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 Discrete Optimization in Computer Vision (Energy Minimization)

Contribution: Distributed mincut/maxflow algorithm

 Cases Reducible to Minimum Cut

 General NP-hard case

Contribution: Methods to find a Part of Optimal Solution 
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Minimum Cut Problem
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Introduction

CPU
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Distributed Parallel

 Distributed Model – Divide Computation AND Memory

Solve large problem on a 
single computer

on more computers

Split data in parts:
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Introduction

 Sequential Algorithms

 Parallel Algorithms

Our goal is to improve on this
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Main Result

 Main Result:

t

s
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Main Idea

 New distance function

length of the path = number of boundary edges 

distance = length of a shortest path to the sink

d∗B(u) = 2

d∗B(v) = 0

t

corresponds to costly operations

Algorithm: push-relabel between regions, augmenting path inside
regions
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Experimental Confirmation

push-relabel (with heuristics)

proposed method

Synthetic instances: Grid graph with random capacities,
partitioned into 4 regions

sweep = synchronously send messages on all boundary arcs
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Instances in Computer Vision

 Dataset Published by Vision Group at University of Western Ontario
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speedup: Ours/BK

Sequential Variant for Limited Memory Model

 sometimes faster than BK

(CPU time excluding I/O)

 robust over partition size

 uses BK (Boykov and 
Kolmogorov) inside regions
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 Messages (sweeps) speedup over push-relabel 
(distributed version of Delong and Boykov 2008)

Sequential Variant for Limited Memory Model
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Parallel Variant

 Competitive with shared memory model methods

 Speedup bounded by memory bandwidth
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Conclusion

 New distributed algorithm

 Terminates in at most B2+1 sweeps (few in practice)

 Sequential Algorithm

1) competitive with sequential solvers

2) uses few sweeps (= loads/unloads of regions)

3) suitable to run in the limited memory model

 Parallel Algorithm 

1) competitive with shared memory algorithms

2) uses few sweeps (= rounds of message exchange)

3) suitable for execution on a computer cluster

 Implementation can be specialized for regular grids (less memory/faster)

 (?) no good worst case complexity bound in terms of elementary operations
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Discrete Energy Minimization 
Problem
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Partial Optimality

Energy model for stereo,
minimization NP-hard

Find optimal solution 
in some pixels

solution unknown

solution globally optimal
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s tt0

y

Partial Optimality
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Partial Optimality (Multilabel)

s tt0
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Overview
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Dead End Elimination

Desmet et al. (1992), Goldstein (1994), Lasters et al. (1995),Pierce et al. (2000), 
Georgiev et al. (2006)
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Improving Mapping
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Linear Embedding
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Linear Embedding

s t

x

t0



23/35

Part. OptimalityMINCUT

Linear Embedding of Maps
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Linear Embedding of Maps
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Linear Embedding of Maps
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Linear Embedding of Maps
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More General Projections/Maps

s

t

α

3

6
7

6

7

3

0.5

0.5

Example of fractional map
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Λ-Improving Characterization
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Special Cases

 DEE conditions by Desmet (1992) and Goldstein (1994)

 (Weak/strong) Persistency in Quadratic Pseudo-Boolean Optimization 
(QPBO) by Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et 
al. (2002)

 Multilabel QPBO Kohli et al. (2008), Shekhovtsov et al. (2008)

 Submodular Auxiliary problems by Kovtun (2003, 2010)

 Iterative Pruninig by Swoboda et al. (2013)

Methods that can be explained by the proposed condition:

Common properties, Only (M)QPBO was previously related to LP 
relaxation
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Maximum Λ-Improving 
Projections

 Problem: Find the mapping that maximizes domain reduction
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[1] Nemhauser & Trotter (1975), Hammerr et al. (1984), Boros et al. (2002)

[2] Picard & Queyranne (1977) (Vertex Packing)

Maximum Λ-Improving 
Projections

 Follow-up work, submitted to CVPR

 Thesis
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Conclusions
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Higher Order

-Adams, W. P., Lassiter, J. B., and Sherali, H. D. (1998). Persistency in 
0-1 polynomial programming.
-Kolmogorov, V. (2012). Generalized roof duality and bisubmodular 
functions.
-Kahl, F. and Strandmark, P. (2012). Generalized roof duality.
-Lu, S. H. and Williams, A. C. (1987). Roof duality for polynomial 0-1 
optimization.
-Ishikawa, H. (2011). Transformation of general binary MRF 
minimization to the first-order case.
-Fix, A. et al. (2011). A graph cut algorithm for higher-order Markov 
random fields.
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Generalized Potts (5 labels) Fully Random (4 labels)

 Experiments: solution completeness on random problems

 Algorithm proposed:

New

Follow-up Work
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Follow-up Work

 Experiments: solving large scale problems by parts

Restrict the method to a local window

Find globally optimal reduction

partial labeling # remaining labels

New


