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Abstract

We propose a learning approach to tracking. The learning procedure explicitly mini-
mizes the computational complexity of the tracking process subject to a user-defined
probability of failure (loss-of-lock) and precision. In particular, we studied tracking
methods estimating the object position by a learned linear mapping between intensities
and motion. This mapping is called Learned Linear Predictor (LLiP). We extended
the predictor to the Sequence of LLiPs (SLLiP). The proposed learning approach finds
the SLLiP with the lowest computational complexity of the tracking subject to a user
predefined range, i.e., region of motions within which the sequential predictor operates,
and accuracy. Note, that since the individual predictor is a special case of the sequential
one, the optimal sequence is superior to a single predictor.

Since variances of the object appearance, caused for example by non-rigid deforma-
tions or uneven illumination, can often make the accurate motion estimation impossible,
we also extended the predictors to Parameter sensitive LLiPs (PLLiPs). PLLiP is a
sub-space of the space of all individual predictors. In the tracking, the current object
appearance is encoded into the parameters (coordinates) which select the most con-
venient predictor from the PLLiP sub-space. Both the sub-space and the appearance
encoding are simultaneously optimized.

Robustness of the tracker is achieved by modeling the object as a collection of local
motion predictors. Object motion is estimated by the outlier-tolerant Ransac algorithm
from local predictions. The object tracker is formed by a Number of Sequences of Learned
Linear Predictors (NoSLLiP).

Efficiency of the tracker stems from (i) the simplicity of the local predictors and (ii)
from the fact that all design decisions — the number of local predictors used by the
tracker, their computational complexity (i.e., the number of observations the prediction
is based on), locations as well as the number of Ransac iterations are all subject to
the optimization (learning) process. All the time-consuming operations are performed
during the learning stage — the tracking is reduced to only a few hundreds of integer
multiplications in each step.

The proposed approaches were verified on publicly-available sequences with approxi-
mately 12000 frames with ground-truth besides. Experiments demonstrate superiority
in frame rates and robustness compared to the SIFT detector, Lucas-Kanade tracker,
and other trackers.
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Notation

h scalar value
h column vector1

H matrix
h(.),h(.), H(.) functions which map domain ”.” to scalars, vectors or ma-

trices, respectively.
H set
H set of functions or set of sets.
hi column vector denoting i-th column of H
h>j row vector denoting j-th row of H
hij = [H]i,j [i, j]-th element of matrix H
hj j-th element of vector h
Hk approximation of H in k-th iteration
h∗, H∗ optimal h or H
0 = [0 . . . 0]> vector of zeros (0m denotes m× 1 vector of zeros)
1 = [1 . . . 1]> vector of ones (1m denotes m× 1 vector of ones)
0 = [0 . . .0] matrix of zeros
1 = [1 . . .1] matrix of ones
H ∈ H means that H is element of set H
H � 0 means that H is from a positive semi-definite cone
∀, ∃ universal and existentional quantifiers
⊗ Kronecker product
• Entry-wise product (sometimes called Hadamard product)
\ set minus
◦ warp, e.g., (t ◦ X) is set of pixels X transformed by warp

with parameters t
det H determinant of matrix H
trace (H) =

∑
i h

i
i trace of matrix H

H+ = H>(HH>)−1 Pseudo-inverse of H

‖H‖F =
√∑

i,j |hij |2 Frobenius norm of H

‖h‖2 =
√∑

i h
2
i Euclidean norm of h

‖h‖1 =
∑

i |hi| Manhattan norm of h
‖h‖∞ = maxi |hi| Infinity norm of h
|h|, |H| Absolute value of h, number of elements in set H.

1We usually denotes vectors by small bold letters e.g., h,g however, vectors of image intensities are
denoted by bold capital letters, e.g., I,J because i, j would look strange.
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Commonly used symbols and abbreviations

LS Least Squares (method)
MM Minimax (method)
SSD Sum of Square Differences
MSE Mean Square Error
PCA Principal Component Analysis
AAM Active Appearance Model
LLiP Learned Linear Predictor (Definition 9)
SLLiP Sequential Learned Linear Predictor (Definition 10)
MM SLLiP SLLiP constructed from MM learned LLiPs (Section 4.2)
LS SLLiP SLLiP constructed from LS learned LLiPs (Section 4.3)
PLLiP Parameter sensitive Learned Linear Predictor (Defini-

tion 14)
X Support set.
ϕ, ϕ+ Predictor, λ-minimal predictor.
ϕ̂ Regressor.
Φ Sequential predictor.
ω, ω+ The set of achievable predictors, the set of λ-minimal pre-

dictors.
Ω,Ω+ The set of sequential predictors, the set of sequential predic-

tors created from λ-minimal predictors.
c, C Complexity of the predictor, set of considered complexities.
Rr, r, R Range, radius of range of the predictor, set of considered

ranges.
Λλ, λ Uncertainty region, radius of uncertainty region of the pre-

dictor.
ε Prediction error of the predictor.
H Coefficients of linear predictor/regressor.
t Vector of pose parameters.
I,J Vectors of image intensities.
I, J, T Matrices column-wise formed from I,J, t, respectively.
θ Vector of appearance parameters.
R,R+ The set of real numbers, real positive numbers.
N,N+ The set of integral numbers, integral positive numbers.
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1 Introduction

Visual tracking is the process of repeated estimation of the state of an object (e.g.,
position) in an image given state(s) in previous frame(s). Tracking has many applications
such as surveillance, 3D object modeling, augmented reality, medical imaging and others.
Since many applications have real-time requirements, very low computational complexity
is a highly desirable property. Our primary objective is to find a very fast tracking
method with defined precision and robustness.

A natural formulation of tracking is search for the state which optimize a similarity
criterion function. For example Lucas and Kanade [37, 3] use the steepest descent op-
timization to minimize the sum of square differences between the template and image
data, see Figure 1.1. Other approaches [41, 2, 27] scan the image by a learned classifier,
which evaluates the similarity criterion. However, there are also regression-based meth-
ods [33, 19, 55] which do not require any criterion function and estimate the object state
directly from the observed intensities by a learned regression mapping. In principle,
they collect training examples — pairs of observed intensities and corresponding states
and use machine learning techniques to learn the regression function. In tracking, the
regression method is initialized by the previous state or, if available, by the state de-
rived from a dynamic model. Learned regression function estimates actual object state
directly from the intensities observed around the initial location.

Our main contribution is related to the regression-based tracking methods. Rather
than proposing a special learning procedure for a special type of the regression function,
we present an optimal concatenation of different regression functions into a sequence.
We claim that it is typically much easier to estimate the actual state if the method is
initialized in a close neighbourhood of the actual state. Accepting this assumption, it
is better to exploit a less complex regression function for coarse state estimation and
use the newly obtained state for the initialization of another regression function. The
coarse estimate of the state allows to the following regression function operate within a
smaller range of the states. Such a function naturally achieves a higher precision with
a reasonable complexity. Similarly, another ancestors again refine from the precision of
previously estimated states. Hence, instead of a very complex regression function, we
use a sequence of simpler functions concatenated in the way that each of the functions in
the sequence compensate only errors of its predecessor and thus refines from the already
computed coarse estimation of the state.

Since the computational time of tracking (i.e., the overall complexity of the used
regression method) is usually an issue, the learning is formulated as a minimization
of the complexity subject to a user predefined accuracy and robustness. Note, that a

1



1 Introduction

Current imageTemplate

Motion

Observation

Figure 1.1: Visual tracking is the process of repeated estimation of state of an object
given an image and state(s) in previous frame(s).

single regression function is a special case of the sequence. Since the globally optimal
solution is found, the sequence is superior to a single regression function. Arbitrary
regression function allows for such concatenation, but we observed that the sequence of
linear functions achieved a very high precision at a very low computational complexity.
Focusing on the sequences of the linear functions, we achieved more then real-time
tracking algorithm, which estimates the object state using only a fraction of processing
power of an ordinary computer.

In the next chapter the state-of-the-art tracking approaches are overviewed. Con-
tributions of the thesis with respect to the state-of-the-art and the thesis outline are
summarized afterwards in terms of the established terminology. List of publications
related to the thesis is on the last page of the work.

2



2 State-of-the-art

In this chapter, we summarize state-of-the-art and define the tracking more formally.
Given previous state(s) S0 and current image I, the tracking method estimates the
current state of the object by some algorithm ϕ(I, S0) as follows:

s = ϕ(I, S0). (2.1)

The state of an object is vector of essential and auxiliary parameters. Essential pa-
rameters are parameters, the estimation of which is required by the application and the
quality of which is evaluated. Auxiliary parameters are used internally to improve the
quality of the essential parameters estimation. For example in medical applications,
local deformations of a beating heart are usually much more essential than the global
position however, the estimation of the global position is the necessary condition mak-
ing the algorithm works. Therefore the global position is an auxiliary parameter, which
must be estimated as well. In human tracking applications, the user is usually inter-
ested in human positions and the current appearance is just and auxiliary parameter.
Lucas-Kanade tracker [37] does not contain any auxiliary parameters however, it is often
extended to the tracking followed by a template update algorithm, then the current tem-
plate becomes auxiliary part of the state of the tracker. Condensation-based tracking
algorithms [31] model probability distribution of the state. These distributions are the
auxiliary parameters and their maxima usually corresponds to the essential parameters.
Kalman filter uses state, which consists of position, velocity, acceleration etc. and the
essential parameters are computed as a linear combination of the state.

Especially, if no previous states S0 are considered mapping ϕ corresponds to detec-
tion [53, 36, 38, 48] or segmentation [49, 57] problems. In detection problem, it is usually
searched for the object position and the scale or rotation are auxiliary parameters. Seg-
mentation is such mapping ϕ, which assigns non-zero labels to all pixels belonging to
the object(s) and zero labels to the pixels belonging to the background. The state in
the segmentation problem thus consists of all image pixels.

Note, that some tracking methods exploit detection and segmentation techniques.
For example, the segmentation often successfully serves as a preprocessing step of the
tracking on a static background. Nevertheless, the segmentation and detection problems
are beyond the scope of this work and we further focus on tracking methods and do not
investigate them in detail.

3



2 State-of-the-art

2.1 Taxonomy of tracking methods

The most common way of tracking is repeated minimization of some criterion function
f(s; I, S0) over the space of object states s ∈ S, given image I and previous state(s) S0

s∗ = argmin
s∈S

f(s; I, S0) = ϕ(I, S0), (2.2)

where s∗ is estimate of the current state of the object. Criterion f(s; I, S0) includes some
implicit or explicit model of object possible appearances and optionally some relation
to S0. Criterion f could be for example obtained as a similarity function as well as a
classifier or foreground/background probability ratio learned from training examples.
There are two different approaches to tracking:

• Optimization-based tracking is an online optimization technique solving prob-
lem (2.2). While some approaches [41, 2, 27, 4] exhaustively search a subset of
object poses S with a classifier approximating f(s; I, S0) for s ∈ S, another ap-
proaches [37, 3, 51, 44] use a gradient optimization of a criterion approximating
f(s).

• Regression-based tracking methods attempt to model explicitly a relationship
between observations and state s∗ without any necessity of defining f(s; I, S0).
They learn function ϕ(I, S0) from equation (2.1) in a supervised way from synthe-
sized training data [33, 19, 55].

In the following, the state s = (t,θ) is defined as a vector of object pose parameters
t (e.g., position, scale, articulation) and appearance parameters θ (e.g., illumination or
current template). If velocities or accelerations are required, it can be computed from
the pose parameters in previous frame(s).

In many applications, essential parameters are a subset of the pose parameters, the
appearance parameters are often auxiliary. We therefore start with methods estimating
only the pose parameters: Section 2.2 describes optimization-based tracking and Sec-
tion 2.3 describes regression-based tracking methods. Most of these methods can be
extended to include the appearance parameters. Such extensions are outlined in Sec-
tion 2.4. Section 2.5 discusses different features for tracking. Section 2.6 introduces
tracking with a known model of motion dynamics.

2.2 Optimization-based tracking

In the following two sections, the state of an object is assumed to be given exclusively
by its pose s = t. It means that the appearance is considered to be fixed. Extension
of these methods to the tracking of the objects with variable appearance is detailed in
Section 2.4.

Optimization-based tracking methods search for the object pose by optimizing a cri-
terion f in problem (2.2). Choice of the criterion function has a crucial influence on the
robustness and accuracy. In particular, the criterion is required to

4



2.2 Optimization-based tracking

• distinguish the object from its background, e.g., there must be no background
pattern evaluated by the same or even smaller value of the criterion,

• allow for fast optimization, e.g., it should have a simple gradient or low computa-
tional cost.

The most natural optimization-based approach to tracking is scanning the image for
the maximum response of the criterion function, we call such optimization methods
scanning-based. Since the scanning the whole image might be time consuming the search
space is usually restricted. If the motion is small enough and the criterion function has
simple gradients, a gradient optimization is usually faster and more accurate than the
exhaustive search. Such methods are called gradient-based methods.

2.2.1 Gradient-based optimization

The most common gradient-based optimization method is the Lucas-Kanade tracker [37,
44, 3], which simplifies problem (2.2) to

t∗ = argmin
t∈S(t0)

f(t; I, t0) = argmin
t∈S(t0)

‖I(t ◦X)− J(X)‖22, (2.3)

where I(t ◦ X) is a vector of intensities observed in pixels X = {x1 . . .xc} warped by
pose parameters t and J(X) is a vector of intensities observed on the object, called
template. Object is assumed to be at the pose t∗ for which the sum of square intensity
differences (SSD) between template J(X) and image data I(t∗ ◦X) is minimal. Since an
exhaustive search might be time consuming and search space is limited by the previous
state t0, the Newton-Raphson gradient descent optimization method is exploited. The
optimization is performed over the space of translations [37], affine transformations [44],
general warpings [3] or 3D motion parameters [61]. In order to solve problem (2.3), the
intensity function I(t ◦X) is locally approximated by the first order Taylor expansion

I(t ◦X) ≈ I(X) +
∣∣∣∣∂I(t ◦X)

∂t

∣∣∣∣
t0︸ ︷︷ ︸

G

·t = I(X) + Gt, (2.4)

where

G =
∂I(X)
∂X

∂(t ◦X)
∂t

,

where ∂I(X)
∂X =

[
∂I(x1)
∂x1

. . . ∂I(xc)
∂xc

]>
is (c× 2) matrix of image gradients and ∂(t◦X)

∂t is the
Jacobian of the warp. For example, in the simplest case of translation the following
holds:

∂(t ◦X)
∂t

=
∂(t +X)

∂t
=
[

1 0
0 1

]
and the Jacobian is omitted.
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2 State-of-the-art

(a) (b)

Figure 2.1: Lucas-Kanade tracker: (a) Template 40×40 pixels (outlined by blue line),
(b) Dissimilarity function and 25 iterations (red) of a Lucas-Kanade tracker.
The red path in the left image corresponds to the red optimization path.

Substituting approximation (2.4) to problem (2.3) the following closed-form solution
is obtained:

t∗ ≈ argmin
t∈S

‖I(X) + Gt− J(X)‖22 = argmin
t∈S

(I(X)− J(X) + Gt)>(I(X)− J(X) + Gt) =

= argmin
t∈S

(
I(X)− J(X)

)>(
I(X)− J(X)

)
+ 2
(
I(X)− J(X)

)>
Gt + t>G>Gt︸ ︷︷ ︸

e(t)

,

∂e(t)
∂t

= 0 + 2G>
(
I(X)− J(X)

)
+ 2G>Gt∗ = 0,

G>Gt∗ = G>
(
J(X)− I(X)

)
,

t∗ = (G>G)−1G>
(
J(X)− I(X)

)
= G+

(
J(X)− I(X)

)
, (2.5)

where G+ denotes the pseudoinverse of G.

6



2.2 Optimization-based tracking

Since I(t◦X) has been locally approximated, the solution t∗ is inexact and the process
is iterated, see Figure 2.1. In general, the local linear approximation of I(t ◦X) means
local quadratic approximation of criterion ‖I(t◦X)−J(X)‖22 by a parabolic function e(t)
with Hessian G>G. Motion parameters t∗ minimizing e(t) determine both the steepest
descent direction and the step length in each iteration. Note that t∗ is thus estimated
by a sequence of linear functions of image-template differences.

This approach has been shown computationally inexpensive and sufficiently robust,
therefore many extensions have been recently proposed, see [3] for details. Second-order
minimization of SSD was proposed by Benhimane and Malis [6]. Dowson and Bow-
den [21] experimentally show that mutual information criterion (MI) slightly outperform
common SSD. Recently, Benhimane et al. [5] extended the SSD gradient optimization
approach by a preprocessing stage, where a sub-template assuring theoretical conver-
gence in the first iteration is selected. Brooks et al [13] combine SSD and MI; a learned
performance profile is used to select the approximate number of pixels to process in each
optimization step. As a result, the same quality with significantly less computational
complexity is achieved. Comaniciu and Meer [16, 15, 17] propose a gradient based ap-
proach called meanshift, where pose t is iteratively estimated as a center of gravity of
locally evaluated values of f(t; I, t0).

2.2.2 Scanning-based optimization

Scanning based methods resembles object detection. However, instead of scanning the
whole image the search is restricted on the basis of information from previous frames.
Since these method are beyond the scope of this work, we provide, for the sake of
completeness, only a short overview.

Nister et al. [40] proposed scanning-based method optimizing SSD criterion function.
The criterion is the same as in Lucas and Kanade tracking approach [37], but the op-
timization method is different. Instead of the steepest descent minimization, Nister et
al. evaluate values of SSD criterion only in Harris corners [30], which allows for very
fast detection. Such approach avoids the problem of convergence to the local minimum,
but it is more sensitive to image blur, which often reduce the number of detected Harris
corners.

Felzenszwalb and Huttenlocher [24] search for the pose of an articulated structure.
The criterion, to be minimized, is defined by the following equation:

n∑
i=1

fi(ti)︸ ︷︷ ︸
Similarity

+
n∑

i,j∈E
gij(ti, tj)︸ ︷︷ ︸

Bending energy

,

where ti are components of the pose parameters and E ⊂ {1 . . . n}2 is the set of modeled
connections. If E ≡ {1 . . . n}2 the articulated structure is the complete graph and
exhaustive search in n-dimensional space is an NP-hard problem [12]. In order to avoid
the time consuming search, the articulated structure is constrained to be a tree. Tree
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2 State-of-the-art

structure allows dynamic programming to search through the pose space in O(h2 · n)
time, where h is a number of discretized locations to be searched through. However, this
O(h2·n) algorithm is not practical in most cases, because the number of possible locations
is usually huge. Restricting the bending energy (second term) to be the Mahalanobis
distance, a minimization algorithm that runs in O(h′ · n) rather than O(h2 · n) time, is
obtained.

Besides such explicitly defined criterions, the criterion function to be optimized is often
represented by some kind of a learned classifier. Özuysal et al. [41] exhaustively search
for maximum response of a set of Randomized Trees (RT) which stands for criterion f .
Each non-leaf vertex is associated with a simple randomly initialized binary test (e.g., a
comparison of two intensities) which decides whether the observed patch belongs to the
left or right sub-tree. During a learning stage, each training patch is send throughout
the RT by evaluating the vertex tests. Given a set of labeled training patches associated
with leaves, object/background probabilities in each particular leaf are estimated. In
the online tracking stage classified patches are again send throughout RT. If more than
one RT is used, the probabilities from all reached leaves are combined together in order
to approximate f(t; I, t0). Besides the RT classifier, Adaboost [27] or SVM [2] classifiers
are also often used. Grabner et al.t [27] exploit that in tracking, contrary to detection, it
is sufficient to distinguish the object from its background locally. Both local background
and object appearance are assumed to change, therefore the classifier is re-learned from
newly collected background-foreground examples in each frame. Thus another criterion
function f(t; I, t0), which allows for the best local object/background separation, is
optimized in each particular frame.

Performance of the scanning-based method is significantly influenced by the density
of scanning grid, because a wrong choice of the density can cause either insufficient or
time-consuming searching. On the other hand, gradient-based approaches suffer from
all typical problems of local optimization: convergence to a local minimum, unknown
number of required iterations and unknown basin of convergence.

2.3 Regression-based tracking

In order to avoid problems of the optimization based tracking, some authors [19, 33, 55]
get rid of the cost function f(t; I, t0) and estimate the location t directly from locally
observed intensities. Such approach requires a learning stage, where pairs of motions t
and corresponding observed intensities I(t ◦ X) are collected and a mapping ϕ : I → t
minimizing the error on these examples is estimated, see Figure 2.2,

ϕ∗ = argmin
ϕ

∑
t

‖ϕ
(
I
(
t ◦X

))
− t‖. (2.6)

In the tracking stage, the learned mapping ϕ∗(I) directly estimates motion parameters
without necessity of an online optimization of any criterion function.

Noticing that Lucas-Kanade tracker [37] solves a similar optimization task in each
frame, one can replace G+ in equation (2.5) by matrix H learned on a set of synthesized
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2.3 Regression-based tracking

examples. Equation (2.5) then transforms to the linear mapping between intensities
I(X ◦ t) and motion t,

t = ϕ
(
I(X)

)
= H
(
I(X)− J(X)

)
, (2.7)

where H is the matrix of some learned coefficients. In the tracking procedure, the motion
parameters t are simply computed as a linear function H(I(X) − J(X)) of the object
intensities. We call such method learned linear predictor (LLiP). In the following, the
learning of LLiP is described.

Let us suppose we are given an image template J = J(X) and collected training pairs
(Ii, ti) (i = 1 . . . d) of observed intensities Ii and corresponding motion parameters ti,
which aligns the object with current frame. Then training set is ordered pair (I, T), such
that I = [I1 − J, I2 − J, . . . Id − J] and T = [t1, t2, . . . td]. Given the training set, LLiP
coefficients minimizing the square of Euclidean error on the training set are found as
follows:
First the learning task is formulated and rewritten to more convenient form:

H∗ = argmin
H

d∑
i=1

‖H(Ii − J)− ti‖22 = argmin
H
‖HI− T‖2F =

= argmin
H

trace(HI− T)(HI− T)> =

= argmin
H

trace(HII>H> − 2HIT> + TT>).

Next its derivative is equaled to zero:

2H∗II> − 2TI> = 0

H∗II> = TI>

H∗ = T I>(II>)−1︸ ︷︷ ︸
I+

= TI+. (2.8)

Since the method is very fast and simple it has various applications in tracking ap-
proaches. In particular, Cootes et al. [18, 19, 20] estimate the parameters of Active
Appearance Model (AAM) - i.e., deformable model with the shape and appearance
parameters projected into a lower dimensional space by the PCA. In [18] a linear pre-
dictor (2.7) learned by the LS method (2.8) estimates all parameters of the AAM. Since
the linearity holds only for a small range of the parameters, the solution is iterated.
Iterations are computed with the same matrix but the length of the optimization step
is locally optimized.

This approach was later adapted by Jurie et al. [33] for tracking of rigid objects.
Unlike Cootes et al. [19], Jurie’s linear predictors estimate local 2D translations only.
The global motion is estimated from local motions by the Ransac algorithm, showing
the method to be very efficient and robust. Williams et al. [55] extended the approach
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2 State-of-the-art

Observations

Motions ϕ( )= (0, 0)>

ϕ( )= (−14, 2)>

ϕ( )= (14,−14)>

ϕ( )= (−9, 18)>

ϕ( )= (12, 7)>

Figure 2.2: Learning of linear mapping between intensities and motions from a set
of synthetically perturbed examples.

to the non-linear motion predictors learned by Relevance Vector Machine [50] (RVM).
Agarwal and Triggs [1] used RVM to learn the linear and non-linear mapping for tracking
of 3D human poses from silhouettes.

Drucker et al.[22] search for the regression function that has at most ε deviation from
the actually obtained poses ti. It means, that they do not care about errors as long as
they are less than ε, but any larger deviations are inacceptable. Especially if the function
has the following linear form h>Ii, the learning is formulated as the following quadratic
programming problem:

h∗ = argmin
h
‖h‖2 (2.9)

subject to: ti − h>Ii ≤ ε
h>Ii − ti ≤ ε

The method, called Support Vector Regression Machine, is similar to the Support Vector
Machine [52] and allows also the extension for nonlinear kernels. Detailed description
may be found in [47].

Zhou et al. [59] proposed greedy learning for additive regression function:

ϕ(I(X)) =
c∑
i=1

ϕi(I(X)), (2.10)

where I(X) are some image features. The learning consists of c-steps, within each of
them weak regressor ϕi(I(X)) minimizing the training error is estimated.

Let us emphasize two special cases:
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2.4 Tracking objects with variable appearance

• If the weak regressor is linear function, the additive regressor ϕ(I(X)) simplifies
to linear mapping (2.7) and the problem has closed-form solution (2.8).

• If the weak regressor has the form of piece-wise constant function with L discon-
tinuities, the additive regressor (2.10) corresponds to the L-nary regression tree
with the same decision stumps in each level.

Zhou et al. [59] use the weak regressor formed of a linear combination of binary
functions. They constrained the coefficients of the linear combination to have the same
absolute values. Such constraint allows to find a closed-form solution in each of c learning
greedy steps. Bissacco et al. [7] extended the learning technique for the L-nary regression
trees and showed that it outperforms [59].

Since we mainly contribute to these methods, we briefly summarize our contribution
also here. Rather than proposing a special learning procedure for a special type of
the regression function, we present an optimal way to concatenate different regression
functions into a sequence. Our main idea follows the fact that the intensities (features)
of pixels located close to the searched pose are usually more convenient for precise pose
estimation than some other intensities.

Let us suppose, we are given a class of regression functions. Each of the functions
operates within a different range of poses and has different precisions and computational
complexities. Given predefined range and precision, we want to design a regression-based
tracking method. The simplest thing one can do is to select a function with sufficient
range and precision. Of course, such function need not even exists and if so, it could
have a very high computational complexity. The other possibility is to select a sequence
functions. The first function provides a coarse estimate of the pose. The following
function is consequently allowed to operate within a smaller range of poses. If it is true,
that the intensities of pixels located close to the searched pose are more convenient for
the pose estimation, such function naturally achieves a higher precision with a reasonable
complexity. Similarly, another ancestors again refines from the precision of previously
estimated poses.

In continuation of that, we define learning as a searching for a sequence with the
lowest computational complexity subject to predefined precision and range. We learn the
optimal sequence of regression functions, which is in general superior to a single function.
Since LLiPs are easy to operate and allow for good precision on low computational
complexity, we demonstrate the method on the Sequences of LLiPs (SLLiP). Note, that
the linear predictor can be naturally extended to an arbitrary linear combination of
non-linear mappings by data lifting, therefore the linearity is not too much restricting
condition.

2.4 Tracking objects with variable appearance

If we had a perfect geometrical model of the object and its environment, every ob-
served camera image would be explainable only by pose parameters of objects in the
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2 State-of-the-art

argmint‖I(t)− J‖2argmint‖I(t)− J‖2image I alignment t

J← I(t)

optional template update
(a) Lucas–Kanade

argmint‖I(t)− J(θ)‖2argmint‖I(t)− J(θ)‖2

argminθ‖J− J(θ)‖2argminθ‖J− J(θ)‖2

image I alignment t

J← I(t)
θ affine warp

(b) Shi–Tomasi

H(I− J)H(I− J)
image I alignment t

J← I(t)

optional template update(c) Jurie–Dhome

H(I− J(θ))H(I− J(θ)) PCAtPCAtH(I− J(θ))H(I− J(θ)) PCAtPCAt

PCAJPCAJ

t

linear mapping

image I θ pars

J(θ) PCA reconstr. image

(d) Cootes–Edwards

ϕ(I;θ)ϕ(I;θ)

γ(J)γ(J)

image I alignment t

J← I(t) image
θ appearance parameters

(e) Our algorithm

Figure 2.3: Tracking methods compensating changes of the object appearance.

scene. However, such model would probably require immense number of parameters and
its estimation would be intractable, therefore only the most essential pose parameters
are explicitly considered. The omitted degrees of freedom cause changes in the object
appearance, that cannot be compensated by these parameters, which often results in
the loss-of-lock. Therefore, we further introduce appearance parameters θ, which com-
pensate these appearance changes implicitly. It is even not clear in advance, which
parameters belong to the pose and which to the appearance. Usually the appearance
parameters influence template J(θ) intensities and pose parameters influence positions
of object pixels t ◦X, but it is not the rule. Usually, pose is assumed to change faster
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2.4 Tracking objects with variable appearance

than object appearance1, therefore the pose parameters are estimated the first — the
appearance parameters are then estimated from the image aligned by the pose parame-
ters.

Let us first assume that no training set is available in advance. In such a case we
have usually no prior information about the possible changes of the object appearance.
Therefore the template is either not updated at all or updated from the last known
position in terms of partial or whole template replacement by the aligned image, see
Figure 2.3a. Since the whole template replacement often results in drifting and conse-
quently to the loss-of-lock as well, Matthews et al. [39], allow only slow changes of objects
appearance. Dowson and Bowden [21] continuously watch a dissimilarity measure, once
the model appearance is too different from the observed object, the new template is
initialized and the old one is saved for future usage. Shi and Tomasi [44] propose to
use Lucas-Kanade translation tracker [37], with the template optionally updated by an
affine transformation estimated again by the gradient optimization, see Figure 2.3b. Al-
though the affine transformation can be optimized at once with the translation as the
6-dimensional gradient optimization problem, they did not do it arguing that their joint
optimization provides worse results than successive optimization of the translation and
the affine warp.

There are also methods [8, 19, 29] exploiting machine learning techniques. They
allow only a limited parameter-driven changes of the model appearance. Black and
Jepson [8], similarly to the Lucas-Kanade tracker [37], also minimize the SSD function.
They model possible object appearances by a linear combination of eigen-templates
learned by the PCA method [25] from a set of training images. During the tracking stage,
the object is aligned and the closest template J(X) to the currently observed appearance
is reconstructed as a linear combination J(θ) =

∑
i ΘiJi of eigen-templates Ji.

Scanning-based methods like [2, 27] adaptively re-learn classifier on currently collected
examples of both object and background appearances. Yuan et al. [56] recently proposed
a parameter sensitive classifier which searches for the object pose. Given a training
set of possible object/background appearances the classifier controlled by a vector of
appearance parameters θ is learned. During the detection/tracking stage the current
appearance parameters of the searched object are unknown, therefore both the pose and
parameter space is searched through, which is hardly usable for a real-time application.

Cootes et al. [18, 19] proposed a paradigm where both the motion and appearance
are projected by the PCA to the lower dimensional space of some parameters. Given
an image the learned linear mapping with coefficients H estimates parameters θ. The
parameters are back-projected by the PCA, in order to simultaneously estimates the
motion and update the template, see Figure 2.3d. While in [19] the parameters are
optimized by the steepest gradient descent, in [18] a linear predictor is used. Note, that
in our work, we generalize the tracking paradigm as shown in Figure 2.3e.

1A particular counter-example is a sudden change of an object illumination (e.g., switching off the light).
Nonetheless, we are interested in the scenes, where both pose and appearance change smoothly and
the iterative estimation is affordable.
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2.5 Tracking in feature space

Instead of object intensities I(X) an arbitrary set of features (e.g., histogram) could be
used. A set of used features has crucial influence on the tracker robustness and accuracy.
Some features are very accurate (e.g., intensities or Haar features [28]), some have large
basin of attraction (e.g., mean), others are invariant to projective transformation (e.g.,
moment invariants) or to an arbitrary permutation of pixels (e.g., color histogram). In
general, the more independent features used, the higher the probability of successful
tracking, but the higher the computational complexity. Since the time consuming algo-
rithms do not allow for real-time tracking, only a convenient subset of features, which
allows the object to be well locally distinguished from its background, must be used.

The object is distinguished from its background by a criterion f , the discriminability
of which is proportional to the difference between object and background probabilities.
Since the feature selection is a combinatorial problem, authors usually propose a heuristic
maximizing the difference or ratio of the object/background probabilities.

Grabner and Bishof [27] scan the image by Ada-boost classifier. Object and back-
ground appearances are assumed to change, therefore a set of used features is re-
optimized and the Ada-boost is re-built in every frame. Collins et al. [14] use mean-
shift [16] tracking algorithm with tuning of features in order to maximize their discrim-
inability. Each feature is a weighted linear combination of RGB values. The weights are
the subject of the tuning. Zhou et al. [59] proposed a greedy least-square feature selec-
tion algorithm for regression functions. Jepson et al. [32] use EM-algorithm to adapt
the model appearance parameteres over time. Appearance is assumed to be generated
by three independent clusters of parameters - stable, transient and outlier

2.6 Modeling motion dynamics

Until now, we assumed that the state of an object is not far away from its last known
state, which allowed for the gradient optimization or regression based tracking methods.
We explicitly assumed that motion prior probability is uniformly distributed over the
range within which the method is able to operate, e.g., basin of attraction of gradient
optimization methods or range of regression methods. Prior was assumed to be zero out
of this range prior.

If motions are too fast then inter-frame distances are too long and the range of tracking
methods is insufficient. If the object state is well predictable just from dynamics, a
motion model could be used for initial guess. However, motion model is often insufficient.
The range could be optionally enlarged by multiple initialization, but it costs time and
consequently affects tracking accuracy.

If no motion model is available, no initial guess can be computed and the range have
to be estimated adhoc. Therefore a motion model, which allows prior estimation is often
used. The prior distribution determines both the initial guess and the range. Common
tracking approaches [43, 57, 60] model the object dynamics by a linear motion model
and use the Kalman filter [34] for the range and the initial guess estimation.
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2.6 Modeling motion dynamics

Besides of such explicit motion dynamics modeling there is also another alternative,
which models time continuity constraints implicitly. Instead of computing the prior, the
feature vector is simply extended by visual features computed on previous image(s) [58]
or on difference image [7].

Instead of making hard decision about the object presence in each frame, it is also
possible to approximate probability distribution of the essential parameters by a multi-
modal distribution such as the mixture of Gaussians. These distributions are the state
of an object and the essential parameters are estimated in each frame as for example
maxima of these distributions. Such representation is robust to partial occlusions or
noise and avoids falling into a local minimum.

One of the most common approach is the condensation technique [31], where state
space of the essential parameters is in each frame sampled according to their probabil-
ity distributions estimated from previous frames. The approximation is frame to frame
updated from the samples of the distribution and from a motion model. Another proba-
bilistic approach was presented by Sminchisescu et al. [46, 45], where Bayesian mixture
of experts (BME), learned by EM-algorithm [50], directly estimates probability of mo-
tion parameters. In contrast to the other approaches, BME can deal with multi-modal
distribution, which often arises in a case of 3D tracking due to ambiguities [1]. Pa-
tras and Hancock [42] extended the method to incorporate also relevance of the current
observation.
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3 Contribution of the thesis

Our contributions is related to the regression-based tracking methods like [19, 33, 55, 58],
where motion is directly estimated from the observed intensities by a learned mapping
called predictor. Specifically, our contributions are the following:

1. Optimal concatenation of the predictors. The more complex the predictor,
the more precise pose estimation is achievable. Increasing the complexity, however,
often suffers from diminishing returns and very complex predictors are prone to
overfitting. We follow a simple assumption, that it is at least usually easier to
estimate the actual state, if the predictor is initialized in its close neighbourhood.
Accepting this assumption, it is better to exploit a less complex predictor for
coarse state estimation and use the newly obtained state for the initialization
of another predictor. The coarse estimate of the state allows to the following
regression function operate within a smaller range of the states and achieve a
higher precision with a reasonable complexity. Hence, instead of the learning a
very complex predictor, we use a sequence of rather simple predictors concatenated
in the way that each of the predictor compensates only errors of its predecessor
and thus refines from the previous predictions. While single predictor operates
on a fixed set of intensities (features), the sequential predictor allows for higher
precision because the set of the intensities is estimated successively as the actual
state accuracy increases. We learn the optimal sequence of predictors, which is in
general superior to a single predictor.

2. Explicit minimization of the computational complexity. In contrast to
the state-of-the-art approaches, where learning of the predictor is formulated as
a minimization of motion estimation error on a given training set, we formulated
the learning as a minimization of the tracking time given user predefined precision
and robustness. We proposed learning based on dynamic programming, which
estimates the optimal sequence of linear predictors. Note, that the linear predictor
can be naturally extended to an arbitrary mapping formed as a linear combination
of kernel functions by data lifting, therefore the linearity is not too much restricting
condition.

3. Anytime learning. Since our learning procedure of the optimal sequential pre-
dictor might be time consuming, an anytime learning algorithm is also proposed.
Anytime learning delivers, after a short initialization period, some sequential pre-
dictor with defined precision and robustness, but higher computational complexity.
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While the tracking is allowed to start with this predictor, the learning continues
in a separate background thread and continuously improves the predictor.

4. Tracking of objects with variable appearance. We extended the proposed
method for objects, which exhibit nontrivial appearance changes caused for ex-
ample by non-rigid deformations or variable illumination. We introduce some
abstract appearance parameters, which encodes actual object appearance. These
parameters tune the predictor to estimate the pose of the object with actual ap-
pearance. Proposed tracking system consists of the tracker - a parameter-tunable
linear predictor and appearance encoder - a single predictor, both connected to
the feedback scheme. Tracking is defined as an image alignment estimated by
the tracker followed by an appearance encoding, which tunes the tracker for the
current object appearance. Simultaneous learning of both predictors is shown to
be a bilinear fitting problem, the minimum of which is searched by a line-search
algorithm. In contrast to Cootes et al. [18], who projects both the motion and
appearance parameters by the PCA to the space of lower dimensional parameters
and use the learned linear predictor to predict these lower dimensional parameters,
our appearance parameters has no explicit meaning, because they are automati-
cally determined during the unsupervised learning stage in order to minimize the
training error.

5. Adaptive real-time optimization of range and accuracy. Performance of
learned sequential predictors is characterized by range, i.e., region of predictable
motions, accuracy and speed. Any sub-sequence of the sequential predictor can
be viewed as another sequential predictor with some range, accuracy and speed.
In general the subsequent linear predictor is faster. If the subsequence does not
include some final predictors, lower accuracy is achieved. If the predictors from the
beginning are ignored, the subsequence has a smaller range. Range and accuracy
are dynamically adjusted in order to achieve the most accurate tracking subject
to a predefined maximal probability of tracker failure (loss-of-lock). In tracking a
virtuous circle emerges: minimal state covariance in the following frame estimated
by the Kalman filter determines both the length of the sequence of predictors to
be used in the current frame and the initial range in the following frame. Since
the initial range is typically smaller the higher accuracy is achieved. Such process
repeats until the highest possible accuracy is reached.

6. Large set of tracking data with ground truth. In order to verify the tracker
we also created publicly-available sequences1 with approximately 12000 ground-
truthed frames.

1http://cmp.felk.cvut.cz/~zimmerk/linTrack
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3 Contribution of the thesis

3.1 Thesis outline

The rest of the thesis is organised as follows:

• Chapter 4 describes the optimal sequential predictor. In particular:

• Section 4.1 introduces predictors, sequential predictors and proves some of
their elementary properties.
• Section 4.2 defines the optimal sequential predictor and describes efficient

learning, which does not allow restriction of the learning time.
• Section 4.3 proposes not as efficient but anytime learning algorithm, which,

after a short initialization procedure, delivers a sub-optimal sequential pre-
dictor with defined precision.

• Chapter 5 describes Ransac-based tracking of the objects modeled by more than
one predictor.

• Section 5.1 proposes an online optimization of the locations, where the pre-
dictors are attached to the model.
• Section 5.2 optimizes ratio between the number of Ransac iterations and the

number of used predictors subject to a user predefined frame-rate.

• Chapter 6 experimentally verifies the tracker consisting of a few optimal sequential
predictors on the publicly-available ground truthed sequences.

• Chapter 7 extends the tracking approach for objects with variable appearance.

• Chapter 8 introduces adaptive real-time optimization of range and accuracy.
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4 Learning to estimate motion

4.1 Predictors, properties and terminology

In this chapter, we define the following terms predictor, sequential predictor and the
optimal sequential predictor and show how to learn it. Let us suppose that the object
state is given by object pose parameters (e.g., position)1. In each frame we update the
object state by current motion parameters estimated by the predictor from a subset of
object pixels. The subset of the object pixels is called the support set X = {x1, . . . ,xc}.
The intensities observed on the support set X are collected in the observation vector
I(X).

Ideally, a predictor would use a support set minimizing the prediction error. However,
the problem has combinatorial complexity and we discuss it later in Section 4.4; let us
assume for now that a support set has been selected.

We denote (t ◦X) the support set transformed by a motion with parameters t. For
example, if the considered motion is a 2D translation, then (t ◦X) = (X + t) = {(x1 +
t), . . . , (xc+t)}. There is a mapping from parameters t to observations I(t◦X), which is
usually not invertible. We therefore search for a mapping approximating a set of motions
t which could have generated the observation I(t◦X). This mapping, called a regressor,
assigns a p-vector of motion parameters to a c-vector of observation. Regressors ϕ̂ are
completly characterized by their complexity, range and uncertainty region:

Definition 1. Complexity c(ϕ̂) of regressor ϕ̂ is a value proportional to the computa-
tional cost of the regressor. It is equal to the size of a support set for linear regressor.

Definition 2. Range R(ϕ̂) of the regressor ϕ̂ is a set of motion parameters2.

Definition 3. Uncertainty region of the regressor ϕ̂ is the smallest region

Λ(ϕ̂) =
{

∆t | ∆t = t ◦ ϕ̂
(
I(t ◦X)

)
, ∀t ∈ R(ϕ̂)

}
. (4.1)

1In general, object could be represented by more than one predictor. Such representation allows for
robust object pose estimation by Ransac and we discuss this extension in Section 5. For now, let us
suppose that only one predictor is associated with the object.

2Note, that this is not the range in usuall mathematical meaning
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4 Learning to estimate motion

Range

Complexity

Uncertainty
region

Figure 4.1: Definitions: Range, accuracy and complexity. An example with 2D trans-
lations.

The uncertainty region is the smallest region within which all the prediction errors
from the range R(ϕ̂) lie, see Figure 4.1.

In order to simplify the learning procedure we select only a class (e.g., circles or
squares) {Λλ}λ∈R parameterizable by one scalar parameter λ ∈ R such that

∀ λ1, λ2 ∈ R : λ1 < λ2 ⇒ Λλ1 ⊂ Λλ2 . (4.2)

Ranges Rr are selected from the same class of regions and parameterized by the same
parameter r ∈ R. According to equation (4.2), parameter λ (and r) are proportional to
the area of the region, therefore we sometimes refer to it as an area of the region and use
notation λ(ϕ̂) (and r(ϕ̂)) to denote corresponding values of Λ(ϕ̂) and R(ϕ̂) respectively.
An extension to regions parameterizable by more than one parameter is discussed later.

4.1.1 Predictors

Definition 4. Predictor ϕ(c, r, λ) is an ordered 4-tuple (ϕ̂,X,Rr,Λλ), where X is the
support set, c ≈ |X| is complexity (for linear case |X| = c), ϕ̂ is the regressor, Rr is
range and Λλ is the uncertainty region.

Even though we defined the predictor as 4-tuple, we parameterize all predictors by
the three parameters: complexity c, range r and uncertainty region λ, the regressor ϕ̂
is omitted. It actually says, that two predictors with the same (c, r, λ) and different
regressors ϕ̂1, ϕ̂2 are equivalent.

In order to assure that increase in complexity does not reduce the prediction abilities,
we further restrict ourselves to the class of support sets satisfying that every support set
contains all support sets with lower complexity. This is assured by the successive support
set construction algorithm described in Section 4.4. This is, however, still insufficient
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4.1 Predictors, properties and terminology

assumption. It is also required that regressors must be able to ignore values of some
input pixels. In the following definition we define the class of such regressors.

Definition 5. Let denote Fc some class of regressors ϕ̂ : Rc → Rp with the same support
set X. Let F =

{
F1 ∪ F2 ∪ · · · ∪ Fc . . .

}
. F is called domain independent class if:

∀ c ∀ ϕ̂1 ∈ Fc ∃ϕ̂2 ∈ Fc+1 such that ∀ I ∈ Rc ∀u ∈ R ϕ̂2([I, u]) = ϕ̂1(I).

This is for example satisfied for the following class of regressors

F1 = {a1 · x1 | a1 ∈ R} ,

F2 = {a1 · x1 + a2 · x2 | a1, a2 ∈ R} ,

Fc = {
c∑
i=1

ai · xi | ai ∈ R, i = 1 . . . c}

parameterized by coefficients a1, a2 ∈ R, because it can ignore an arbitrary input x1, x2

by setting the corresponding coefficient to zero. On the contrary, the class following is
not domain independent class

F1 = {a · x1 | a ∈ R} ,

F2 = {a · (x1 + x2) | a ∈ R} ,

Fc = {a ·
c∑
i=1

xi | a ∈ R}

parameterized only by one coefficient a ∈ R. In general, the class of polynomials of an
arbitrary order parameterized by all of their coefficients is an example of the domain
independent class.

Note that not all good properties of the predictors are simultaneously achievable. It
is clear that there is no ideal predictor which would simultaneously have (very) low
complexity, (very) large range and (very) small error. We denote the achievable subset
of predictors in (c, r, λ) space by ω, see Figure 4.3 for an example. Predictors lying on the
border of ω are very important, because it will be shown later that optimal sequential
predictors are exclusively formed from these predictors.

Definition 6. λ-minimal predictors ϕ+(c, r) are predictors having the minimal achiev-
able λ for a given range r and complexity c.

ϕ+(c, r) ∈ argmin
ϕ
{λ | ϕ(c, r, λ) ∈ ω} . (4.3)

Note that λ-minimal predictors are the predictors lying on the boundary of ω, see
Figure 4.3c.
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4 Learning to estimate motion

Simple consequence of Definition 5 is, that more complex predictors can do everything
that the simpler can. This is shown in two following propositions which summarize prop-
erties of λ-minimal predictors. The propositions are not crucial for the understanding of
the learning procedure however, we later use them to prove that the learning algorithm
can be simplified.

Proposition 1 The uncertainty region of a λ-minimal predictor is a nonincreasing
function of the complexity c.

Proof: We prove that the uncertainty region cannot increase with complexity (see for
example Figure 4.3a). Let us suppose, we are given two λ-minimal predictors with re-
gressors ϕ̂+

1 ∈ Fc, ϕ̂+
2 ∈ Fc+1. Since λ-minimal predictors are predictors with minimum

uncertainty region, their regressors have to satisfy:

ϕ̂+
1 ∈ argmin

ϕ̂1∈Fc
λ(ϕ̂1) , (4.4)

ϕ̂+
2 ∈ argmin

ϕ̂2∈Fc+1

λ(ϕ̂2) . (4.5)

We prove that regressor with higher complexity ϕ̂+
2 has the uncertainty region smaller or

equal to the uncertainty region of regressor with smaller complexity ϕ̂+
1 ,

i.e., λ(ϕ̂+
1 ) ≥ λ(ϕ̂+

2 ). This fact is shown by contradiction, therefore we assume that

λ(ϕ̂+
1 ) < λ(ϕ̂+

2 ). (4.6)

Since we know that ϕ̂+
1 ∈ Fc, then according to the Definition 5, there exists

some ϕ̂+
3 ∈ Fc+1 such that ∀ I ∈ Rc ∀u ∈ R ϕ̂+

3 (I) = ϕ̂∗1([I, u]). It also implies that
λ(ϕ̂+

3 ) = λ(ϕ̂+
1 ). Hence according to the assumed inequality (4.6)

λ(ϕ̂+
1 ) = λ(ϕ̂+

3 ) < λ(ϕ̂+
2 ).

This leads us to the contradiction, because there exists regressor ϕ̂+
3 , which has smaller

uncertainty region than ϕ̂+
2 and therefore ϕ̂+

2 could not be the optimal solution of prob-
lem (4.5) and consequently ϕ̂+

2 could not be the regressor of any λ-minimal predictor
with complexity c+ 1.

Note, that Proposition 1 is valid for arbitrary predictors which are optimal with respect
to some criterion. For example, if we had been dealing with predictors minimizing mean
Euclidean prediction error, say e, then the minimal e would have been a nonincreasing
function of the complexity, as well.

Proposition 2 Uncertainty region of λ-minimal predictor is a nondecreasing function
of the range.
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4.1 Predictors, properties and terminology

Proof: Given two λ-minimal predictors:

ϕ+
1 = ϕ+(c, r1) = argmin

ϕ
{λ | ϕ(c, r1, λ) ∈ ω} ,

ϕ+
2 = ϕ+(c, r2) = argmin

ϕ
{λ | ϕ(c, r2, λ) ∈ ω} ,

such that r2 > r1, we prove that the predictor with larger range r2 has larger or at most
the same uncertainty region as a predictor with smaller range r1,
ie r2 > r1 ⇒ λ(ϕ+

2 ) ≥ λ(ϕ+
1 ).

The implication is proved by contradiction. We assume r2 > r1 and λ(ϕ+
2 ) < λ(ϕ+

1 ).
Since Rr1 ⊂ Rr2 , the predictor ϕ2 can also predict every motion from range r1. Con-
sequently, we can define a new predictor ϕ′1 = (ϕ̂+

2 , X,Rr1 ,Λλ2) operating on range r1

with
λ(ϕ′1) = λ(ϕ+

2 ) < λ(ϕ+
1 ). (4.7)

This is in contradiction with the fact that ϕ+
1 is λ-minimal predictor, because we have

just found another predictor ϕ′1, which has a smaller uncertainty region.

4.1.2 Sequential predictor

It directly follows from the Proposition 1 that the higher is the complexity the better
is the prediction. However, increasing the complexity has diminishing returns, see for
example Figure 4.3. For large ranges, it is usually very difficult to achieve a good
prediction even with the complexity corresponding to the cardinality of the complete
template. In order to overcome this limitation we develop a sequential predictor Φ =
(ϕ1 . . . ϕm), see Figure 4.2, which estimates vector of motion parameter t in m steps as
follows:

t1 = ϕ̂1

(
I(X1)

)
, t2 = ϕ̂2

(
I(t1 ◦X2)

)
,

t3 = ϕ̂3

(
I(t2 ◦ t1 ◦X3)

)
, . . . , tm = ϕ̂m

(
I
(
(
m−1
©
i=1

ti) ◦Xm

))
,

t =
m
©
i=1

ti.

The first vector of motion parameters t1 is estimated directly by predictor ϕ1 from the
intensities observed in support set X1 . This predictor has a known uncertainty region
λ1 within which all its predictions lie. Therefore the successive predictor ϕ2 is learned
only on the range r2 ≈ λ1 corresponding to this uncertainty region, which is usually
significantly smaller than range r1 of the first predictor. The smaller range yields the
smaller uncertainty region. The advantage is that the predictors in the sequence are
more and more specific, which consequently allows the prediction to be very accurate for
reasonably textured regions. It is experimentally shown that the sequential predictor,
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Φ=(ϕ,ϕ,ϕ)
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Figure 4.2: Sequential predictor Φ = (ϕ1 . . . ϕm). Vector of motion parameters t
(denoted by red arrow) is estimated successively by m different predictors
ϕ1 . . . ϕm. Both the length of the sequence and particular predictors are
subject of the optimization.

which is superior to a single predictor, yields significantly lower complexity and a higher
precision.

Obviously, we consider only those sequential predictors which satisfy R(ϕ̂i+1) ⊇
Λ(ϕ̂i), i = 1 . . .m − 1. The range of each particular predictor must accommodate the
uncertainty region of its predecessor at least. The uncertainty region of the sequential
predictor is understood as the uncertainty region of the last predictor and its range as
the range of the first predictor.

Definition 7. Sequential predictor is an m-tuple Φ = (ϕ1(c1, r1, λ1), . . . , ϕm(cm, rm, λm))
of predictors ϕi ∈ ω such that R(ri+1) ⊇ Λ(λi), i = 1 . . .m − 1. Uncertainty region of
the sequential predictor Φ is λm and its range is r1.

4.2 Learning optimal sequential predictors

In the previous section, we defined the predictor and the sequential predictor. In this
section, we first define the optimal sequential predictor and show that it can be created
exclusively from the λ-minimal predictors (Definition 6). Section 4.2.1 describes learning
of the λ-minimal predictor, given a training set. In Section 4.2.2 a set of λ-minimal
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Figure 4.3: Set of achievable predictors. Color codes the size of the uncertainty
region.

predictors with different complexities a ranges is learned; selection of an optimal sequence
of the predictors from the set is formulated as a search for the cheapest path in a graph.

Definition 8. The optimal sequential predictor is

Φ∗ = argmin
Φ∈Ω,m∈N+

{
m∑
i=1

ci | r1 ≥ r0, λm ≤ λ0

}
, (4.8)

where Ω is the set of all sequential predictors, r0 is predefined range and λ0 is predefined
uncertainty region and N+ is the set of positive integral numbers.

Proposition 3 There is at least one optimal sequential predictor created exclusively
from the λ-minimal predictors.
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4 Learning to estimate motion

Proof: The proposition is proved by showing that any non-λ-minimal predictor can be
replaced by a λ-minimal predictor of the same complexity. It is then clear, for every non
λ-minimal predictor ϕi from the optimal sequence, there exists a λ-minimal predictor
ϕ+
i with the same complexity, such that the following holds:

Λ(ϕ+
i ) ⊂ Λ(ϕi) ⊂ R(ϕi) ⊂ R(ϕ+

i ).

Therefore ϕ+
i can replace ϕi.

Therefore, we consider only predictors with the smallest uncertainty region λ, i.e.,
predictors lying on the λ-lower bound defined by (4.3). In that way the λ-lower bound,
2D manifold in (c, r, λ)-space (Figure 4.3c), is rolled out to the (c, r)-space (Figure 4.3d).
Task (4.8) reduces to

Φ∗ = argmin
Φ∈Ω+

m∑
i=1

ci, (4.9)

where Ω+ is the set of sequential predictors created only by the λ-minimal predictors,
equation (4.3).

The procedure of linear λ-minimal predictor learning is carried out by linear program-
ming in Section 4.2.1. In Section 4.2.2, a sequence of the λ-minimal predictors creating
the optimal sequential predictor Φ∗, equation (4.9), is selected from a set of learned
λ-minimal predictors. The problem is formulated as searching of the cheapest path in a
graph.

4.2.1 Learning linear λ-minimal predictor ϕ̂+

Linear predictor

In order to estimate a predictor satisfying equation (4.3), the regressor ϕ̂ needs to be
specified in detail. We restrict ourselves to Learned Linear Predictors:

Definition 9. Learned Linear Predictor (LLiP) is predictors with linear regressor ϕ̂L
defined as follows:

t = ϕ̂L(I) = HI, (4.10)

where H is a 2× c matrix.

Similarly to this, we define sequence of linear predictors:

Definition 10. Sequential Linear Predictor (SLLiP) is Sequential Predictor formed from
LLiPs. Note, that the time required for motion estimation by LLiP is determined by the
size of its support set, therefore complexity of SLLiP is |X|.

Although we will further work with linear predictors, the method allows a natural
extension to an arbitrary class of functions formed of a linear combination of kernels
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4.2 Learning optimal sequential predictors

function by data lifting. Polynomial mapping of a given order is an example. In that
case, all monomials are considered as further observed intensities. It allows the learning
procedure to deal with non-linear mappings via linear mappings with higher dimension.

Training set construction

[       ]

t − motioni I = I(x ,...x ) − observation1 c
i

+2

+7+9

+4

−8

−4

training set: +2 −4 +4
+9 +7 −8

T=

prediction

rendering

I =

Figure 4.4: Training set construction: Image is perturbed by the motion parameters
from the predefined range. Pairs of observed intensities Ii and corresponding
motions ti creates the training set.

Let us suppose we are given a reference point, a support set and a predefined range
of motion within which the regressor is assumed to operate. We perturb the support
set by the motion with parameters qi randomly (uniformly) generated inside the range.
Each motion qi warps the support set X to a set Xi, where a vector of intensities Ii is
observed, see Figure 4.4. Given the observed intensity, we search for a mapping assigning
motion ti = −(qi), which warps the support set Xi back to the original support set X.
These examples are stored in matrices I =

[
I1 . . . Id

]
and T =

[
t1 . . . td

]
. The ordered

triple (I, T,X ) of such matrices and ordered d-tuple of support sets X =
{
X1 . . . Xd

}
is

called a training set.

Learning linear regressor given a training set

Let us suppose, we are given a training set (I, T, X). While Jurie and Dhome [33] obtain
H by the least squares method H = TI+ = TI>(II>)−1, we search for λ-minimal predictor
(Definition 6), i.e., the predictor with the smallest uncertainty region, equation (4.3).
As we mentioned before, the uncertainty region is assumed to be from a class parame-
terizable by one scalar parameter λ. In the following, we show how to find λ-minimal
predictor for the class of squares and rectangles. See appendix for other uncertainty
region classes (e.g., circles or ellipses).
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Figure 4.5: Examples of uncertainty region classes: Points correspond to the pose
estimation errors ∆t. Errors of the predictor learned by the LS method are
in blue and by minimax method in red. Uncertainty regions and ranges are
black. Only a),b) and e) are described in this section, see Appendix A for
detailed description of the other classes.

Restricting to the square-shaped uncertainty regions centered in the origin of the
coordinate system (see figure 4.5-a) and parameterized by parameter λ, equation (4.3),
defining the λ-minimal predictor, simplifies as follows

H∗ = argmin
H

(max
i
‖HIi − ti‖∞) = argmin

H,λ
{λ | ∀i|HIi − ti| < 1λ} =

= argmin
H,λ

λ (4.11)

subject to : − λ ≤ (HIi)k − tik ≤ λ,
i = 1 . . . d, k = 1, 2.

We reformulate problem (4.11) as a linear program

min
x
{c>x | Ax ≤ b}, (4.12)
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4.2 Learning optimal sequential predictors

where

x =


h1
...

hp
λ

 , c =


0
...
0
1

 , A =



I> 0 . . . 0 −1
0 I> . . . 0 −1
...

. . .
...

0 . . . 0 I> −1

−I> 0 . . . 0 −1
0 −I>. . . 0 −1
...

. . .
...

0 . . . 0 −I>−1


, b =



t1
...
tp

−t1
...
−tp


,

where hi is column vector corresponding to the i-th row of matrix H.
Since the computation of each component of the predicted parameters can be consid-

ered as an independent task, estimation of each row of H is solved separately3. Hence,
the task splits into p independent linear problems, where each of them determines one
row hT∗j of matrix H. The problem is solved as follows:

hT∗j = argmin
hj

max
i

{
‖h>j Ii − tij‖∞

}
= argmin

h>j ,λj

{λj | ∀i |h>j Ii − tij | < λj}.

Denoting

xj =
[
hj
λj

]
, c =


0
...
0
1

 , A =
[
I> 0 −1
−I>−1 0

]
, bj =

[
tj
]
,

linear programming problem (4.12) is obtained. The shape of such uncertainty region is
a rectangle, which is in 2D space parameterized by two parameters - length of its sides,
see Figure 4.5c. Since we want to work with uncertainty regions parameterizable by one
parameter, it could be considered as a square with the side equal to the longer rectangle
side. Result is the same as if the square shape is assumed in advance and the learning
is significantly faster.

If L∞ in problem (4.11) is replaced by L1 the uncertainty region is L2 hyper-cube
(square in 2D) rotated by 45o and the problem is solved alike, see Figure 4.5b. The
combination of L∞ and L1 norms allows to work also with L2 circle approximation, see
Figure 4.5d. Note that we can also work with elliptic regions as shown in Figure 4.5d-g.
In order to adjust a trade-off between robustness of minimax solution and accuracy of
LS solution, it is also possible to formulate the criterion as a weighted sum of LS error
and minimax error, which can be shown to be a semi-definite problem, see Figure 4.5h.
Detailed description of such uncertainty region extensions can be found in Appendix A.

3This is significantly faster than computation of one larger problem.
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4.2.2 Learning optimal sequential predictor Φ∗

In this section, we describe selection of the optimal sequence of predictors from a set of
learned λ-minimal predictors. We assume that we are able to estimate the λ-minimal
predictors (4.3), e.g., the linear predictors as shown in previous section. Set of λ-minimal
predictors ϕ+(c, r) for some discretized values of complexities c ∈ C and ranges r ∈ R
is denoted by ω+. Note, that ω+ is actually a subset of the set of all possible λ-minimal
predictors however, for the sake of simplicity we use the same notation. Figure 4.6a
shows uncertainty region λ(c, r) (size coded by color) of the λ-minimal predictors as a
function of complexity c ∈ C (vertical axis) and range r ∈ R (horizontal axis).

Given the set ω+, desired range r0 and uncertainty region λ0, we search for an ordered
subset of ω+ that forms the optimal sequential predictor Φ∗, which minimizes the com-
plexity. Since the desired range r0 of the sequential predictor is the range r1 = r0 of the
first predictor in the sequence, the first predictor must lie in the corresponding (usually
the most right) column. For this range, the predictors with the different complexities
are available in that column. The higher the complexity is, the smaller the uncertainty
region, see Figure 4.6a, where the size of uncertainty region decreases with the complex-
ity for each particular range. Selection of a particular complexity c1 determines the first
λ-minimal predictor ϕ+(c1, r1) in the sequence. The size of corresponding uncertainty
region λ(ϕ+(c1, r1)) determines an admissible range r2 of the following predictor, which
has to be at least as large as the uncertainty region according to its definition, i.e.,
r2 ≥ λ(c1, r1). The following proposition shows that it is sufficient to consider only the
smallest possible range.

Proposition 4 Range ri of a λ-minimal predictor ϕ+(ci, ri) in an optimal sequence of
λ-minimal predictors has to be as tight as possible to the uncertainty region λi−1 of its
predecessor, i.e., asymptotically, in a continuous case ri = λi−1.

Proof: The uncertainty region is a nonincreasing function of complexity, according
to Proposition 1

c2 > c1 ⇒ λ(ϕ+(c2, r)) ≤ λ(ϕ+(c1, r)).

However, a λ-minimal predictor whose complexity can be decreased without uncertainty
region increase, cannot be part of an optimal sequence. We therefore consider only a
λ-minimal predictor, whose uncertainty region is a decreasing function of complexity,
i.e., for which the following holds:

c2 > c1 ⇒ λ(ϕ+(c2, r)) < λ(ϕ+(c1, r))

and consequently:
λ(ϕ+(c2, r)) ≥ λ(ϕ+(c1, r))⇒ c2 ≤ c1. (4.13)

Hence, the uncertainty region is strictly decreasing function of the complexity. Putting
this together with Proposition 2, which claims that the uncertainty region is a nonde-
creasing function of range, we prove that the complexity is a nondecreasing function of
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4.2 Learning optimal sequential predictors

the range for every fixed λ0 = λ(ϕ+(c1, r1)) = λ(ϕ+(c2, r2)), because:

r2 > r1 ⇒
Prop.2

λ(ϕ+(c1, r2)) ≥ λ(ϕ+(c1, r1))
λ(ϕ+(c2, r2)) ≥ λ(ϕ+(c2, r1))
λ(ϕ+(c1, r1)) = λ(ϕ+(c2, r2))

⇒

⇒ λ(ϕ+(c1, r2)) ≥ λ(ϕ+(c2, r2))
λ(ϕ+(c1, r1)) ≥ λ(ϕ+(c2, r1))

⇒
Eq.(4.13)

c2 ≤ c1

Since the complexity is a nondecreasing function of the range, considering larger range
ri > λi−1 than necessarily leads only to increasing of the complexity ci. Taking into
account that this would necessarily increased the complexity of the resulting sequential
predictor, the smallest possible range ri = λi−1 must be used.

Note, that if only the smallest possible ranges are considered, then the constructed
graph has at most |C| · |R| edges. On the contrary, without the Proposition 4 the
constructed graph would have |C| · |R|2 edges.

Arrows in Figure 4.6a show the smallest possible ranges for the predictors with different
complexities. A sequence with the last predictor with uncertainty region λm smaller than
λ0 can be constructed, see for example the two sequences in Figure 4.6b. Furthermore,
we search for the sequence consisting of predictors converging to the sufficiently small
uncertainty regions with the lowest complexity.

We formulate the previous problem as the search for the cheapest path in the graph
G = (V ≡ R,E ⊆ R × R,α : E → C), where R is the set of considered ranges and
C is the set of considered complexities and operator α assigns a cost to each edge, see
Figure 4.6. It means, each range is associated with a vertex and a set of edges starting
from this range, which stand for predictors with different complexities. Edge cost equals
its complexity. We construct the graph by adding forward edges for each particular
range.

The Dijkstra algorithm [10] searches for the cheapest path to the ranges with predictors
with sufficiently small uncertainty regions, depicted by red circles in Figure 4.7. These
predictors are called target predictors and their ranges are called target ranges. The
solution is a sequence of predictors associated with edges on the cheapest path to a
target range plus its cheapest target predictor. If more than one target range exists then
there are more possible solutions and the cheapest solution is selected. The solution is
the optimal sequential predictor (4.9). The method is summarized in Algorithm 1.

The optimal path is depicted in Figure 4.7a. For instance, the optimal sequence for the
example in Figure 4.7a, where r0 = 100, λ0 = 2 is created as
Φ∗ = (ϕ+(140, 25), ϕ+(100, 12), ϕ+(100, 5)) and corresponding uncertainty regions are
(10, 4.5, 2).

Note that due to simplicity, we focus on the one-variable parameterized uncertainty
regions. Extension of the proposed method to the more than one-variable parameter-
ized uncertainty regions is straightforward. For w-dimensional parameterization of the
uncertainty region shape is ω+ w + 1-dimensional .
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(a) Edges from the first vertex (range). (b) Two paths to target ranges.

Figure 4.6: Selection of the optimal sequential predictor: (a) Construction of a
graph G from a set of λ-minimal predictors ω+. Different complexities of the
first predictor lead to different uncertainty regions and therefore different
ranges of the second predictor. Edges from the range r0 of the first pre-
dictor, depicted by black arrows, show the ranges of the second predictor
corresponding to the complexities of the first predictor. Cost of edges cor-
respond to the complexities. (b) Two paths to the target ranges (solid line
denotes the optimal path).

1. Estimate set of λ-minimal predictors ω+ = {ϕ+(c, r) | c ∈ C, r ∈ R}.

2. Construct graph G = (V ≡ R,E ⊆ R×R,α : E → C):

for each r ∈ R and each c ∈ C,
a) Find the smallest possible following range v∗ achievable by ϕ+(c, r):
v∗ = argminv∈R {v |λ(c, r) < v}

b) E = E ∪ (r, v∗) and α(r, v∗) = c

end

3. Dijkstra(G, r0) ⇒ Compute the cheapest paths from r0 to each range r ∈ R by
Dijkstra algorithm.

4. ρ(r) denotes complexity of the cheapest path to range r. Consequently,
ϕ+
t (ct, rt) = argminϕ+(c,r)∈ωT

{ρ(r) + c} is the last predictor.

5. The optimal sequential predictor is created from the sequence of predictors asso-
ciated with the edges of the cheapest path to rt and the last predictor ϕ+

t (ct, rt).

Algorithm 1 Estimation of the optimal sequence from a set of λ-minimal LLiPs.
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(a) Path with the lowest complexity. (b) Iterations.

Figure 4.7: The optimal sequential predictor: (a) size of uncertainty regions (coded
by colors) as a function of complexity c (vertical axis) and range r (horizontal
axis). The optimal path from the predefined range r0 to a predictor with
sufficiently small uncertainty region (red circles). (b) size of uncertainty
region after each iteration (iter = 0 corresponds to the range r0 = 25).

4.3 Anytime Learning

4.3.1 Introduction

In the previous section, we formulated the learning of SLLiP as an optimization prob-
lem where time of tracking (computational complexity) is minimized given a predefined
precision of motion predictors. Although a globally optimal sequence is delivered, the
learning might be prohibitively time consuming for large problems.

In the following, a new anytime learning approach is proposed which, after a very
short initialization period, provides a solution with predefined precision. The solution
is continuously improved, i.e., the SLLiPs with lower complexity and defined precision
allowing for faster tracking are continuously delivered. The anytime learning searches
through the space of SLLiPs and successively constructs SLLiPs from LLiPs of different
complexities. In order to make the searching process efficient, the Branch & Bound [35]
searching approach is used.

If no constraint on the learning time is imposed then the anytime learning algorithm
finds the globally optimal solution with respect to a certain class of predictors. If time
consuming learning is not affordable then the tracking can start immediately after a short
initialization period. Since the SLLiP tracking requires only a fraction of processing
power of an ordinary PC, the learning can continue in a parallel background thread.

Until now, the uncertainty region and range were assumed to be simple compact
regions (e.g., circles). Consequently the optimal sequential predictor can be exclusively
constructed from LLiPs learned by minimax. A disadvantage of this approach is the
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4 Learning to estimate motion

Complexity

Range

Error

Figure 4.8: Definitions: Range, complexity and prediction error of learned linear pre-
dictor.

minimax learning, which consumes most of the learning time. Furthermore this learning
process is unfortunately not able to provide an early solution with a predefined precision.

From now on, we relax the compactness condition of uncertainty regions and ranges.
The space of possible SLLiPs is immense and its searching through inherently requires
intractable number of operations of an informed or uninformed search algorithm. There-
fore, we restrict the set of considered SLLiPs Ω (respectively LLiPs ω). Since the learning
time is an issue and we mainly want to get rid of time consuming minimax learning, we
focus on the SLLiPs constructed from LLiPs learned by the Least Squares method, i.e.,
minimizing prediction error (Figure 4.8) instead of the uncertainty region.

Definition 11. Prediction error of predictor ϕ = (H, X,R)4 for range R is

ε(ϕ) = E
(
‖t− HI(t ◦X)‖22

)
, ∀t ∈ R(ϕ),

where E(.) denotes the expectation value with respect to t uniformly distributed on R(ϕ)5.

Given training set (I, T,X ), the predictor ϕ = (H∗, X,R) with minimum prediction
error has regressor H∗ computed by the LS method as follows

H∗ = argmin
H∈Rp×c

‖HI− T‖2F = TI+. (4.14)

The LS method is essentially computationally simpler with respect to linear program-
ming used for the minimax solution6.

4Previous definition of predictor also included uncertainty region, it is further omitted, because the
uncertainty region is not further used.

5In practice, the error is the mean value of square Euclidean error of all predictions from the range.
6Nevertheless, the proposed learning algorithm can be used to find the globally optimal solution with
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Figure 4.9: Training set invoked by (sequential) predictor: Observed intensities
Ij ∈ I are transformed by predictor ϕ1 into motion parameters tj,(1) which
are as close as possible to the desired motions ti ∈ T. We warp the original
motions tj ∈ T to the new motion parameters ∆tj,(1) = (tj,(1))−1 ◦ tj which
need to be further compensated, and we also warp each support set Xj ∈ X
by motion parameters tj,(1) obtaining the new support set Xj,(1) = tj,(1)◦Xj .
Newly observed intensities Ij,(1) = I(Xj,(1)) create in conjunction with ∆tj,(1)

and Xj,(1) training set invoked by predictor ϕ1.

4.3.2 Anytime learning algorithm

In this section, we describe method estimating the optimal sequential predictor given
a training set (I, T,X ) generated on image I. Ideally, the predictor, say ϕ1, learned
according to equation (4.14) would transform intensities Ij ∈ I exactly to motions tj ∈ T.
However, such predictor usually does not exist. Therefore the observed intensities are
transformed into motion parameters tj,(1) which are as close as possible to the desired
motions ti ∈ T, in sense of equation (4.14). We warp the original motions tj ∈ T to the
new motions ∆tj,(1) = (tj,(1))−1◦tj which need to be further compensated, see Figure 4.9.
And we also warp each support set Xj ∈ X by motion parameters tj,(1) obtaining the
new support set Xj,(1) = tj,(1) ◦Xj . Denoting Ij,(1) = I(Xj,(1)) the intensities observed

respect to arbitrary ω. For example, ω could be a set of LLiPs learned by the minimax method, then
the result of learning would be the same as of the algorithm proposed in Section 4.2. Note that the
globally optimal solution found with respect to the restricted ω is not guaranteed to provide globally
optimal solution with respect to the set of all possible LLiPs.
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4 Learning to estimate motion

on these newly obtained support sets, we form the new training set (I1, T1,X 1), where

I1 =
[
I1,(1) . . . Id,(1)

]
, T1 =

[
∆t1,(1) . . .∆td,(1)

]
,X 1 =

[
X1,(1) . . . Xd,(1)

]
. (4.15)

We refer to it as to training set invoked by predictor ϕ1 and denote it T (ϕ1, c), where c
denotes the size of support set used in the training set. Similarly to this we also define
training set invoked by sequential predictor Φ as T (Φ, c).

Note that given a training set T (Φ, c1), we can simply generate a training set T (Φ, c2)
for the predictor with a lower complexity c2 < c1 by removing corresponding number of
pixels from X and corresponding number of rows from matrix I. We refer to this process
as the training set restriction.

In order to simplify the problem, we further work with a discretized set of complexi-
ties C. The optimal sequence of predictors is found by searching through the set of all
considered SLLiPs, which involve

∑m
i=1 |C|i elements, where |C| denotes the size of C

and m is maximum length of SLLiP. In order to make the searching process efficient,
the Branch & Bound [35] (BB) searching approach is used. Sequential predictors are
successively constructed from the LLiPs of different complexities: In the first level, we
learn LLiPs for all complexities in C according to equation (4.14). They correspond to
the SLLiPs of the length equal to one. One of these SLLiPs, say Φ, is expanded in the
next iteration. The expansion means that Φ is successively extended by LLiPs with dif-
ferent complexities c ∈ C learned on training set invoked by itself T i(Φ, c). This process
creates |C| new SLLiPs, which may or may not be expanded in further iterations. Once
a SLLiP with a sufficiently small prediction error is found, all other partially constructed
SLLiPs with a higher complexity are terminated, i.e., they will never be expanded. The
smallest complexity c∗ of the found solution is saved and once a SLLiP reaches a higher
complexity it is automatically terminated. The learning process is summarized in Algo-
rithm 2; see also Figure 4.10, which demonstrates six iterations of the algorithm on a toy
example with C = {20, 300}, range equal to 40% of the object size and the predefined
error 10% of the object size.

Note that the selection strategy S which selects a SLLiP from Ω (step 4), may influence
the learning behaviour. However, if Algorithm 2 satisfies condition Ω = ∅ in step 6, Φ∗ is
an optimal SLLiP with respect to the set of considered LLiPs ω. In our implementation,
we first use the strategy which expands the SLLiP with the highest complexity. This
strategy usually finds a solution Φ∗ in a few iterations. This solution is of a high
complexity, but the prediction error is guaranteed and the tracking is allowed to start.
The strategy is switched and the SLLiPs with the average complexity are preferably
expanded. Once a solution is reached, it can be immediately used for tracking with a
lower performance. If the learning continues, the SLLiP can be in future replaced by
better solutions.

The stoping condition (step 6) could be also optionally replaced for example by a max-
imum number of iterations, maximum running time, maximum depth of the constructed
graph or an arbitrary intersection of these conditions. However, such replacement might
influence the optimality of the found Φ∗.
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Figure 4.10: Demonstration of Algorithm 2 on toy example with C = {20, 300},
|C| = 2, R = 0.4 and ε0 = 0.1. Blue denotes a set of current SLLiPs Ω,
black denotes terminated SLLiPs and red delineates solution Φ∗ with the
lowest complexity so far.
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4 Learning to estimate motion

Input:

Range R within which SLLiP is expected to operate.
Set of considered complexities C.
Predefined accuracy ε0.
Training image I.
Support set X.

1. Set:

c∗ =∞ (complexity of the simplest admissible SLLiP found) and
i = 0 (number of current iteration).

2. Generate training sets T 0(c), ∀c ∈ C on the predefined range Ra.

3. Initialize set Ω of learned active SLLiPs as a set of LLiPs learned on T 0(c), ∀c ∈
C according equation (4.14).

4. Φ = S(Ω), Ω = Ω \ Φ (Select and remove Φ according to a strategy S.)

5. For each c ∈ C: (expand Φ)

a) Generate training set T i(Φ, c) invoked by Φ.
b) Learn LLiP ϕ for T i(Φ, c) according to equation (4.14).
c) Φ′ = (Φ, ϕ), Ω = Ω ∪ Φ′ (add the new SLLiP to Ω)
d) If e(Φ′) ≤ ε0 and c(Φ′) < c∗ then Φ∗ = Φ′ and c∗ = c(Φ′) (replace solution)
e) For ∀Φ′′ ∈ Ω with c(Φ′′) > c∗, do Ω = Ω \ Φ′′ (terminate the SLLiPs with

higher complexity)

end

6. If Ω = ∅ stop otherwise i = i+ 1 and goto 4.

Output:

Optimal SLLiP Φ∗

aWe generate only T 0(cmax) where cmax = max C is maximum complexity of C, the other training
sets with the lower complexity are constructed by its restriction.

Algorithm 2 Anytime learning for SLLiP.
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4.4 Selection of support set for efficient tracking

4.4 Selection of support set for efficient tracking

Until now, we assumed that the support set was given. Since the support set selection,
which minimize an error on a training set has combinatorial complexity, we propose a
heuristic method. The only condition on the proposed heuristic is that every selected
support set of complexity c contains also support set of complexity c− 1, which conse-
quently assures monotonicity of the λ-bound as shown in Section 4.1.

Let us suppose we are given training set (I, T,X ) with support set covering the whole
object. We define a support set selection vector u ∈ {0, 1}b, which determines the
support set selected from a b-pixel template; used pixels marked by ones, unused pixels
marked by zeros, respectively. The prediction error of a predictor operating on the
support set selected by u is

e(u) =
∥∥T− T (I(u, :))+ I(u, :)

∥∥2

F
, (4.16)

where I(u, :) is a submatrix of I with rows selected by u. Given a desired complexity c,
the optimal solution of problem,

u∗ = argmin
u ∈ {0, 1}b,
‖u‖1 = c

e(u), (4.17)

is usually intractable because the problem has combinatorial complexity. Therefore we
propose the following greedy LS algorithm for the support set selection problem, which
searches for a solution convinient for efficient tracking.

1. Let u = 0 is the selection and L, T are given training examples.

2. Repeat c-times:
j∗ = argmin

j=1...b
{e(u + δj)},

u(j∗) = 1

where δj is b-vector of zeros with “1” at the position j.

Algorithm 3 Greedy LS support set selection algorithm.

4.5 Discussion

In this section, we summarize and discuss previously described learning and tracking
methods for SLLiPs. Learning described in Section 4.2 considers only ranges and uncer-
tainty regions being from a class of connected regions, usually parameterizable by the
one scalar parameter. Under this assumption, the optimal SLLiP with defined range and
uncertainty region is found. It is shown that the optimal SLLiP must be formed from
LLiPs computed by minimax method. Theoretically, it is also possible to construct the
SLLiP from LLiPs learned by any other method. Such SLLiP is not optimal anymore,

39



4 Learning to estimate motion

but the learning might be faster. For example LLiPs learned by the least square method
(LS) allows for very fast learning in contrast to the minimax. However, LLiP learned by
the LS method has a very large uncertainty region and its ancestor must inherently have
a very large range. The range of the following LLiP may optionally cover only a p% of
cases. As a result of such strategy, (1 − p)m% of training examples will not converge
for the SLLiP of length m. Since the error density of LS learned LLiPs is usually from
normal distrubtion, even p = 99% significantly decreases the range.

Learning algorithm described in Section 4.3 successively constructs SLLiPs from LLiPs
with a different complexities. Once a SLLiP with sufficiently small error is achieved
it can be immediately used for tracking, while the learning continues in a separate
background thread. There are no explicit assumptions on the range or the uncertainty
region, however, in order to make the search space reasonably large, the set of considered
LLiPs must be restricted. Estimated SLLiP is then optimal with respect to the restricted
set of LLiPs. Since the learning time is an issue, we restrict ourselves to LLiPs learned
by LS, which is known to be very fast. If we restricted ourselves to LLiPs learned by
minimax, the estimated SLLiP would be the same as the SLLiP found by the method
from Section 4.2, but the learning would be longer, because the evidence that the regions
has total ordering would not be taken into account. Of course, the anytime property of
the learning would be preserved.

We further refer to the SLLiPs learned according to Section 4.2 as MM SLLiPs and
SLLiPs learned according to Section 4.3 are called LS SLLiPs. Carefull validation of
accuracy and robustness on ground truthed sequences is described in Chapter 6, where
objects are tracked by number of SLLiPs.

4.6 Summary

We proposed very fast tracking by learning approach, where object motion is estimated
by a sequence of learned linear predictors (SLLiP). Defining computational complexity
of tracking as a number scalar multiplication necessary for the motion estimation, the
learning is formulated as the computational complexity minimization subject to prede-
fined accuracy and range.

Two different learning approaches were proposed: First one estimates globally optimal
SLLiP using dynamic programming. Nevertheless for some applications this learning
might be prohibitively time consuming, therefore anytime learning algorithm, which can
continuously provides improved SLLiPs during the learning procedure, is also proposed.
Result of the learning is extremely fast SLLiP with defined properties. Note that, a
non-optimized C++ implementation of an average sequential predictor takes only 30µs
on an average machine (1xK8 3200+ MHz).

In the following chapter, the object is modeled by a set of SLLiPs which independently
estimates its local motions. Object motion is robustly determined by the Ransac with
online and offline tuned parameters. Such tracker is than compared to state-of-the-
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4.6 Summary

art trackers [33, 36, 33] on approximately 12000 ground truthed frames, showing its
superiority in accuracy, robustness and frame-rate.

We encourage the reader to download a Matlab implementation of the proposed
learning and tracking and additional materials at http://cmp.felk.cvut.cz/~zimmerk/
linTrack.
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5 Tracking objects with a known
geometrical model

If the object is represented only by a single SLLiP, the robustness to partial occlu-
sions/noise and the dimensionality of predicted motions are limited. Therefore we rep-
resent the object by Number of SLLiPs (NoSLLiP tracker). Such representation requires
a geometrical model of the object. Since the geometrical model estimation is beyond
the scope of this work, we mainly work with planar or piece-wise planar objects, the
accurate geometrical model of which could be manually estimated with negligible effort.

Besides of the geometrical model estimation, many other questions must be answered:
In particular, how many SLLiPs should be used, where should be attached to the model
and how should be particular motion contributions combined. In our approach, we fol-
low the most common way of robust motion estimation based on the Ransac. Since
we do not make any assumptions about the object pose, we learn SLLiPs equally dis-
tributed on the object. During the tracking stage a set of active SLLiPs, maximizing
a trade-off between coverage and quality, is automatically selected and used for motion
estimation. This method is introduced in Section 5.1. It is also not clear, how many
SLLiPs should be used and how many Ransac’s iterations should be computed. Sec-
tion 5.2 describes method estimating the ratio between number of SLLiPs and number
of Ransac’s iterations, which maximize a probability of successful tracking.

5.1 Online selection of active predictor set

Let us suppose, that a set of SLLiPs evenly distributed on the object is available. In the
following we describe how to select a subset of SLLiPs, which assures both a reasonable
coverage of the object and quality of SLLiPs. It is not possible to find the set of regions
suitable for object tracking independently on the object position, because if the object
changes its pose some points can disappear and the global motion estimation can easily
become ill-conditioned. In this section, we present an online method which automatically
selects a subset of n predictors, called active predictor set, from all visible predictors.

To optimize the distribution of SLLiPs across the surface, we define coverage measure
r(Z) and quality measure q(Z) of the set of SLLiP’s reference points Z. Note, that we
have no theoretical justification for these definitions and we do not claim, that this is the
only right way how to define it. We provide only one possible definitions which might
not be convienient for some applications.
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5.1 Online selection of active predictor set

a) w = 0 b) w = 0.1

c) w = 0.5 d) w = 1

Figure 5.1: Influence of the weight on the active predictor set: Blue circles cor-
respond to the all learned predictors, red crosses to the selected predictors.
Size of crosses corresponds proportionally to the complexity.

Definition 12. Coverage measure is

r(Z) =
∑
z∈Z

d(z, Z \ z), (5.1)

where distance between point z and set Z is defined as the distance from the closest
element of the set

d(z, Z) = min
y∈Z
‖z− y‖. (5.2)

Ideally, for optimal robustness to occlusion the coverage measure would be maximized.
In practice, particular SLLiPs differ by their complexities. Complexity corresponds to
the suitability of SLLiP neighbourhood for motion estimation. We have experimentally
shown that: the lower the complexity, the higher the robustness. Therefore, we derive
the quality measure from complexity c(z).
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5 Tracking objects with a known geometrical model

Definition 13. Quality measure is

q(z) = |c(z)−max
y∈Z

c(y)|. (5.3)

To find a suitable subset Z of predictors from all visible predictors Z̃ we seek to
optimize the weighted sum of the coverage r and quality q:

f(Z) = w
r(Z)

r(Z̃)
+ (1− w)

q(Z)

q(Z̃)
, (5.4)

where w ∈ [0; 1] is the coverage weight. Algorithm 4 selects a set of active SLLiPs,
gGiven predefined number of SLLiPs n.

1. Let Z̃ be the set of visible predictors and Z = ∅ a subset of selected reference
points.

2. Select z∗ = arg max
z∈ eZ\Z f(z ∪ Z)

3. Z = z∗ ∪ Z and Z̃ = Z̃ \ z∗

4. if |Z| = n end, else goto 2

Algorithm 4 Selection of active set of SLLiPs.

Figure 5.1 shows results obtained for w = {0, 0.1, 0.5, 1}. If w = 0, n predictors with
the highest quality are selected and SLLiPs are stacked in one corner. Conversely, w = 1
causes that SLLiPs are equally spread across the object.

5.2 Object motion estimation

Objects are modeled as a spatial constellation of optimal SLLiPs (henceforward just
predictors), which estimates 2D translation. Object motion is estimated from these
local translations by Ransac algorithm. We understand tracking as a time-limited
task, where the object pose needs to be estimated from a camera image before the
next image comes. There is a trade-off between the time spent with the local motion
estimation and the global motion estimation. While there are n local motions estimated
by n predictors, the global motion is estimated by h iterations of Ransac. The longer
the time spent with each particular step the higher the probability of successful tracking.
We address the following question: Given the frame-rate and the computational costs of
different operations at a specific computer, how many predictors should be used and how
many Ransac’s iterations should be performed in order to maximize the probability of
successful tracking?
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5.2 Object motion estimation

The probability of a successful pose estimation in h-iterations of the Ransac method
is

PR(k, h) = 1−
(

1−
(
k

n

)v)h
, (5.5)

where n is the number of tracked points, k is the number of successfully tracked points,
and v is the minimal number of the points needed for the pose estimation. Note, that k

n is
the percentage of the successfully tracked points (inliers). Number of successfully tracked
points k in not known in advance, it is a random quantity with binomial distribution,

Pk(k) = Pbin(n, k) =
(
n

k

)
pk(1− p)n−k, (5.6)

where p is the probability of successful tracking of each particular reference point. Hence,
the probability of successful tracking is

Psuccess(n, p, h) =
n∑
k=1

PR(k, h)Pk(k) =
n∑
k=1

PR(k, h)Pbin(n, k)

=
n∑
k=1

[
1− (1−

(k
n

)m
)h
](n
k

)
pk(1− p)n−k.

In the rest, we assume that p is a constant value that has been estimated, e.g., online
as a mean number of inliers or measured on training data. Psuccess(n, p, h) is therefore
replaced by P̂success(n, h). The case where p is not fixed is discussed later. Given

• the maximum time t we are allowed to spend in pose estimation,

• time t0 of one Ransac iteration and

• times t1, . . . , tn required for local motion estimation or reference points 1, . . . n,

we formulate the following constrained optimization task

(n∗, h∗) = {arg max
n,h

P̂success(n, h) | ht0 +
n∑
i=1

ti ≤ t} (5.7)

Since, the probability P̂success(n, h) is a monotonously increasing function in all variables,
the maximum has to be located on the boundary {[n, h] | ht0 +

∑n
i=1 ti = t} of the

constrained set. Consequently, problem (5.7) can be rewritten as the unconstrained
one-dimensional problem as follows

n∗ = arg max
n

P̂success(n,
t−∑n

i=1 ti
t0

) = arg max
n

P success(n). (5.8)

We are not able to proof analytically concavity of this function but it is experimentally
shown that P success(n) is a concave function. If interested in a real-time application,
Golden mean optimization is a natural choice. The probability evaluation is very simple
and the computational time can be practically neglected.
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5 Tracking objects with a known geometrical model

5.3 Summary

In this chapter the object were modeled by Number of optimally learned SLLiPs (NoSLLiP)
from the previous chapter. While SLLiPs estimates local motions, object motion is de-
termined by the Ransac. In the proposed method, the number of SLLiPs and the
number of Ransac iterations are automatically determined, given a time limit induced
by a predefined frame-rate. Since all the time-consuming operations are performed in
the learning stage the NoSLLiP tracking requires only a few hundreds multiplications
yielding extremely efficient motion estimation. Note that, a non-optimized C++ imple-
mentation of an average sequential predictor takes only 30µs1.

1We believe that in a future, most of the computations could be significantly accelerated using a GPU
hardware.

46



6 Experiments - motion estimation

In this chapter, properties of SLLiP tracking and learning algorithms are demonstrated.
In Section 6.1 some preliminary results on challenging sequences are demonstrated. In
Section 6.2 robustness and accuracy is evaluated on ground truthed sequences. In par-
ticular, Section 6.2.1 describes ground truthed data, Section 6.2.2 compares SLLiPs
learned by algorithms from Sections 4.3, 4.2, and Section 6.2.3 compares SLLiP to the
state-of-the-art approaches. In Section 6.3 additional properties are summarized.

6.1 Preliminary qualitative evaluation

In the first experiment tracker is qualitatively evaluated on real sequences with pla-
nar and 3D rigid objects, which exhibit oblique views, motion blur, partial occlusions
and significant scale changes. We encourage the reader to look also at video-sequences
available at http://cmp.felk.cvut.cz/linTrack. Tracking of various objects with
partial occlusions and motion blur is shown in Figure 6.1. Green/blue circles outline
inliers/outliers, red arrows shows local motion estimated by SLLiPs. In some image also
support set is outlined by blue points. Tracking of objects with variable set of active
predictors is demonstrated in Figure 6.2 and 6.3. Active set of visible SLLiPs is esti-
mated by Algorithm 3. Yellow numbers denotes IDs of particular SLLiPs. Although we
mainly work with planar objects in order to avoid problems arising from inaccurate 3D
reconstruction, SLLiPs are attachable to arbitrary 3D model, see for example Figure 6.3.

6.2 Quantitative evaluation of robustness and accuracy

6.2.1 Ground truthed data

The quantitative evaluation of robustness and accuracy of SLLiPs is conducted on se-
quences with 3 different objects (mousepad, towel and phone), where ground truth
positions of the object corners in total number 11963 frames were manually labeled1, see
Figure 6.4 for some examples. Accuracy is measured in each corner as a percentage; the
displacement error is related to the current size of the object upper edge. Robustness
is measured by the number of loss-of-locks, defined as the cases where the accuracy was

1These ground truthed sequences are available at ftp://cmp.felk.cvut.cz/pub/cmp/data/lintrack
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6 Experiments - motion estimation

Figure 6.1: Robustness to partial occlusions and fast motion: Green/blue circles
outline inliers/outliers, red arrows shows local motion estimated by SLLiPs.
Support set outlined by blue points.

worse than 25%. In loss-of-lock frames, the tracker was reinitialized from the ground
truth and the accuracy did not contribute to the total accuracy statistic.

6.2.2 Comparison of LS and MM SLLiPs

Some of the successfully tracked frames, which include oblique views, motion blur and
significant scale changes, are presented in Figure 6.4. The results are summarized in
Table 6.1.

In the first row, results of NoSLLiP tracker with SLLiPs learned by anytime algorithm
(LS) proposed in Section 4.3 with no time constraint are presented. Second row contains
results for SLLiPs learned by minimax algorithm (MM) proposed in Section 4.2. The
minimax learning minimize the size of a compact region within which all prediction
errors lie (uncertainty region) instead of the square of Euclidean error, therefore higher
robustness is achieved, but the learning is 10-20 times longer due to time consuming
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6.2 Quantitative evaluation of robustness and accuracy

Figure 6.2: Tracking with variable set of active predictors: Yellow numbers denote
ID of particular SLLiPs. Blue points represent support set, green circles
highlight inliers, red arrows outline local motion estimated by SLLiPs.

Figure 6.3: 3D tracking: Variable set of active predictors and motion blur.

linear programming. Tracking accuracy of MM and LS methods varies with data; the
accuracy is similar for mousepad and towel sequences, but phone object contains
similar repetitive structure (buttons) which make the LS accuracy significantly worse.

We also compare predefined uncertainty region λ0 of MM SLLiP, predefined prediction
error ε0 of LS SLLiP and true error distribution on ground truthed data (mousepad
sequence). We learned 35 SLLiPs with different ranges covering the mousepad. MM
SLLiPs are learned to achieve uncertainty region λ0 = 5%, LS SLLiPs are learned
for prediction error ε0 = 3%. Both the uncertainty region and the prediction error
are relative to SLLiPs range. λ0, ε0 were chosen experimentally in order achieve the
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6 Experiments - motion estimation

Figure 6.4: Ground truthed sequences: Left column shows images used for training.
The middle and right columns demonstrate some successfully tracked frames
with strong motion blur from the testing sequences. Blue rectangle delineates
the object. Percentage values in corners are current corner speeds related to
the current size of the object upper edge.

object SLLiP learning processing loss-of-locks mean-error
learning time [sec] [fps] [%]

mousepad LS 11 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
mousepad MM 310 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
towel LS 16 33.3 5/3229 [1.6, 1.8, 1.1, 1.5]
towel MM 310 21.8 2/3229 [3.0, 2.2, 1.4, 1.9]
phone LS 21 25.6 55/1799 [7.3, 7.1, 10.6, 6.5]
phone MM 310 16.8 20/1799 [1.2, 1.8, 2.6, 1.9]

Table 6.1: Comparison of robustness and accuracy of LS SLLiPs and MM
SLLiPs: NoSLLiP tracker with SLLiPs learned by anytime algorithm (LS)
proposed in Section 4.3 and minimax algorithm (MM) proposed in Section 4.2.
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6.2 Quantitative evaluation of robustness and accuracy

best performance of SLLiPs. Lower values result in higher complexity and consequent
overfitting. The error is evaluated on those frames, where inter-frame motion is smaller
than the learning range of SLLiPs. Figure 6.5 shows error distribution of MM SLLiPs
(blue solid line) and LS SLLiPs (red solid line). λ0 is denoted by blue dot-dashed line
and ε0 by red dot-dashed line. In approximately 8% of cases, MM SLLiPs errors are
higher, which is presumably caused mainly by the limited ground truth accuracy and
partly by the insufficient training set.
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Figure 6.5: Accuracy analysis: Comparison of predefined uncertainty region λ0 of MM
SLLiPs (blue dot-dashed line), predefined prediction error ε0 of LS SLLiPs
(red dot-dashed line) and true error distribution (blue and red solid lines)
on mousepad sequence.

6.2.3 Comparison of SLLiPs to the state-of-the-art

Table 6.2 compares the NoSLLiP tracker to the state-of-the-art Lowe’s SIFT detector [36]
(method: SIFT)2, Lucas-Kanade tracker [37] (method: LK tracker) and Jurie’s LS LLiP
tracker [33] (method: LLiP LS). All these local motion estimators were combined with
the Ransac, to keep test conditions as similar as possible. SIFT tracking mainly fails
in frames with strong motion blur or in frames where the object was very far from
the camera. LK tracker, which estimates the local motion at Harris corners, provided
quite good results on the frames where the object was far from camera, but its basin of

2We use implementation of the SIFT detector downloaded from http://www.cs.ubc.ca/~lowe/

keypoints/
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method processing loss-of-locks mean-error
[fps] [%]

SLLiP LS 27.6 17/6935 [1.4, 1.3, 1.1, 1.1]
SLLiP MM 18.9 13/6935 [1.3, 1.8, 1.5, 1.6]
SIFT [36] 0.5 281/6935 [1.6, 1.2, 1.5, 1.4]
LK (IC) tracker [37] 2.6(25) 398/6935 [2.3, 2.2, 2.5, 2.5]
LLiP LS [33] 24.4 1083/6935 [5.9, 6.0, 6.7, 6.7]
LLiP LS [33] half-range 24.2 93/6935 [3.1, 2.3, 2.7, 4.0]

Table 6.2: Comparison of robustness and accuracy of MM SLLiP, LS SLLiP,
LK, LLiP trackers and SIFT detector: All trackers implemented in
Matlab, SIFT detector implemented in C++. Comparison on mousepad
sequence. Frame-rate of IC algorithm is estimated based on comparison pub-
lished in [3].

attraction was in many frames insufficient for correct motion estimation, failing for fast
motions.

According to the detailed speed comparison published in [3], 6-parameter optimiza-
tion by Inverse Compositional (IC) algorithm implemented in Matlab runs approxi-
mately ten times faster than the optimization by Forward Additive algorithm used in
LK tracker. However, the basin of attraction and sensitivity to noise are the same. Since
SLLiP tracker is also implemented in Matlab, the achieved frame-rates of LK, IC and
SLLiP are comparable. Concerning computational complexity of LK, IC, and SLLiP:
Computational complexity of one iteration computed on n-pixel template and p-vector
of pose parameters by LK is O(p2n+ p3) and by IC is O(pn+ p3). SLLiPs exploit only
a small subset of pixels. Since we experimentally verified that approximately

√
n pixels

is used from n-pixel template, the computational complexity of one iteration of SLLiP
(i.e., LLiP) is O(

√
np).

Jurie’s tracker is a LLiP tracker with the support set equal to the whole template
learned by LS method for the same reference points and ranges as optimal SLLiPs.
Since a single LLiP tracker does not allow sufficient accuracy on the same range, very
high loss-of-lock ratio and low accuracy are reported. If the half-range is used, the higher
accuracy is achieved, but the number of loss-of-locks is still significantly higher than with
NoSLLiP tracker, mainly due to long inter-frame motions.
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6.3 Additional experiments

6.3 Additional experiments

6.3.1 Empirical properties of MM SLLiPs

In this section, empirically observed properties of LLiPs and SLLiPs are demonstrated.

LLiPs

We summarize our empirically observed properties of the parameters such as complexity,
range, uncertainty region, prediction error or length of the optimal sequence. Relation
among the complexity, range and uncertainty region of LLiP is given by the manifold
in (c, r, λ)-space, see Figure 6.6a for an example. It shows that reasonable complexities
are from 40 to 300 pixels. The maximum considered complexity should be maximal
possible complexity of the SLLiP (experimentally shown about 2000 pixels) however, we
observed that 300 pixels are in most of the cases sufficient, because uncertainty region
improvements for the higher complexities are negligible. Range is limited by the size of
the object: radius of the support set plus radius of the range must be smaller or equal
to the size of the object. If this assumption is violated, some of the support pixels can
get out of the object (on the background) and the predictor output is not guaranteed.
We usually choose radius of the range 1-2 times higher than the radius of the support
set. Depicted manifold shows that the single LLiP with 300 support pixels decreases

(a) (b)
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Figure 6.6: Properties of MM SLLiPs: (a) Relation among complexity, range and
uncertainty region of LLiP. Color codes the size of the uncertainty region.
(b) Histograms of SLLiPs complexities.
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Figure 6.7: Histograms of LLiPs complexities: Complexities c(ϕ1)-c(ϕ8) of LLiPs
at positions 1–8 of the optimal SLLiPs.

range approximately 2.5 times. Note, that the shape of the manifold depends on the
texture and the complexity of the training examples. For example, if blured images are
not included in the training set, LLiP with complexity 300 decreases range more than 5
times. In extremal case of the texture with the constant intensity, the manifold is a plane
with the uncertainty region equal to the range. In the other hand, the most convenient
texture is the texture, which linearly codes the motion, but this is usually not the case.

SLLiPs

Length of the optimal sequence also depends on the texture. In most of the cases, the
optimal sequential predictor consists of 5-8 LLiPs. Complexity of the optimal sequential
predictor varies from 700 to 2000 pixels, see Figure 6.6b. Histograms of the complexities
of LLiPs in particular positions in the optimal sequence are depicted in Figure 6.7. It
shows that further located LLiPs are more likely to have either the maximal complexity
or zero complexity (i.e., they are unused).

Figure 6.8 shows some typical patches their (c, r, λ)-space and corresponding SLLiPs.
Complexity distribution along the optimal sequence c(ϕi)-distribution is depicted in the
third column. Complexity c(Φ) of the optimal sequential predictor Φ with λ(Φ) = 2 is
depicted in the last column. The first patch (first row) required SLLiP with relatively
high complexity c(Φ) = 1680, because weak vertical gradients are present.
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0
10

20
30

40

0

100

200

300

0

5

10

15

20

25

30

c − complexity

r − range

λ 
−

 u
nc

er
ta

in
ty

 r
eg

io
n

1 2 3 4 5 6 7 8
0

50

100

150

200

250

number of LLiP

co
m

pl
ex

ity

720

01020304050

0

100

200

300

0

10

20

30

40

50

c − complexity
r − range

λ 
−

 u
nc

er
ta

in
ty

 r
eg

io
n

1 2 3 4 5 6 7 8
0

50

100

150

200

250

number of LLiP

co
m

pl
ex

ity

1040

01020304050

0

100

200

300

0

5

10

15

20

25

30

35

40

45

c − complexity

r − range

λ 
−

 u
nc

er
ta

in
ty

 r
eg

io
n

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of LLiP

co
m

pl
ex

ity

1240

0102030405060

0

100

200

300

0

5

10

15

20

25

30

35

40

c − complexity

r − range

λ 
−

 u
nc

er
ta

in
ty

 r
eg

io
n

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of LLiP

co
m

pl
ex

ity

1000

0
10

20
30

40

0

100

200

300

0

5

10

15

20

25

30

35

c − complexity
r − range

λ 
−

 u
nc

er
ta

in
ty

 r
eg

io
n

1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

number of LLiP

co
m

pl
ex

ity

1880

Figure 6.8: Examples of patches, their (c, r, λ)-space and complexities of LLiPs
in the optimal SLLiP: The most left column contains image data, ranges
(blue dashed circles) and corresponding uncertainty regions (blue solid cir-
cles). Middle column shows relation among complexity, range and uncer-
tainty region in (c, r, λ)-space. The most right column shows complexity
distribution along the optimal sequence. Complexity c(Φ) of the optimal
sequential predictor Φ with λ(Φ) = 2. 55
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6.3.2 Influence of robustness margin of MM SLLiPs
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Figure 6.9: Robustness analysis: The higher the margin, the higher the robustness to
noise but also the higher the complexity of SLLiPs

We defined SLLiP as a sequence of LLiPs satisfying that the range of every predictor
is at least as large as the uncertainty region of its predecessor, i.e., ∀ ri+1 ≥ λi, i =
1 . . .m−1. We showed in Proposition 4, that the complexity minimization in the learning
stage results in equality ∀ ri+1 = λi, i = 1 . . .m−1. As a result, whenever the testing data
are corrupted by noise, the prediction might not be within the range of the following
predictor, which might consequently causes a divergence of the SLLiP. For practical
applications, a margin assuring robustness to the noise, is required. In other words, we
require ∀ ri+1 ≥ λi+γ, i = 1 . . .m−1 for a non-negative number γ. We claim the higher
is the margin γ the higher is the robustness against noise but simultaneously also the
higher the complexity of the optimal SLLiPs.

Quantitative robustness evaluation is performed by computing the average number of
loss-of-locks as a function of the margin (Figure 6.9a), average complexity of SLLiPs
as a function of the margin (Figure 6.9b) and average frame-rate as a function of the
margin (Figure 6.9c). The experiment is conducted on a selected sub-sequence with
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6.3 Additional experiments

mousepad (frames 3500-6000), where only each second frame is processed in order to in-
crease inter-frame motion and consequently to achieve a statistically important number
of loss-of-locks. The sequence is processed with SLLiPs learned for 6 different mar-
gins [0, 0.05, 0.1, 0.2, 0.3, 0.5]. Number of loss-of-locks (Figure 6.9a) and frame-rate (Fig-
ure 6.9c) are evaluated as an average over 20 processing of the sequence with different
starting frame. Complexity (Figure 6.9b) and length of LLiP sequence (Figure 6.9d) are
computed as an average over set of 48 learned SLLiPs.

6.3.3 Support set selection by greedy LS algorithm
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Figure 6.10: Comparison of greedy LS support set selection and random se-
lection. Histogram of prediction errors of predictors with the randomly
constructed support sets. (a) C = 20, E99 = 0.078 (green empty circle
denotes 99%-quantile), Ê = 0.068 (red filled circle denotes MSE of the pro-
posed method), (b) MSE as a function of complexity during the incremental
construction of the support set.

We compare relative mean square error (MSE) achieved by the greedy LS support
set selection algorithm (Algorithm 3) and the MSE achievable by a random support set
selection. Figure 6.10a shows the MSE histogram of predictors operating on a randomly
selected support sets of the size of 20 pixels. The 99% left quantile of the histogram is
depicted by empty green circle. It shows that usage of a randomized sampling instead of
the Algorithm 3 would require a prohibitively high number of iterations to achieve the
error achievable by the greedy LS algorithm. On the other hand, the error is improved
only by 10% with respect to expected value. For low complexities (C ≈ 20) the algorithm
takes only a few seconds, however, the learning time increases exponentially with the
complexity.

Figure 6.10b shows MSE as a function of complexity during the incremental construc-
tion of the support set. It demonstrates that 99% left quantile of randomly selected
support sets is achieved with less than one-half of the support set size. The mean is
achievable with less than one-quarter of the support set size.
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6.3.4 Anytime learning algorithm: trade-off between complexity learned
SLLiPs and learning time

Anytime learning procedure might be time consuming if a set of considered LLiPs is too
large. Since a long learning time might not be acceptable for some types of applications,
either the set of considered LLiPs or the maximum number of learning iterations have to
be restricted. However, the constraint on maximum number of iterations of Algorithm 2
affects the optimality of the found SLLiP. We therefore show average complexity of the
best so far found solution as a function of iterations. Figure 6.11 presents this function
for the different sets of considered LLiPs. One can see that the learning time could be
2-3 times decreased without significant increase of the solution complexity.
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Figure 6.11: Average complexity as a function of iterations of Algorithm 2: (a)
and (b) differs by the size of the set of considered complexities |C|. The
higher |C| the larger space of considered LLiPs.

Note that there is also another option besides of premature interruption of the learn-
ing procedure. The anytime learning algorithm, after a short initialization procedure,
provides a solution - SLLiP with higher complexity but defined precision, which can be
immediately used for tracking. Since the tracking requires only a fraction of the pro-
cessing power of an ordinary PC, the learning need not be necessarily terminated and it
might be allowed to run in a parallel background thread continuously providing better
and better SLLiPs. This principle theoretically allows to start the tracking procedure
immediately without any learning using for example Lucas-Kanade tracker and collect
training examples automatically. Once pa training set is constructed the learning proce-
dure can run in a parallel thread providing the SLLiPs which continuously replace worse
LK trackers. Similar idea based in simple LLiPs was demonstrated in [23].
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7 Simultaneous learning of motion
and appearance

7.1 Introduction

Visual tracking is often formulated as an iterative motion estimation with possible update
of the object appearance. The optional on-line appearance update may allow for longer
tracks but also makes the procedure prone to a failure. We propose an algorithm that
learns both motion prediction and appearance parametrization from training data.

In Section 2.4, we explained that Cootes et al. [18] proposed a paradigm where both
the motion and appearance are projected by the PCA [25] to the lower dimensional
space of some parameters. Given an image, the learned linear mapping H estimates
the parameters which are used for both the template update and motion estimation by
the PCA back-projection, see Figure 7.1d. This approach is iterated until covergence is
reached.
Observing that

• the mapping between input image I and the output motion parameters t is linear,
see dashed line in Figure 2.3d denoting the direct route, and

• the mapping between input image I and appearance parameters θ is also linear,

we generalized the tracking approach to Figure 2.3e. While the tracker ϕ aligns the
model with the current image, the appearance encoder γ encodes a current appearance
into parameters θ, which adjust the tracker for the current object appearance. Since
the learning process estimates both mappings simultaneously, the learned appearance
encoder γ projects, in contrast to the PCA, the current object appearance to a manifold,
the coordinates of which are the most convenient for the tracker adjustment. In the rest
we describe tracking and learning of the tracking system depicted in Figure 2.3e.

We restrict ϕ and γ to be from a class of mappings formed as a linear combination
of kernel functions. Consequently, learning of ϕ, γ minimizing prediction error of ϕ is a
bilinear fitting problem, which is solved by an exact line-search algorithm [26]. Note, that
there are two kinds of parameters: motion t, which we want to estimate and appearance
θ, which has only the auxiliary meaning. The appearance parameters are not included
in the training set and the learning process is unsupervised with respect to them. Their
role is automatically determined during the unsupervised learning.

Section 7.2 describes a training set construction, given a labeled sequence. The prob-
lem is defined in Section 7.3 and solved in Section 7.4. Experiments demonstrating an
improvement to the state-of-the-art and limitations are presented in Section 7.5.
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7 Simultaneous learning of motion and appearance

argmint‖I(t)− J‖2argmint‖I(t)− J‖2image I alignment t

J← I(t)

optional template update
(a) Lucas–Kanade

argmint‖I(t)− J(θ)‖2argmint‖I(t)− J(θ)‖2

argminθ‖J− J(θ)‖2argminθ‖J− J(θ)‖2

image I alignment t

J← I(t)
θ affine warp

(b) Shi–Tomasi
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θ appearance parameters
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Figure 7.1: Tracking methods compensating changes of the object appearance.
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7.2 Training set construction

ϕ( ; θ1)= (0, 0)> ϕ( ; θ2)= (0, 0)>

ϕ( ; θ1)= (15,−25)> ϕ( ; θ2)= (15,−25)>

ϕ( ; θ1)= (−25, 10)> ϕ( ; θ2)= (−25, 10)>

ϕ( ; θ1)= (0, 25)> ϕ( ; θ2)= (0, 25)>

Figure 7.2: Training set construction: Image is perturbed by the motion parameters
within a predefined range in order to create a set of synthesized examples
of observed intensities Ii and motions ti. Red dashed square denotes image
data observed at translation t = (0, 0)>, blue square denotes image data
observed at translation t = (15,−25)>.

7.2 Training set construction

Let us suppose we are given a ground truthed sequence of images, where the position
of the object reference point is known. Given a predefined range of motions R within
which the tracker is assumed to operate, the training set consists of:

• tracker input images Ii, randomly (uniformly) generated within R,

• corresponding tracker output motion parameters ti (e.g., translations),

• and appearance encoder input images Ji, i.e., the images aligned by the tracker
with a limited accuracy.

We perturb neighbourhood of reference point in each particular frame of the sequence by
motion parameters ti randomly generated inside the range, creating the set of synthesized
examples of intensities Ii, see Figure 7.2. These examples are column-wise stored in
matrices I =

[
I1 . . . Id

]
and T =

[
t1 . . . td

]
.
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7 Simultaneous learning of motion and appearance

The alignment estimated by the tracker is never perfect. Let us assume for a moment,
that the accuracy of the alignment by the tracker is known in advance1. We perturb
neighbourhood of reference points within the range determined by the tracker accuracy
creating the set of images J =

[
J1 . . .Jd

]
entering to the appearance encoder. Ordered

triple (I, J, T) of such matrices is called a training set.

7.3 Optimization problem definition

In our approach, we restrict ϕ and γ to be from a class of polynomial mappings. As
mentioned in Section 4.1.1, the polynomial mapping corresponds to LLiP, therefore
appearance encoder γ is further considered to be LLiP with regressor

θ = γ(J) = GJ, (7.1)

which encodes current object appearance from image J previously aligned by the tracker
into parameters θ, to be used in the following frame.

The tracker ϕ is not a simple polynomial mapping but it is parameterized by the
appearance parameters, therefore Parameter Sensitive LLiP (PLLiP) is defined.

Definition 14. Parameter sensitive LLiP is LLiP with regressor H = (H0, . . . , Hm), which
computes motion parameters t from observed image I given current appearance param-
eters θ = (θ1 . . . θm)> as follows

t = ϕ(I; θ) = (H0 + θ1H1 + · · ·+ θmHm)I, (7.2)

Definition 15. Tracking system is ordered pair (H, G) corresponding to tracker (PLLiP)
and appearance encoder (LLiP) connected according to Figure 7.1.

Definition 16. Prediction error e(H, G) of tracking system (H, G) on training set (I, J, T)
is

e(H, G) =
d∑
i=1

∥∥∥(H0 + (g>1 Ji)︸ ︷︷ ︸
θ1

H1 + · · ·+ (g>mJi)︸ ︷︷ ︸
θm

Hm
)
I− ti

∥∥∥2

2
. (7.3)

1In practice, the accuracy has to be estimated by iterating the learning process. However, for the sake
of simplicity, it is assumed to be known.
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7.4 Learning the tracking system

Definition 17. Optimal tracking system with respect to training set (I, J, T) is tracking
system

(H∗, G∗) = argmin
H,G

e(H, G). (7.4)

The matrices H, G, I, J, T have dimensions (p(m+1)×n), (m×n), (n×d), (n×d), (n×p),
respectively, where

- p is the number of tracked motion parameters (e.g., 2D-translation ⇒ p = 2),

- n is the number of used pixels,

- m is the number of appearance parameters,

- d is number of training examples.

Computational complexity of the tracking procedure corresponds to the number of all
elements in the matrices (H, G) since the motion in particular frame requires approxi-
mately such number of multiplications and additions.

Definition 18. Complexity C(H, G) ∈ R of tracking system (H, G) is

C(H, G) = p(m+ 1)n+mn. (7.5)

7.4 Learning the tracking system

In this section, we propose an iterative algorithm, which finds optimal tracking system
with respect to a training set, i.e., it solves problem (7.4). This is an unconstrained
optimization problem, where bilinear function is fitted in the least squares sense into a
high dimensional data.

We show later that problem (7.4) has a closed-form solution in H (respectivelly G)
if G (respectivelly H) is fixed. Therefore the solution is searched by an exact line-search
method2, which successively computes more and more exact solutions of (7.4) for fixed H
and G).

In the very beginning of the learning process, the appearance encoder G is randomly
initialized. Naturally, it does not provide any reasonable appearance parameters and its
influence is negligible. Given random matrix G0, minimum of criterion function (7.3) over
H has a closed-form solution H0. Given H0, the minimum over G has also a closed-form
solution G1. In that manner, the error is iteratively minimized until a stopping condition
is satisfied. In our implementation the learning stops if a relative error difference is
smaller than some threshold ε. Number of appearance parameters m, desired complexity

2An exact line-search method finds the length of step which minimizes a criterion in a descent direction,
see [26] for details.
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7 Simultaneous learning of motion and appearance

C (or equivalently number of pixels n), learning threshold ε and a training set (I, J, T)
(optionally range of the tracker) are the only inputs to the learning procedure, which is
summarized in Algorithm 5.

1. Randomly initialize matrix G0 and set number of current iteration k = 1.

2. Find Hk = argminH e(H, Gk−1).

3. Find Gk = argminG e(Hk, G).

4. Recompute error ek = e(Hk, Gk).

5. If ek−ek−1

ek < ε stop, otherwise k = k + 1 and goto 2.

Algorithm 5 Exact line-search algorithm for problem (7.4)

In order to derive closed-form solution of step 2, we rewrite criterion function (7.3) as
follows:

e(H, G) =
∥∥∥H0I + [H1 . . . Hm]

(
(1m ⊗ I) • (GJ⊗ 1n)

)
− T
∥∥∥2

F

=
∥∥∥H [(1m+1 ⊗ I) •

([
1>d
GJ

]
⊗ 1n

)]
− T
∥∥∥2

F
=
∥∥∥HA− T

∥∥∥2

F
, (7.6)

where

A = (1m+1 ⊗ I) •
([

1>d
GJ

]
⊗ 1n

)
(7.7)

is (m+ 1)n× d matrix. If the training set has

d ≥ (m+ 1)n (7.8)

independent samples. The closed-form solution of step 2 is

Hk = TA+, (7.9)

where A+ denotes pseudo-inverse of A. Note, that condition (7.8) may not assure a
reasonable behaviour on testing data. It sets the lower bound. However, we usually
generate five or ten times more training examples to make the tracker robust.

In order to derive closed-form solution of the step 3, we rewrite the criterion func-
tion (7.3) as follows:

e(H, G) =
∥∥∥g>B− C

∥∥∥2

F
, (7.10)

64



7.5 Experiments

where

g> = [g>1 . . .g
>
m],

B =

 I • h>11J⊗ 1n . . . I • h>1pJ⊗ 1n
...

. . .
...

I • h>m1J⊗ 1n . . . I • h>mpJ⊗ 1n

 ,
C =

[
t>1 − h>01J . . . t

>
p − h>0pJ

]
,

where h>mp denotes a p-th row of Hm. The closed-form solution of step 3 is

g> = CB+ reshaped to Gk. (7.11)

Since the matrix B has dimension mn× dp, its pseudo-inverse requires

dp ≥ mn (7.12)

Notice, that this condition is clearly weaker than the condition (7.8) for every p ≥ 1,
therefore it need not be considered any further.

7.4.1 Convergence of Algorithm 5

We observed, that the proposed algorithm converges to the solutions, which are asso-
ciated with the same criterion value. If criterion (7.4) was a convex or quasi-convex
function it would be simple to prove that Algorithm 5 would converge to a global mini-
mum. However, the criterion is neither convex nor quasi-convex. We propose conjecture,
that every local minimum of the criterion is simultaneously global. Using Maple, we
analytically prove that the conjecture is true, but we were not able to generalize it for
arbitrary number of variables. In this proof, we equal the criterion gradient to zero and
symbolically solve the algebraic system. The solution consists of a few manifolds but
only one of them has semidefinite Hessian, i.e., creates local minima. This solution is
substituted to the criterion showing that the criterion is constant along it.

In Section 7.5.3 the convergence is verified experimentally. It is shown that every local
minima of criterion (7.4) within which the algorithm is trapped is global, i.e., the same
criterion value is achieved every time and the solution is independent of the algorithm
initialization.

7.5 Experiments

Three experiments are presented in this section. The first experiment (Section 7.5.1)
compares simple tracking system which consists only from a single LLiP and the pro-
posed parameter sensitive tracking system. It shows that the parameter sensitive system
achieves significantly smaller prediction error if the nature of the appearance changes
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7 Simultaneous learning of motion and appearance

allows some reasonable parameterization. The second experiment (Section 7.5.2) demon-
strates some interesting properties of the appearance encoder. The third experiment
(Section 7.5.3) shows the convergence properties of Algorithm 5.

7.5.1 Results on real sequences

In this experiment, we compare prediction error of simple tracking system and parameter
sensitive tracking system of the same complexity. Note, that the simple tracking system
is a special case of the parameter sensitive tracking system. Just for clarity we state
that: simple tracking system estimates the motion parameters by LLiP with regressor
Hs. It is learned given a training set (Is, Ts) as follows:

Hs = TsI
+
s . (7.13)

and its complexity
Cs = psns (7.14)

is number of elements in Hs.
Training/testing errors and complexities for different objects are presented in Ta-

ble 7.1. The first three objects cup, basil and sibil are taken from a British sitcom
Fawlty Towers, see the first three rows in Figure 7.3. The other three object demonstrate
variability of the appearance changes which can be cope by the tracker. In particular,
fourth object head 1 is a human head, where different expressions and illuminations
influence its appearance, see fourth and fifth row in Figure 7.3. The fifth object head 2
is human head, the appearance of which changes due to out-of-plane rotations, see third
row of Figure 7.4. The object flower is a flower with appearance strongly affected by
non-trivial variable illumination and non-rigid deformations, see sixth row in Figure 7.3.

Notice that in all cases the prediction error of PLLiP was significantly smaller than
the error LLiP despite of its lower complexity. Loss-of-lock events are denoted by ”X”.
We used 5000-20000 training examples generated from 5-50 training images. Testing is
performed on the sequences with 100-400 frames. The tracker estimated only translation
(p = 2) in the range within the radius of 20 pixels, other degrees of freedom were
represented by 1-5 appearance parameters. Non-optimized Matlab implementation of
the learning procedure performing 10-40 iterations requires about 20-300 seconds on an
average machine (1xK8 3200+ MHz). Note, that the learning time mainly depends on
the number of training examples and the number of appearance parameters. The motion
estimation time in the tracking procedure is negligible (say smaller than 1ms) in contrast
to the time required for image capturing and its visualisation.

We first discuss results from the Fawlty Towers sequences, where only one appearance
parameter is used and the complexity of the parameter sensitive tracking system is two
times smaller than the complexity of the simple tracking system. Despite of the lower
complexity the error is smaller about approximately 30%. In the cup experiment (first

1Medical data presented in the last row are provided by Dr. Utz Kappert, Department of Cardiac
Surgery, Heart Center Dresden University Hospital at the University of Technology Dresden.
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7.5 Experiments

Figure 7.3: Objects1 with variable appearance caused by illumination, non-rigid
deformations and self-occlusions.
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7 Simultaneous learning of motion and appearance

Object Parameter sensitive Simple
Errortrain Errortest C m Errortrain Errortest Cs

cup 5.1 5.3 605 1 7.2 X 1352
basil 4.9 5.0 605 1 7.0 7.8 1352
sibil 4.9 7.4 605 1 7.0 X 1352

head 1 2.7 3.4 1859 2 6.4 8.0 1922
head 2 5.0 5.5 1248 2 7.5 8.5 1300
head 2 4.3 4.5 1716 3 7.3 8.2 1860
flower 3.3 3.6 2873 5 4.0 4.3 3362

Table 7.1: Comparison of PLLiPs and LLiPs: Prediction error is presented in pixels
and the complexity follows definitions (7.5) and (7.14).

row in Table 7.1), the simple tracker lost the target during the fast motion (see blured
image in Figure 7.3 4th row, 3rd column). In the basil experiment (second row in
Table 7.1), both trackers succeeded in tracking however, the parameter sensitive tracker
was more accurate. In the third experiment (third row in Table 7.1), the trackers learned
on basil were used for tracking of sibil. While the simple tracker lost basil in the very
beginning of the testing sequence the parameter sensitive tracker succeeded in tracking.
Of course, the achieved error was higher.

The other three experiments demonstrates appearance changes which can be efficiently
compensated by the appearance encoder. While in the head 1 experiment (fourth row
in Table 7.1), the error achieved by the proposed tracker is more than two times smaller,
in the remaining experiments the improvement is not as significant. In the head 2 ex-
periment (fifth and sixth row in Table 7.1), small out-of-plane rotations are presumably
interchangeable with translations, which consequently do not allow a unique interpreta-
tion of the observed image data. The rotation may be misinterpreted as a translation,
and the image entering to the appearance encoder is not correctly aligned. Incorrect
alignment yields incorrect appearance parameters and the error increases. Still, even in
the worst case, the adaptive tracker did not produce worse results than the static one.
In the flower experiment (seventh row in Table 7.1), the difference between the pa-
rameter sensitive and static tracker is the smallest (about 20%) because the appearance
changes are chaotic. Many mutual self-occlusions and shadows are casted by waving
leaves, which does not allow for a reasonable parameterization.

7.5.2 Properties of the appearance encoder

This experiment demonstrates, appearance parameters estimated by the learned appear-
ance encoder reasonably represent reasons, which caused the appearance changes. First
row of Figure 7.4 shows a sequence, where human head turns around. Appearance pa-
rameters obtained by parameter encoder are depicted in the second row of Figure 7.4.
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7.5 Experiments

Notice, that these parameters naturally correspond almost exactly to the 3D rotation,
without any explicit knowledge about that evidence. It also demonstrates that if two
frames are close each other in a time line, the corresponding parameters are also close
each other, which consequently means that parameters do not suddenly change its value
without a reasonable change of the object appearance.

Figure 7.4: Values of appearance parameters: Pose parameters are only transla-
tions, the other degrees of freedom are modeled as appearance changes. Se-
lected frames from sequences (first and third row) and the corresponding
output of one-dimensional (second row) and two-dimensional (fourth row)
appearance encoder. The red circle denotes the current appearance param-
eters, the blue line shows history.

We further study sensitivity of the tracker with respect to appearance variances. Let
assume the learned tracker with coefficients H(θ) = H0 + θi1H1 + · · ·+ θimHm and a testing
sequence as given. We define the tracker sensitivity as∑

i

‖∆H(θi)‖2F ,
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7 Simultaneous learning of motion and appearance

where θ are appearance parameters in frame i and ∆H(θi) is difference in tracker coeffi-
cients in two consecutive frames. In Figure 7.5a, the sensitivity is depicted as a function
of appearance parameters dimensionality. We can see that sensitivity is proportional to
the dimensionality. Note that the lower sensitivity means the higher robustness. How-
ever, prediction error is a decreasing function of the dimensionality, see Figure 7.5b. It
means that there is a trade-off between the sensitivity and the error.
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Figure 7.5: Sensitivity analysis: Trade-off between the sensitivity and error.

The learning procedure starts at randomly initialized state G0. Since appearance
encoder G0 does not provide any reasonable appearance parameters, the parameter sen-
sitive part of the tracker (H1 . . . Hm) is useless and ratio ‖H1‖2F /‖H0‖2F is very low. During
the learning process, significance of the appearance encoder Gk increases, which mostly
results in an increase of the parameter-sensitive part of the tracker. In order to demon-
strate it, we outline the ratio ‖H1‖2F /‖H0‖2F of parameter sensitive H1 and non-sensitive
H0 part of the tracker H as a function of iterations, see Figure 7.6.

7.5.3 Convergence of Algorithm 5

We study convergence of Algorithm 5 in this section. It is experimentally shown that
every local minima of criterion (7.4) within which the algorithm is trapped is global, i.e.,
the same criterion value is achieved every time.

In the experiment, Algorithm 5 was one thousand times randomly initialized from
uniform distribution and 150 iterations on 5000 training examples generated from se-
quence Head 1 were computed. Covariance of achieved Mean Square Errors (MSE) is
3.4 × 10−3. See Figure 7.7 for twenty convergence examples. From detail depicted in
Figure 7.7b, we conclude that 20 iterations are for most of the initializations sufficient.
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7.6 Summary

(a) Mean square error (b) Ratio ‖H1‖2F /‖H0‖2F

Figure 7.6: Iterative optimization of H, G: The learning procedure starts at randomly
initialized state H0, G0. Since G0 does not provide any reasonable appearance
parameters, the parameter sensitive part of tracker (H1 . . . Hm) is useless.
During the learning process, significance of the appearance encoder Gk in-
creases, which mostly results in increase of a sensitive part of the tracker.
In order to demonstrate it, we outline ratio of parameter non-sensitive and
sensitive part of the tracker H as a function of iterations. Note, that the ratio
also converges to a steady value, but it takes significantly higher number of
iterations.

7.6 Summary

We proposed a learnable tracking procedure suitable for objects with significantly vary-
ing appearance. The proposed system consists of tracker ϕ, which aligns a model with
the current observation and appearance encoder γ, which transforms the observed ap-
pearance to the parameters adjusting the tracker behavior. Restricting ϕ and γ to be
from a polynomial class, the simultaneous learning of ϕ and γ is formulated as Least
Squares (LS) bilinear fitting problem. The problem is solved by an exact line-search
algorithm, the convergence of which is geometrically verified.

Since the learning process estimates both mappings simultaneously, the learned pa-
rameter encoder γ projects the current object appearance to a manifold. The coordinates
of the manifold are the most suitable for the tracker adjustment. As a result, we are able
to track the objects without any necessity of a geometrical explanation of the observed
appearance changes.

We have experimentally verified the method on three challenging sequences which
exhibit strong variable illumination, non-rigid deformations and self-occlusions. The
results are compared to the parameter insensitive tracking system, which is shown to be a
special case of our approach. We demonstrate that the error of the parameter insensitive
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Figure 7.7: Covergence analysis of the learning procedure: Twenty convergence
examples of randomly initialized algorithm.

tracking system with the same computational complexity is significantly higher 20-100%.
Since the tracking means only a few multiplication, the time required for the motion
estimation (≤ 1ms) is negligible with respect to the time required for its visualisation
(≈ 10ms).
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8 Adaptive parameter optimization
for real-time tracking

8.1 Introduction

state approximation

state approximation

SLLiP

SLLiP

trajectory

estimated states

Figure 8.1: Tracking with the motion model: the state is first approximated from its
previous state(s) by a motion dynamic model and then predicted from image
data by SLLiP. Estimated state and predictor parameters are estimated by
Kalman filtering.

In real-time tracking application, frames are coming in very short fixed time intervals.
A new frame is available each 30 ms (or even faster). However, a very precise motion
estimation in a current frame may require a longer time. Consequently, we face the
decision, whether the incoming frame should be rejected and the longer time should be
spent with the current frame or whether the accuracy in the current frame is sufficient
and we should start to process the incoming frame. Such decision has the crucial influence
on the resulting robustness and accuracy of the tracking procedure. In this chapter, we
study how to adaptively set up the time and range of the SLLiP in order to minimize
the tracking error, subject to a loss-of-lock1 probability constraint.

Let us suppose, we are given a SLLiP Φ = (ϕ1, . . . , ϕm), which estimates object motion
by a sequence of m different LLiPs ϕi, i = 1 . . .m. SLLiP estimates object motion within
the range of its first LLiP and with the accuracy of its last LLiP. Any subsequence of
the SLLiP can be viewed as another faster SLLiP with smaller range and/or accuracy.
Hence, the number of ignored LLiPs in the beginning of the sequence determines the
range and the number of ignored LLiPs in the end of the sequence determines accuracy.

Let us also suppose that a motion model, which defines state transition, is available.

1Loss-of-lock is understand as the event where tracker error is larger than its range.
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8 Adaptive parameter optimization for real-time tracking

It means that the motion model approximates the object state in the following frame
just from its current and previous states (i.e., without any image data).

Given such model, the current state of the object is estimated as follows (see also
Figure 8.1): (i) state is approximated by the motion model from the dynamic and
previous states (green arrow), (ii) the state is re-estimated by the SLLiP initialized
from the approximation (red arrow), (iii) The state is refined from both estimates by
the Kalman filter [34]. Notice that the motion model error in the following frame is
proportional to the time spent by SLLiP in the current frame, because the longer time
spent, the more available frames ignored and the less predictable the object state in the
next processed frame.

In order to set up the length of the sub-sequence, we derive covariance of the state
error in the following frame as a function of the number of used LLiPs, see dark green
line in Figure 8.2. Then the number of LLiPs which minimize the motion model error
is used for the motion estimation. Such setting minimizes the error in the future frame
and leads to minimum error of a steady solution. Furthermore, the estimated probability
distribution of the motion model error allows us to determine the following range, i.e.,
the number of ignored LLiPs in the beginning of the SLLiP.

Since the true motion model error in the following frame is not known in advance, we
define the probability of loss-of-lock event as the probability that the range of the first
used LLiP is smaller than the motion model error in the following frame estimated by
the Kalman filter [34], see brown probability distribution in Figure 8.2. Next the first
used LLiP in the sequence is determined as the LLiP assuring that the probability of
loss-of-lock is smaller then a predefined upper bound. More formally: we set the number
of used LLiPs and the first LLiP in each frame in order to minimize state error of a
steady solution, subject to an upper bound of the loss-of-lock probability.

8.2 Problem definition

Since the number of used LLiPs directly corresponds to the processing time of one frame,
we replace the number of LLiPs by time tk spent in k-th frame; similarly first not-ignored
LLiP is replaced by range rk. Let us suppose, we are able to express the probability
distribution Pk+1(q; tk, rk) of the state estimation error q in frame k + 1 for values of
time and range (tk, rk) used in k-th frame.

If (t∗k−1, r
∗
k−1) is a setting used in a previous frame, then probability of loss-of-lock in

the current frame is function of the initial range rk of currently used SLLiP:

Ploss-of-lock(rk) = 1−
∫ rk

−rk
Pk+1(q; t∗k−1, r

∗
k−1)dq, (8.1)

see for example Figure 8.3a.
During the tracking, we minimize trace of the covariance matrix of the motion error

distribution in the following frame trace (covq (Pk+1(tk, rk))). This measure comprises
contributions of the SLLiP accuracy in the current frame and the motion model error
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Figure 8.2: Adaptive optimization of the range and accuracy: In each frame,
the number of used LLiPs and the first LLiP in a SLLiP are estimated in
order to minimize error in the following frame given a loss-of-lock probability
constraint. Such process also minimize error of a steady solution.

in the next frame. We estimate parameters (t∗k, r
∗
k) which minimize the error in the fol-

lowing frame and satisfy constraint that Ploss-of-lock(rk) < δ, which leads to the following
constrained optimization problem:

(t∗k, r
∗
k) = argmin

tk,rk

{trace (covq (Pk+1(q; tk, rk)))} (8.2)

subject to: 1−
∫ rk

−rk
Pk(q; t∗k−1, r

∗
k−1) dq < δ.

The smaller the range r∗k, the more accurate SLLiP with the fixed time however, the
higher Ploss-of-lock(r∗k). Therefore trace (covq (Pk+1(q; tk, rk))) is non-decreasing function
of rk and we set up r∗k as tight as possible to its upper bound, i.e., Ploss-of-lock(r∗k) = δ.
In consequence, problem (8.2) is decomposed to two separated tasks:

1. Find the smallest r satisfying the loss-of-lock constraint

r∗k = argmin
rk

{
rk|
∫ rk

−rk
Pk(q; t∗k−1, r

∗
k−1) dq > 1− δ)

}
(8.3)

2. Find the time t minimizing error in the next frame for the fixed r∗k

t∗k = argmin
tk

{trace (covq (Pk+1(q; tk, r∗k)))} , (8.4)
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Figure 8.3: Probability distribution of the motion model error:, range denoted
by r and probability of loss-of-lock event denoted by δ.

8.3 Estimation Pk+1(tk, rk) using Kalman filter

In this section, we derive covariance of the probability distribution Pk by adopting the
Kalman filter principle [34]. As we have shown, problem (8.2) can be decomposed into
two independent optimization problems (8.3, 8.4).

Because of simplicity, we start with (8.4) and fix range rk = r∗k. The estimation of r∗k
is detailed later.

We further follow the idea of tracking by Kalman filter [9, 54]. The Kalman filter uses
the state of an object, which is a little bit more general than we have been using until
now. State s includes parameters we are interested in (e.g., pose t, illumination θ) and
some auxiliary parameters, which serve for state approximation from the object dynamics
(e.g., object velocity). The parameters we are interested in are called measurement and
we denote them by z. The measurement z = Ms is a linear function of state parameters
s in general, but usually matrix M only selects a subset of the state parameters.

State of an object is estimated in two steps:

• First the state in frame k is approximated by a linear dynamic model

sk|k−1 = Ask−1|k−1 (8.5)

from a previous state sk−1|k−1, where A is an n×n matrix, learned from a training
data.

• After that, measurement zk|k is estimated by SLLiP Φ initialized at zk|k−1 =
Msk|k−1,

zk|k(tk) = Φ(zk|k−1; tk, r∗k). (8.6)
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Figure 8.4: Motion model error trace (Q(tk)), SLLiP error trace (R(tk)) and state
estimation error in the next frame trace

(
Pk+1|k(tk)

)
. (a) trace (Q(tk))

and trace (Q(tk)) as functions of time tk spent in current frame. (b)
trace

(
Pk+1|k(tk)

)
as a function of tk.

The motion model error qk and the SLLiP error rk are random variables, which are
further assumed to be from Gaussian distributions qk ∼ N (0, Q(tk)), rk ∼ N (0, R(tk))
with covariance matrices Q(tk), R(tk). Notice, that in contrast to a common Kalman
filter tracking approach, both error covariances are the functions of time spent in the
k-th frame. trace (R(tk)) is a decreasing function of time, because the longer time we
spend the better is the prediction. trace (Q(tk)) is increasing function of time, because
the longer time we spend, the smaller is the frame-rate and the harder is to approximate
the state by the linear dynamic model, see Figure 8.4a.

The state sk is approximated by

sk|k(tk) = sk|k−1 + Kk(tk)(zk|k(tk)− Msk|k−1), (8.7)

where Kk(tk) weights contributions of prediction by the dynamic model (8.5) and by the
tracker (8.6).

Covariance of a state estimation error in frame k based on measurements in frame k
is

Pk|k(tk) = E
{

(sk − sk|k)(sk − sk|k)
>
}
. (8.8)

For the sake of simplicity, we utilize the following results of common Kalman filter
derivation [34] without any further explanation:

• Kalman gain Kk(tk) minimizing trace
(
Pk|k(tk)

)
in frame k is

Kk(tk) = Pk|k−1M
>(MPk|k−1(tk)M> + R(tk))−1. (8.9)
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8 Adaptive parameter optimization for real-time tracking

• Covariance of the state estimation error in frame k is

Pk|k(tk) = (I− Kk(tk)M)Pk|k−1(tk). (8.10)

• Approximation of the covariance of the state estimation error in frame k + 1 is

Pk+1|k(tk) = APk|k(tk)A
> + Q(tk). (8.11)

Since we measure the precision by covariance matrix of the state estimation error, prob-
lem (8.4) is therefore replaced by

t∗k = argmin
tk

{
trace

(
Pk+1|k(tk)

)}
. (8.12)

In order to find a global minimum of trace
(
Pk+1|k(tk)

)
, we express Pk+1|k(tk) as a

function independent of Kk(tk). Substituting to equation (8.11) for Pk|k(tk) from equa-
tion (8.10) and substituting for Kk(tk) from equation (8.9) we obtain

Pk+1|k(tk) = A
(
I− (Pk|k−1M

>(MPk|k−1(tk)M> + R(tk))−1)M)Pk|k−1(tk)
)
A>+Q(tk). (8.13)

Trace of this covariance matrix, see for example Figure 8.4b, has usually one minimum
determining the time t∗k we are allowed to spend. As a side product, Pk+1|k(t∗k) is
also delivered, which allows estimation of the initial range r∗k+1 used in the following
frame. According to equation (8.3) we search for the smallest range satisfying loss-of-
lock probability constraint:

Ploss-of-lock(rk+1) = 1−
∫ rk+1

−rk+1

N (q,0, Pk+1|k(t
∗
k)) dq < δ. (8.14)

Since Ploss-of-lock(rk+1) is a decreasing function of rk+1, range r∗k+1 such that
Ploss-of-lock(r∗k+1) = δ is the range solving problem (8.3). Hence we search for the so-
lution r∗k+1 of the following equation∫ r∗k+1

−r∗k+1

N (q,0, Pk+1|k(t
∗
k)) dq = 1− δ. (8.15)

In order to avoid time consuming integration over at least 2-dimensional space, we
approximate the solution of problem (8.15) by r∗k+1 ≈ q · trace

(
Pk+1|k(t∗k)

)
, which for

example in 1D space for q = 3 results in δ ≈ 0.2%.
Starting the tracking procedure in the following frame at a smaller range causes smaller

state covariance allowing to estimate the motion more accurately, which again leads to
decreases of the following state covariance. This process leads to a steady solution of
limk→∞(Kk, tk, rk, Pk|k) which is later experimentally shown in experiments.
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8.4 Algorithm

8.4 Algorithm

Tracker Φ, dynamic model A and their covariance matrices Q(t), R(t) need to be estimated
from a training data during a learning stage. Learning of SLLiP Φ was described in
Section 4, learning of matrix A is outlined in Section 8.5.

Proposed tracking algorithm consists of two stages:

• Time update, where state sk|k−1 and covariance Pk|k−1 are approximated from
the motion dynamics and time t∗k minimizing covariance Pk+1|k in the next frame
is estimated.

• Measurement update, where measurement parameters are predicted by SLLiP
Φ(sk|k−1; t∗k, r

∗
k) with parameters t∗k, r

∗
k. The final state approximation sk|k is refined

from both predictions.

The method is summarized by Algorithm 6, see also Figure 8.5 where its first 4 steps
are visualized. In each step, functions trace (R(tk)), trace (Q(tk)), trace

(
Pk+1|k(tk)

)
and

trace
(
Pk|k(t∗k)

)
are depicted. Initial range is delineated by the green color and the final

time by the red color.

1. Initialize covariance P0|0, learn a tracker Φ and dynamic model A, M, Q(t), R(t).
Let k = 1

2. Get frame k

3. Time update equations:

• sk|k−1 = Ask−1|k−1

• t∗k = argmint∈R
{

trace
(
Pk+1|k

)
(tk)

}
• Pk|k−1(t∗k) = APk−1|k−1(t∗k)A

> + Q(t∗k)

4. Measurement update:

• Kk(t∗k) = Pk|k−1M
>(MPk|k−1(t∗k)M

> + R(t∗k))
−1

• zk|k(t∗k) = Φ(Msk|k−1; t∗k, r
∗
k)

• sk|k = sk|k−1 + K(t∗k)(zk|k(t
∗
k)− Msk|k−1)

• Pk|k(t∗k) = I− Kk(t∗k)MPk|k−1(t∗k)
• r∗k+1 = q · trace

(
Pk+1|k(t∗k)

)
, where q is a parameter.

5. k = k + 1 repeat from 2.

Algorithm 6 Proposed method of tracking
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t*k

t*kP
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Figure 8.5: Visualization of Algorithm 6. Upper-left: trace (R(tk)) as a function of t,
Upper-right: trace (Q(tk)) as a function of t, Lower-left: trace

(
Pk+1|k(tk)

)
as

a function of t and its minimum, Lower-right: trace
(
Pk|k(t∗k)

)
as a function

of k. Initial range r is denoted by green color, final time t is denoted by red
color.

8.5 Experiments

Experiment in Section 8.5.1 shows some results achieved by Algorithm 6 on the tracking
of a planar patch shown in Figure 8.6a. Section 8.5.2 shows results on a different sequence
Figure 8.6b, achieved if the state covariance matrix is dynamically updated.

8.5.1 Comparison with non updated tracker

We verify our method on a sequence with length of d = 300 frames. Tracked object is
a planar 50× 50-pixels patch, see Figure 8.6a. We learned an optimal linear sequential
predictor estimating its 2D translation in a range of 25 pixels.
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8.5 Experiments

4

(a) (b)

Figure 8.6: Tracked patches in experiments 8.5.1, 8.5.2.

Considering state vector x =
[
px py vx vy

]>
, where px, py are positions and

vx, vy are velocities, linear dynamic model is estimated from a training sequence
x0,x1, . . . ,xm as follows:

A = [x1,x2 . . .xd] [x0,x1 . . .xd−1]+ ,

where + denotes pseudo-inverse operation. Also R(t) and Q(t) for some discretized values
t ∈ T ⊂ R are computed for a training sequence.

We conclude that the proposed method converges to a steady solution with trace
(
Pk|k

)
almost 2× smaller than a common Kalman tracking approaches, see Figure 8.7. Note
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Figure 8.7: State error comparison of the online optimized SLLiP and non-optimized
SLLiP in realtime tracking. Since the motion is fixed the state error covari-
ance converges to a steady solution.
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that, the visualization (Figure 8.5) of the first 4 steps of the Algorithm 6 was obtained
during this experiment.

8.5.2 Online Q(t) updating

The covariance matrix of dynamic model prediction error Q(t) characterizes the ability of
the equation (8.5) to predict the motion of target. Consequently, the value of trace (Q(t))
significantly influences precision of tracking: If the linear model is precise then the
algorithm is allowed to spend longer time with fine motion estimation. However, if the
linear model fails, for example because of saccadic motion of the target, the method
automatically gives up the precision in order to avoid loss-of-lock. We therefore extend
Algorithm 6 to the method which automatically updates Q(t). The results on a testing
sequence with 1323 frames, where the first 400 are well predictable by equation (8.5)
and in the rest saccadic unpredictable motions are present, are shown in Figure 8.8a,
where position px is depicted as a function of frames, the sizes of blue circles correspond
to trace

(
Pk|k

)
.

We also conclude that an unpredictable motion causes an increase in frame-rate and
inevitably a decrease in precision. Frame-rate, which directly corresponds to the time
spent with each particular frame, and trace

(
Pk|k

)
are visualized in Figure 8.8b.

8.6 Summary

We proposed adaptive optimization of range and accuracy of the previously proposed
SLLiP tracker. The task is formulated as a maximization of tracking precision subject
to loss-of-lock probability. We showed, that the proposed process leads to the steady
solution of all variables and achieved accuracy is two times higher than the accuracy of
the SLLiP with non-optimized range and accuracy.
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Figure 8.8: State estimation error during predictable and unpredictable mo-
tions: If the error of the motion model increases, e.g., because of sac-
cadic motion of the object, the method automatically gives up the pre-
cision in order to avoid loss-of-lock event. (a) Positions as a function of
frames, size of blue markers is proportional to trace
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)
. (b) Covari-

ance trace
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)
and frame-rate as a functions of frames.
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9 Conclusions

We proposed and designed several regression-based tracking methods distinguished by
accuracy, range, frame-rate, learning time and the type of the object, they are applicable
to. In the following, we list the advantages and limitations of the proposed tracking and
learning approaches and discuss their suitability for particular tasks.

Proposed regression based methods:

• Learned Linear Predictors (LLiP). We studied and extended tracking ap-
proaches based on Learned Linear Predictors (LLiPs), i.e., linear mapping between
intensities and motion. LLiPs are typically learned from synthetized examples by
the Least Square method. Such learning is fast (≈ seconds) however, the range
and accuracy are limited. We therefore studied more complex structures, which at
the cost of longer learning achieve better performance.

• Sequential Learned Linear Predictors (SLLiP). LLiPs are extended to Se-
quences of LLiPs (SLLiPs). Learning of the optimal SLLiP is formulated as compu-
tational complexity minimization subject to predefined accuracy and range. Two
different methods are proposed: (i) describes the optimal SLLiPs learned by the
minimax method (MM SLLiP), and (ii) is extension for sequences of LLiPs learned
by the Least Square method (LS SLLiP), which after a very short initialization
period provides a sub-optimal solution. It is experimentally demonstrated that
MM SLLiPs have higher robustness, i.e., approximately 30–50% lower number of
loss-of-lock events, however the achieved framerate is lower (by about ≈ 30%) and
the learning time is significantly higher (≈ 30-times) in contrast to LS SLLiPs.
Since for both methods approximately 20–30 frames per second are achievable by
a Matlab implementation, much higher framerate is probably achievable with a
careful implementation and the framerate difference is not an issue. MM SLLiPs
are the most suitable for applications, where long learning is affordable, else any-
time learning of LS SLLiPs allows to setup the trade-off between learning time and
performance.

Note, that the proposed approaches were carefully verified on publicly-available
sequences with approximately 12, 000 ground-truthed frames. Superiority in frame-
rate and robustness with respect to the SIFT detector, Lucas-Kanade tracker and
Jurie’s tracker is experimentally demonstrated.
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• Parameter-sensitive Learned Linear Predictors (PLLiP). If the object ap-
pearance changes due to for example non-rigid deformations or uneven illumi-
nation, accurate motion estimation by LLiPs or SLLiPs is often impossible. We
therefore extended LLiP to Parameter sensitive LLiP (PLLiP). We learn the whole
sub-space of LLiPs and encode the current object appearance into the coordinates
of this subspace. PLLiP might be theoretically extended to sequences, but we did
not studied this issue. PLLiPs are therefore experimentally compared to LLiPs
showing that PLLiPs with the same computational complexity achieve 50% lower
error than LLiPs.

Proposed optional improvements

We also proposed a few optional improvements of LLiPs, SLLiPs and PLLiPs:

• Tracking by the number of predictors. It is well known, that if the ob-
ject is modeled by more than one predictor and motion is estimated by Ransac,
higher robustness and accuracy are often achievable. We estimate the optimal
ratio between the number of predictors and number of Ransac iteration. Online
optimization of the locations, where predictors are attached to the model is also
proposed.

• Adaptive optimization of range and accuracy for SLLiPs. Any subsequence
of a SLLiP can be viewed as another SLLiP with higher speed and smaller range
and/or accuracy. We propose method, where the range and accuracy of the SLLiP
are automatically adjusted in order to achieve the most accurate tracking given
a loss-of-lock probability constraint. Using a Kalman filter, it is automatically
determined whether the motions are well predictable by the motion model or not
and the most suitable range and accuracy are used. It is experimentally shown that
the online optimized SLLiP achieves 40% higher accuracy than the non optimized
one.

• Support set selection is the combinatorial problem, therefore greedy LS algo-
rithm is proposed. Such improvement increases accuracy about 10% in comparison
to random selection, however, for larger support sets the method is very time con-
suming, because the learning time depends exponentially on the complexity.

All regression-based tracking methods commonly suffers from the limitation by the
size and speed of tracked object. If the object is too small and the inter-frame motion
is unexpectedly fast, the support pixels may get on the previously unseen background
pixels and cause tracker failure. Nevertheless, we see the future of the fast regression-
based methods in mutliple regression evaluated by a classifier.

We encourage the reader to download Matlab implementations and videos from ftp:
//cmp.felk.cvut.cz/~zimmerk/linTrack. Ground truthed sequences are available at
ftp://cmp.felk.cvut.cz/pub/cmp/data/linTrack.
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A Appendix

A.1 Quasi-Euclidean norm for circle and ellipse approximation

For the sake of completness, we also show how to find a λ-bound predictor for circular
and elliptic uncertainty region. Because of simplicity, we further considers only 2D space
of motion parameters (e.g., translation). A circle can be approximated by equilateral
octagon, see Fig. 4.5-d, by combining the preceding results. Defining the quasi-Euclidean
norm

‖y‖E = min{
√

2‖y‖1, ‖y‖∞},
the estimation of the linear regressor minimizing the size of the octagon-shaped uncer-
tainty area is as follows

H∗ = argmin
H

max
i
‖(H Ii − ti)‖E =

= argmin
H,λ

{λ | ∀i min{
√

2
2∑
j

|h>j Ii − tij |, |H Ii − ti|} < 1λ}.

Variables in the corresponding LP problem (4.12) are equal to

A =



I> I> −1
√

2
−I> I> −1

√
2

I> −I>−1
√

2
−I>−I>−1

√
2

I> 0 −1
−I> 0 −1
0 I> −1
0 −I> −1


, x =

h1

h2

λ

 , c =


0
...
0
1

 , b =



t1 + t2

t1 − t2

t2 − t1

−t1 − t2

t1

−t1

t2

−t2


.

Sometimes the prediction errors are not distributed uniformly in the uncertainty area
due to a strong edge in some direction. While the motion estimation orthogonal to the
edge direction is well conditioned, the motion estimation along the edge is ill-conditioned.
In these cases, the smallest uncertainty region approximately corresponds to an ellipse
(see Figure 4.5f) with main half-axis in the direction of the strong edge.

Let us assume, we are able to find the shape of ellipse. Given the shape (2× 2 matrix
Q), all the corresponding ellipses are parameterized by their radius λ as follows

Q = {y | y>Q>Qy < λ}. (A.1)
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A.2 Semidefinite programming for minimization of elliptic uncertainty region

Radius is minimized similarly to the case above

H∗ = argmin
H

max
i
‖Q(H Ii − ti)‖E

and the corresponding LP problem (4.12) has the following coefficients

A =



Q⊗ I> −1
−Q⊗ I> −1

(q>1 + q>2 )⊗ I> −1
√

2
(q>1 − q>2 )⊗ I> −1

√
2

(−q>1 + q>2 )⊗ I> −1
√

2
−(q>1 + q>2 )⊗ I> −1

√
2

 , x =

h1

h2

λ

 , c =


0
...
0
1

 , b =



T>q1

T>q2

−T>q1

−T>q2

T>q1 + T>q2

T>q1 − T>q2

T>q2 − T>q1

−T>q1 − T>q2


,

where ⊗ denotes Kronecker (matrix direct) product. Since the shape (Q) optimization
would not be the linear task, it is necessary to find it in a different way. We do believe
that the inversion of the covariance matrix of LS solution errors is a good approximation.

A.2 Semidefinite programming for minimization of elliptic
uncertainty region

Computation of an optimal linear regressor using the true elliptic uncertainty region
(Figure 4.5g), instead of the approximation (Figure 4.5f), is formulated as semidefinite
programming problem. Let us define ellipse Q in a different way

Q = {y | y>Qy < 1}

than in previous section. The Q has volume

vol(Q) = V det(Q−1) ≈ −trace Q, (A.2)

where V denotes volume of the unit sphere in corresponding space (e.g., in R2 V = π).
Equation (4.3) is reformulated for elliptic uncertainty region as follows

min
Q,H

{
vol(Q) | ∀i

(
H Ii − ti

)
∈ Q

}
. (A.3)

Approximating ellipsoid Q according to equation (A.2) we can write

(Q∗, H∗) = argmin
Q,H

{
−trace Q | ∀i(H Ii − ti)>Q(H Ii − ti) ≤ 1

}
. (A.4)

Using Schur complement [11], following equivalence can be proved

(H Ii − ti)>Q(H Ii − ti) ≤ 1⇐⇒
[

Q−1 H Ii − ti

H Ii − ti 1

]
� 0, Q � 0, (A.5)
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where � 0 denotes that a matrix is from a positive semi-definite cone. Using equiv-
alence (A.5), constraining conditions in equation (A.4) are replaced and the following
semidefinite problem is obtained

(Q∗, H∗) = argmin
Q,H

{
trace Q | ∀i

[
Q H Ii − ti

H Ii − ti 1

]
� 0, Q � 0

}
. (A.6)

In this optimization task, 2 × 2 matrix Q stands for parameter λ in equation (4.3).
Hence, the uncertainty region is parameterized in the four dimensional space instead of
the one dimensional. In order to retain reasonable computational complexity of learning,
we need to parameterize the shape only by one parameter by fixing the shape Q of the
obtained ellipsoid Q for each particular simple predictor like we did in Section A.1.

Different methods have been proposed for various classes of uncertainty regions. Re-
sults of the best three methods are depicted in Figure 4.5e-g.
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