
MfrDB: Database of Annotated On-line Mathematical Formulae

Jan Stria

Faculty of Mathematics and Physics

Charles University

Malostranské nám. 25, 118 00 Prague 1, Czech Republic

Email: stria.jan@gmail.com

Martin Bresler, Daniel Průša, Václav Hlaváč

Center for Machine Perception

Czech Technical University

Karlovo nám. 13, 121 35 Prague 2, Czech Republic

Email: {breslmar, prusapa1, hlavac}@cmp.felk.cvut.cz

Abstract—This paper announces a ground truthed database
of on-line handwritten mathematical formulae. It have recently
been collected in our group in connection with the research on
methods for structural pattern recognition. Unlike the availabil-
ity of handwritten characters or texts, collections of structural
objects are rather scarce, thus we would like to provide them to
the community. We also present the methodology and tools used
for data acquisition. Finally, we report on our experiment with
the automatic generation of additional samples. The process
utilizes the dataset to extract statistical descriptions of symbols
alignments and relative sizes.

Keywords-database; mathematical formulae; web applica-
tion; recognition;

I. INTRODUCTION

Mathematical formulae recognition is a task tackled by

several researchers in the past two decades [1], [2], [3], [4],

[5]. The initial motivation was driven by demand for an

automatic conversion of mathematical texts (printed books,

handwritten notes) into an electronic form. The on-line for-

mulae recognition is also becoming increasingly important,

especially with the onset of tablets in recent years. Except

a tablet pen, there are available other input devices such as

a touchscreen, external digitizer or mouse. It is much more

convenient for a common user to write a formula by hand

rather than composing its structure piece by piece. The proof

is the utility called Math Input Panel provided by Microsoft

Corporation since Windows 7. This application performs

recognition of on-line formulae and allows to transfer results

in MathML [6] format to other programs (i.e. OpenOffice,

Opera, Maple).

Even the methods and their implementations have reached

a state where they can be successfully used in practice,

there is still much room for improvement. The applications

are usually sensitive to noise, do not take into account the

semantics or require entries to be written with a certain

level of care. Besides the improvements, there are theoretical

questions related to possibilities and limits of formalisms

suitable for expressing structure. The portability to other

domains like chemical formulae, musical scores or electric

circuits is studied as well. Thus, universal, robust and

effective approaches are legitimately the subject of further

research.

As for our activity in the field of structural pattern

recognition, we developed and applied the idea of sym-

bols segmentation and recognition driven by the structural

analysis. The general framework was explicated in [7]. We

use a two-dimensional coordinate grammar to model the

structure. Analysis performed by the grammar is penalty

oriented, derivations are assigned by a value determining its

reliability. Results concerning our pilot study were published

in [8]. Currently we work on the second version featuring

new improvements and making the core algorithm accessible

via a web-based interface [9].

During our research, we had to deal with the unavailability

of suitable training set of annotated expressions. A suffi-

ciently representative database is the basic prerequisite for

tuning and testing the recognition method. Despite the fact

there are many papers on on-line formulae recognition, as far

as we know only one database has been already published

as a part of MathBrush project [10]. This is in contrast to

the collections of single characters [11], [12]. The situation

is also better in the case of off-line formulae, mainly thanks

to Infty Project [13] that provides ground truthed databases

of mathematical documents as well as single expressions.

The conditions led us to a systematic development of an

own database. We have created an infrastructure helping us

to simplify the process of data acquisition and processing.

It includes a web-based application used to collect formulae

and a tool producing annotations. To test the data represen-

tativeness, we even designed and trained a statistical model

of the formulae structure and used it to generate additional

samples.

The purpose of this paper is to describe the database

content and the methodology behind its creation. The text is

organized as follows. Section II gives details on the database,

including its statistics, data format and hosting web page.

Section III explains principles and tools used to build the

formulae set. Section IV describes the experiment with the

generation of artificial samples.

II. DATABASE DESCRIPTION

We gathered 2018 formulae written by 232 people. Table

I summarizes the overall statistics. The information about

input device was not recorded at the beginning of the

2012 International Conference on Frontiers in Handwriting Recognition

978-0-7695-4774-9/12 $26.00 © 2012 IEEE

DOI 10.1109/ICFHR.2012.231

540

process, therefore it is not specified for a portion of the

data. An example of taken samples is given in Figure 1.

Table I
OVERALL STATISTICS

Total number of formulae 2018
Distinct formulae 185
Users participated 232
Users with more than 10 formulae 36
Average strokes count per formula 18.54
Mouse input 604
Stylus input 71
Touchpad input 58
Not specified input 1285

Figure 1. Two samples taken.

A. Procedure

All data were collected via a web-based interface, freely

accessible by any Internet browser. A significant group of

users was formed of students attending our courses. In

general, the users had two choices – to enter a formula at

their discretion, or to follow a displayed template. The latter

option was more preferred. There were 130 different formu-

lae used as the templates. Gathered inputs were manually

examined whether they are syntactically correct, nontrivial

and whether their quality is not too poor. Acceptable samples

were annotated as described in Subsection III-B.

B. Data format

Two files are used to store one formula sample. Taken

strokes are serialized in a InkML [14] file. An informational

record and the ground truth resides in an XML file which

consists of three top level elements. The origin is specified

by <FormulaInputInfo>. It gives info on user id, IP

address, time of creation and used input device (mouse,

stylus, touch screen or unknown). Basic semantics is rep-

resented by a pure MathML under element <mathML>.

Since not all elementary symbols are represented in MathML

by standalone items, we designed an extension to MathML

suitable for storing info on the strokes segmentation. This

is included under element <annotatedMathML>. The

newly introduced elements are listed in Table II.

<aString> groups strokes (forming a word) that can-

not be (completely) separated into individual symbols. An

example is cos written continuously by one move. Each of

Table II
MATHML EXTENSION

Element Represents

<aChar> character
<aString> continuous string
<aOpen>, <aClose> parenthesis
<aFractionLine> fraction line
<aSqrt> square root symbol

the elements has the attribute strokeIds which of value

is a comma separated list of strokes identifiers.

Since there is a very good support for reading/writing

XML, the whole format as well as its parts can be easily

translated into any other representation.

C. Web page

The dataset can be downloaded at the web page http://

mfr.felk.cvut.cz/Database.html. The page contains details about

the database. Some basic functionality is also provided. It

is possible to preview any sample or to download a subset

filtered out after specifying some parameters.

III. TOOLS FOR DATA CREATION

We have developed two applications supporting data ac-

quisition. One requirement was to provide the participants

with an easily accessible interface. The next requirements

were easy maintainability of the infrastructure and possible

reusability on another domains.

A. Web-based data collector

The application consists of a user interface running in a

web browser at the client side which communicates with

web services at the server side. The interface (Figure 2)

has been developed in HTML5 [15] and Javascript. The

canvas is implemented by jQuery UI [16] widget called

jQueryInk [17]. It is publicly available for download as an

open-source project. The web services have been written

in C# using WCF (Windows Communication Foundation)

technology and run on Microsoft Windows Server 2008 R2.

Entered strokes are serialized to JSON format and sent to

server via an Ajax request.

Figure 2. Data collector interface.

541

The writer should fill in his name first and then write

and save several formulae. A hint in the form of a printed

formula is provided by the server and displayed to the

user. He can rewrite it or write a formula at his discretion.

A collection of formulae templates acting as hints are

maintained on the server. The hint is changed each time

a sample is saved.

The system manages multiple accesses at the same time.

This was successfully tested during classes when groups

of students comprising 25 people were instructed to write

samples. The application even works on the default mobile

web browsers found in Android and iOS operating systems.

Despite of some editing optimizations it is not always as

smooth as in desktop browsers. However, the performance

of these mobile devices grows rapidly, thus there is a well-

founded reason to believe this will get better in the near

future.

B. Formulae annotator

The formulae annotator is a desktop application serving

to tag the acquired data. Since this is a laborious process, we

tried to simplify it as much as possible. Assuming a collected

formula is loaded to the tool, the first task is to create its

MathML representation. If the user correctly rewrote a hint,

it is possible to assign MathML of the related template.

Otherwise, Math Input Panel, which is a COM control in

Microsoft Windows 7, is invoked and the strokes are passed

to it. The panel tries to continuously recognize inputs and

shows the results. If the recognition does not match the

expected outcome, there is a possibility to correct symbols

or even select interpretation for parts of the formula. The

desired recognition result is accessed programmatically as a

text string containing MathML and it is copied to our tool.

Once we have the MathML notation of the formula, it

is converted to the extended version by adding the special

tags presented in Subsection II-B. Then, it is ready to be

annotated. Since Math Input Panel does not provide any

segmentation related info, the whole process has to be done

manually. Each symbol included in the formula has to be

bound with the appropriate strokes. This is typically done

in a batch mode when nodes in MathML tree are traversed

one by one and corresponding strokes are selected using the

mouse. The tool in action can be seen in Figure 3.

C. Distance on MathML trees

When we wanted to count the number of distinct samples

in the database, we had to deal with the fact that users

sometimes do not rewrite the displayed template precisely.

Moreover, formulae written freely by one or more users can

be the same or very similar. Thus we based the estimation

of distinct formulae on a metric.

Since MathML [6] has a tree structure (Figure 4), it is

a logical choice to use the tree edit distance to express

the similarity. The distance between two trees is defined

Figure 3. Annotator desktop application.

as the minimum cost of node editing operations (deletion,

insertion, renaming) transforming one tree to the other. This

is a generalization of the well known Levenshtein distance

[18] on strings. To compute the tree distance we employed

Zhang’s algorithm [19] and set the cost of all operations

to 1. In this case, one misrecognized symbol implies the

distance 1. When a symbol is missing or the symbol category

(variable, number, operator) differs, the distance is 2.

The metric also plays an important role in evaluation

of recognition methods. Comparing the recognizer output

directly with the ground truth does not grant a sufficiently

fine benchmark. One usually wants to know how close the

result is to the correct answer rather than to be only notified

if the recognition succeeded or not.

Figure 4. Standard MathML tree.

IV. EXPERIMENT

One of information the training set of mathematical

formulae provides are the distributions of mutual positions

between symbols. Handwriting style is much looser and

more flexible than the printed one, thus the distributions are

quite crucial for the structure description.

542

We present our model of the formula structure, comprising

a two-dimensional grammar and probability distributions

estimated based on the dataset. The accuracy of the model is

demonstrated on the task of generating formulae. Artificially

generated samples can serve as an auxiliary set for the

development. The advantage is that we can cover templates

different to those we used when collecting the data. The

procedure can also be useful when a fast transcription of

printed expressions to a handwritten form is needed. Finally,

showing that the data produce a solid model is a justification

of their quality as well as a significant step towards the

recognition.

A. Grammar

We demonstrate the proposed grammar productions rep-

resented in a text form by the following snippet.

Sum->[sum]|LowBound@B|UpBound@T|Expr@R

AddSub->AddSubOp|Term@L|Expr@R

AddSubOp->[+]

Expr->Sum

Each line corresponds to one production. There is a source

nonterminal on the left-hand side and a sequence of target

nonterminals and terminals on the right-hand side, terminals

being enclosed in brackets. The productions are of two types.

When there is only one target element, we speak about a 1-

production (the third and fourth line), otherwise we speak

about an n-production (first two lines). 1-productions are

used to maintain the grammar readable enough, while n-

productions model spatial relations in the formula structure.

Consider the first production describing a summation. The

first target symbol [sum], denoting the summation symbol,

is the main element. Positions of remaining elements are

defined relative to this main one, using suffixes starting

by @. E.g., LowBound@B defines that the lower bound in a

summation is positioned at the bottom of summation symbol.

Eight different spatial placements are used: left, right, top,

bottom, top-left, top-right, bottom-right and inside.

So far, the grammar contains about 80 n-productions and

200 terminal symbols. It describes all samples contained in

the database. Contrary to MathML, each formula structure

is determined unambiguously by the productions. We have a

procedure that reads MathML and creates a derivation tree.

This is an inner representation of the structure. The subtree

rooted in the node represents a structural part of the formula.

Each non-leaf node in the tree is assigned by a production

which defines the relation between the node and its children.

B. Distributions

As we can see, the grammar provides only a rough de-

scription of elements positioning. A more precise character-

istic has to be given statistically. The goal is to generalize the

spatial placement of nodes and their relative sizes. Regarding

the amount of training data and the memory needed for a

representation, it is necessary to categorize nodes to some

groups that exhibit the same spatial properties, so that the

number of distributions can be reduced and shared per each

category.

To achieve this, several types of terminals are distin-

guished. They relate to the alignment with respect to the

ascender line, midline and baseline as it is shown in Figure

5. The types comprehend ascender terminals having the

bottom of its bounding rectangle vertically aligned with the

baseline and the top with the ascender line (number 2), lower

terminals having the bottom aligned with the baseline and

the top with the midline (letter x), central symbols having

their center aligned with the midline (operator +), etc.

���
�
��
�
��
�
�

	
�����

�������

�	
�����

Figure 5. Types of terminals.

The type of the terminal determines the base, mid and

ascender segment for the node as in Figure 6. Not all

segments can be determined for each terminal node (e.g.

there is only the mid segment for the operator + because it

is not aligned with the baseline or the ascender line). The

horizontal coordinates of the mid segment are coordinates of

its strokes’ bounding rectangle. The horizontal coordinates

of the base and ascender segments are determined based on

the vertically local minimum and maximum of the strokes’

horizontal coordinates. If two of the segments are defined

for the node at least it is possible to estimate its line height

as shown in Figure 5.

Figure 6. Segments for terminal V.

Different relative positions and sizes are extracted for

derivation nodes depending on their spatial position in a

given n-production. E.g., for the node describing addition

2x+ y we utilize the relative position of 2x and +, relative

position of y and + and relative position and size of 2x and

y. While determining the relative positions, the base, mid

and ascender segments of the terminal nodes are employed.

543

E.g. to describe the placement of 2x and +, the vertical and

horizontal distance of mid segments of nodes x and + are

computed and normalized by the line height estimated from

2x.

We have a set of rules defining which relative distances

and sizes are evaluated for a particular type of production

and how they are computed depending on the defined

segments. Probability distributions of these values are es-

timated. The other set of rules describes where the same

distribution is shared.

The distributions themselves are stored as histograms in

one dimensional arrays. Each category includes one to three

histograms, for the vertical and horizontal position and for

the relative size. In total, we have 26 categories. Figure 7

shows extracted vertical and horizontal distributions describ-

ing the placement of 2x and + in the working example.

It would also be possible to have a two dimensional grid

to represent both, horizontal and vertical, distances of two

nodes but it would require more data as well. For simplicity,

we decided to use in the experiment the one-dimensional

variant. This choice is justified by our measurement con-

firming that the relative horizontal and vertical distance are

largely independent. The absolute value of the correlation

coefficient was usually about 0.1 and always under 0.2 for

all 26 categories.

C. Results

To generate formulae, we have selected 500 MathML files

from the Infty database as the drafts. The files were read,

parsed and derivation trees were created. The distributions

were employed to assign coordinates and sizes to the nodes.

We smooth them first using a Gaussian filter, then we

generated needed random values. Particular symbols were

taken from our database. To produce a consistent output for

each generated formula, we used symbols written by one

user. Two instances generated from one MathML file are

shown in Figure 8. All the samples are available at our web

page.

��

����

��

����

��

����

��

���� �� ���� ���	 ���

(a) horizontal

��

����

��

����

��

����

��

���	 ���� �� ���� ���	

(b) vertical

Figure 7. Relative distances distributions.

Figure 8. Two samples taken.

V. CONCLUSION

We have created a database of on-line mathematical

formulae and made it publicly available. The release con-

tains over 2000 samples, comprising about 27000 instances

of individual symbols. In the future, we would like to

continue in the incremental enlargement of this collection.

The implemented infrastructure allows us to balance the

content. Additional templates for hints will be supplemented

to enhance the variety and to cover more mathematical

constructs. The server could prefer to offer hints having little

instances in the database.

We hope the database will be beneficial for the community

and welcome any feedback on it.

ACKNOWLEDGMENT

The first author was supported by the Grant Agency

of the Czech Republic under project P202/10/1333, the

second author by the Grant Agency of the Czech Technical

University in Prague, grant No. SGS12/187/OHK3/3T/13,

and the last two authors by the Grant Agency of the Czech

Republic under project P103/10/0783.

REFERENCES

[1] B. P. Berman and R. J. Fateman, “Optical character
recognition for typeset mathematics,” in Proceedings of
the International Symposium on Symbolic and Algebraic
Computation, ser. ISSAC ’94. New York, NY, USA:
ACM, 1994, pp. 348–353. [Online]. Available: http:
//doi.acm.org/10.1145/190347.190438

[2] S. Lavirotte and L. Pottier, “Mathematical formula recogni-
tion using graph grammar,” in Proceedings of the SPIE 1998,
vol. 3305, San Jose, CA, 1998, pp. 44–52.

[3] N. Matsakis, “Recognition of handwritten mathematical ex-
pressions,” Master’s thesis, Massachusetts Institute of Tech-
nology, Cambridge, MA, May 1999.

[4] S. Smithies, K. Novins, and J. Arvo, “A handwriting-based
equation editor,” in Graphics Interface, 1999, pp. 84–91.

[5] R. Zanibbi, D. Blostein, and J. Cordy, “Recognizing mathe-
matical expressions using tree transformation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 24,
no. 11, pp. 1455–1467, 2002.

544

[6] “MathML2 recommendation.” http://www.w3.org/TR/
MathML2.

[7] M. Schlesinger and V. Hlaváč, Ten lectures on statistical and
structural pattern recognition, ser. Computational Imaging
and Vision. Dordrecht, The Netherlands: Kluwer Academic
Publishers, 2002, vol. 24.

[8] D. Průša and V. Hlaváč, “Structural construction for on-line
mathematical formulae recognition,” in Proceedings of the
Iberoamerican Conference on Pattern Recognition. Springer
Verlag, September 2008, pp. 317–324.

[9] J. Stria and D. Průša, “Web application for recognition of
mathematical formulas,” in ITAT 2011: Proceedings of the
Conference on Theory and Practice of Information Technolo-
gies, M. Lopatková, Ed., vol. 788. Tilburg, Netherlands:
CEUR Workshop Proceedings, September 2011, pp. 47–54.

[10] S. MacLean, G. Labahn, E. Lank, M. Marzouk, and
D. Tausky, “Grammar-based techniques for creating ground-
truthed sketch corpora,” International Journal on Document
Analysis and Recognition, vol. 14, no. 1, pp. 65–74,
Mar. 2011. [Online]. Available: http://dx.doi.org/10.1007/
s10032-010-0118-4

[11] I. Guyon, L. Schomaker, R. Plamondon, M. Liberman, and
J. S., “Unipen project of on-line data exchange and recognizer
benchmarks,” in Proceedings of International Conference on
Pattern Recognition, 1994, pp. 29–33.

[12] M. Nakagawa and K. Matsumoto, “Collection of on-line
handwritten Japanese character pattern databases and their
analyses.” International Journal on Document Analysis and
Recognition, pp. 69–81, 2004.

[13] M. Suzuki, “Infty project.” http://www.inftyproject.org/en/
index.html.

[14] “Ink Markup Language (InkML).” http://www.w3.org/TR/
InkML.

[15] “HTML5 working draft.” http://www.w3.org/TR/html5.

[16] “jQuery UI library.” http://jqueryui.com.

[17] “jQueryInk widget.” http://plugins.jquery.com/project/Ink.

[18] V. I. Levenshtein, “Binary codes capable of correcting dele-
tions, insertions and reversals,” Soviet Physics Doklady,
vol. 10, p. 707, 1966.

[19] K. Zhang and D. Shasha, “Simple fast algorithms for the
editing distance between trees and related problems,” SIAM J.
Comput., vol. 18, pp. 1245–1262, December 1989. [Online].
Available: http://dl.acm.org/citation.cfm?id=76071.76082

545

