Result

 Main Result:

t

s
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Main Idea

 New distance function

length of the path = number of boundary edges 

distance = length of a shortest path to the sink

d∗B(u) = 2

d∗B(v) = 0

t

corresponds to costly operations

Algorithm: push-relabel between regions, augmenting path inside
regions
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Experimental Confirmation

push-relabel (with heuristics)

proposed method

Synthetic instances: Grid graph with random capacities,
partitioned into 4 regions

sweep = synchronously send messages on all boundary arcs
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Instances in Computer Vision

 Dataset Published by Vision Group at University of Western Ontario
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speedup: Ours/BK

Sequential Variant for Limited Memory Model

 sometimes faster than BK

(CPU time excluding I/O)

 robust over partition size

 uses BK (Boykov and 
Kolmogorov) inside regions
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 Messages (sweeps) speedup over push-relabel 
(distributed version of Delong and Boykov 2008)

Sequential Variant for Limited Memory Model
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Parallel Variant

 Competitive with shared memory model methods

 Speedup bounded by memory bandwidth
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Conclusion

 New distributed algorithm

 Terminates in at most B2+1 sweeps (few in practice)

 Sequential Algorithm

1) competitive with sequential solvers

2) uses few sweeps (= loads/unloads of regions)

3) suitable to run in the limited memory model

 Parallel Algorithm 

1) competitive with shared memory algorithms

2) uses few sweeps (= rounds of message exchange)

3) suitable for execution on a computer cluster

 Implementation can be specialized for regular grids (less memory/faster)

 (?) no good worst case complexity bound in terms of elementary operations
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Discrete Energy Minimization 
Problem
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Partial Optimality

Energy model for stereo,
minimization NP-hard

Find optimal solution 
in some pixels

solution unknown

solution globally optimal
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s tt0

y

Partial Optimality
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Partial Optimality (Multilabel)

s tt0
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Overview
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Dead End Elimination

Desmet et al. (1992), Goldstein (1994), Lasters et al. (1995),Pierce et al. (2000), 
Georgiev et al. (2006)
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Improving Mapping
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Linear Embedding
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Linear Embedding
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Linear Embedding of Maps
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Linear Embedding of Maps
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Linear Embedding of Maps



26/35

Part. OptimalityMINCUT

Linear Embedding of Maps
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More General Projections/Maps
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Example of fractional map
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Λ-Improving Characterization
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Special Cases

 DEE conditions by Desmet (1992) and Goldstein (1994)

 (Weak/strong) Persistency in Quadratic Pseudo-Boolean Optimization 
(QPBO) by Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et 
al. (2002)

 Multilabel QPBO Kohli et al. (2008), Shekhovtsov et al. (2008)

 Submodular Auxiliary problems by Kovtun (2003, 2010)

 Iterative Pruninig by Swoboda et al. (2013)

Methods that can be explained by the proposed condition:

Common properties, Only (M)QPBO was previously related to LP 
relaxation
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Maximum Λ-Improving 
Projections

 Problem: Find the mapping that maximizes domain reduction
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[1] Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et al. (2002)

[2] Picard & Queyranne (1977) (Vertex Packing)

Maximum Λ-Improving 
Projections

 Follow-up work, submitted to CVPR

 Thesis



32/35

Part. OptimalityMINCUT

Conclusions
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Higher Order

-Adams, W. P., Lassiter, J. B., and Sherali, H. D. (1998). Persistency in 
0-1 polynomial programming.
-Kolmogorov, V. (2012). Generalized roof duality and bisubmodular 
functions.
-Kahl, F. and Strandmark, P. (2012). Generalized roof duality.
-Lu, S. H. and Williams, A. C. (1987). Roof duality for polynomial 0-1 
optimization.
-Ishikawa, H. (2011). Transformation of general binary MRF 
minimization to the first-order case.
-Fix, A. et al. (2011). A graph cut algorithm for higher-order Markov 
random fields.
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Generalized Potts (5 labels) Fully Random (4 labels)

 Experiments: solution completeness on random problems

 Algorithm proposed:

New

Follow-up Work
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Follow-up Work

 Experiments: solving large scale problems by parts

Restrict the method to a local window

Find globally optimal reduction

partial labeling # remaining labels

New


