
A Software for Complete Calibration of
Multicamera Systems

Tomáš Svoboda
with contributions from D. Martinec, T. Pajdla, O. Chum, T. Werner,

and J. Bouguet

Czech Technical University, Faculty of Electrical Engineering

Center for Machine Perception, Prague, Czech Republic

http://cmp.felk.cvut.cz/~svoboda

Computer Vision Lab, ETH Zürich

2/45
Outline

� Motivation

� Problem definition

� Proposed solution

� Results

� Applications

3/45
Motivation

� multiple cameras became common

� they can be found in . . .

4/45
Virtual reality room

5/45
Telepresence setup

6/45
Calibration

� many tasks can be accomplished without knowing

anything about the cameras

� however, many more when we know . . .

7/45
camera positions, and . . .

8/45
. . . camera orientations, and . . .

9/45

. . . camera internal parameters
from geometry to pixels

y x
y xz

v u
Normalized image plane

Image plane
f1

X
u

xC

10/45
. . . nonlinear parameters included

11/45
Camera calibration is an old problem

� for photogrammetrists (even older problem)

� in computer vision

� many methods exist

12/45
Classical approaches — known 3D points

���

���

� �

� �

� �

���

�	�

�
�

�
�

��

�
�

�

��

��

13/45

Classical approaches — plate at several
positions

http://www.vision.caltech.edu/bouguetj/calib doc/

14/45
Classical methods — revisited

Pros:

� many methods (and free codes)

� precise, even for complicated camera models

Cons (for multicamera systems):

� many cameras → hand work is not an option

� large working volume to fill → big calibration

objects/plates

15/45
Our solution — overview

We assume at least approximately synchronized multicamera

(N ≥ 3) setup.

� use 1-point calibration object easily detectable in images

� wave the calibration point through the working volume

freely

� this will create a virtual calibration object (but the 3D

position unknown!)

� apply theoretical results from self-calibration field

� estimate as complicated camera model as reasonable

� validate the results

16/45
Multiple cameras — Geometry

C
1

C
2

C
3

C
4

Xj

u
1

j
u
2

j

u
3

j

u
4

j

P
1

P
2

P
3

P
4

Problem definition:

From ui
j points, for which λ

i
ju

i
j = P

i
Xj holds

estimate Euclidean projection matrices Pi

and coordinates of the 3D points Xj

17/45
Pinhole camera model

λi
j

 ui
j

vi
j

1

 = λi
ju

i
j = PiXj , λi

j ∈ R+

� j index points

� i index camera

� λi
j projective depths

� ui
j point projections (we find them in images)

� Xj 3D points (we do not know the positions!)

� Pi camera matrices

18/45
Multicamera linear model

Ws =



λ1
1

 u1
1

v1
1

1

 · · · λ1
n

 u1
n

v1
n

1


...

λm
1

 um
1

vm
1

1

 · · · λm
n

 um
n

vm
n

1




=

 P1

...

Pm


3m×4︸ ︷︷ ︸

P

[X1 · · ·Xn]4×n︸ ︷︷ ︸
X

Self-calibration (Euclidean stratification)

Ws = PX = PH︸︷︷︸ H−1X︸︷︷︸ = P̂X̂ ,

19/45
What the software does:

1. Finds the projections ui
j of the laser pointer in the images.

2. Discards misdetected points by pairwise RANSAC

analysis.

3. Estimates projective depths λi
j and fills the missing points

to make scaled measurement matrix Ws complete.

4. Performs the rank 4 factorization of the matrix Ws to get

projective shape and motion and upgrades them to

Euclidean ones.

5. Estimates the parameters of the non-linear distortion

6. Optionally, if some true 3D information is known, aligns

the computed Euclidean structures with a world system.

Many cross-validation steps inside.

20/45
Calibration object

A very standard laser pointer with a piece of transparent

plastic attached.

21/45
Finding points

Needs to be a bit more clever than a simple thresholding

Statistical analysis of the images (almost) solves it.

22/45
Finding points

Sub-pixel accuracy is desirable

Interpolated ROI

20 40 60

10

20

30

40

50

60

0
50

100

0

50

100
0

0.02

0.04

Correlation coeffs

0
20

40

0

20

40
100

150

200

250

Active ROI

0
20

40

0

20

40
0

0.5

1

1.5

x 10
−3
PSF approx by 2D Gaussian

/local/MultiCam/Data/20030615
H

oengg/arctic1/arctic1.pvi.0001.jpg original

312 314 316 318 320 322 324 326 328

294

296

298

300

302

304

306

308

310

Around 100ms per image.

23/45
Calibration input

Video

24/45
We know

Ws =



λ1
1

 u1
1

v1
1

1

 · · · λ1
n

 u1
n

v1
n

1


...

λm
1

 um
1

vm
1

1

 · · · λm
n

 um
n

vm
n

1




=

 P1

...

Pm


3m×4

[X1 · · ·Xn]4×n

Ws = PX = PHH−1X = P̂X̂ ,

However, some [ui
j, v

i
j]
> may be missing!

25/45

Estimation of λi
j

(Sturm & Triggs ECCV96)

uses the epipolar geometry

C1 C2

X
u1 u2l1 l2e1 e2

λi
j =

(eik × ui
j) · (Fikuk

j)
‖eik × ui

j‖2 λk
j

26/45
We know

Ws =



λ1
1

 u1
1

v1
1

1

 · · · λ1
n

 u1
n

v1
n

1


...

λm
1

 um
1

vm
1

1

 · · · λm
n

 um
n

vm
n

1




=

 P1

...

Pm


3m×4

[X1 · · ·Xn]4×n

Ws = PX = PHH−1X = P̂X̂ ,

However, some [ui
j, v

i
j]
> and λi

j may be missing!

27/45

Filling missing points
(Martinec and Pajdla ECCV2002)

28/45
We know

Ws =



λ1
1

 u1
1

v1
1

1

 · · · λ1
n

 u1
n

v1
n

1


...

λm
1

 um
1

vm
1

1

 · · · λm
n

 um
n

vm
n

1




=

 P1

...

Pm


3m×4

[X1 · · ·Xn]4×n

Ws = PX = PHH−1X = P̂X̂ ,

29/45
Rank–4 factorization

Ws =

 P1

...

Pm


3m×4

[X1 · · ·Xn]4×n

So, matrix Ws should have rank at most 4

Ws = USV> P1

...

Pm


3m×4

[X1 · · ·Xn]4×n = (U
√
S4)(

√
S4V

>)

where S4 is the S with only 4 biggest diagonal values, rest is

zeroed.

30/45
We know

Ws = PX = PHH−1X = P̂X̂ ,

We must find a 4× 4 matrix H which upgrades the projective

structures P, X to metric ones, P̂, X̂.

31/45

Euclidean stratification
(Pollefeys et al, Hartley, . . .)

based on the idea of absolute quadric (conic)

P̂i = µi

[
KiRi Kiti

]

P̂iΩ̂∞P̂i> ∼ KiKi>

where

Ω̂∞ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



32/45
Euclidean stratification cont.

absolute conic exists also in the projective world!

KiKi> ∼ (P̂iH−1)(HΩ̂∞H>)(H−>P̂i>)

KiKi> ∼ PiΩ∞Pi>

We know the projective Pi. The projective Ω∞ is 4× 4
symmetric.

Once Ω∞ is known, then we can compute H from

Ω∞ = HΩ̂∞H>

by eigenvalue decomposition and get the sought Euclidean

structures P̂i = PiH and X̂j = H−1Xj.

33/45

Euclidean stratification — Example of
solution

assume everything is known except focal lenghts

Ki =

 f i 0 ui
0

0 αif i vi
0

0 0 1

 → KiKi> =

 f i2 0 0
0 f i2 0
0 0 1


Remember that KiKi> ∼ PiΩ∞Pi>

(PiΩ∞Pi>)11 − (PiΩ∞Pi>)22 = 0

(PiΩ∞Pi>)12 = 0

(PiΩ∞Pi>)13 = 0

(PiΩ∞Pi>)23 = 0

Each camera contributes by 4 contraints.

34/45
We have the metric linear model

Ws = P̂X̂

Estimation of non-linear distortion starts from

X̂j ↔ ui
j

correspondences. We use the CalTech package

http://www.vision.caltech.edu/bouguetj/calib doc/

Then it goes back, adapt parameters and . . .

35/45
Aligning the results with the world

−2

0

2

−6

−4

−2

0

2

−6

−4

−2

0

2

4

 10

 11

 13

 1

 9

 2

 8

 12

reconstructed points/camera setup only inliers are used

 3

 16

 15

 14

 7

 4

 6

 5

−3
−2

−1
0

1
2

3

−2

−1

0

1

2

3

4

 10

 9

 8

 7

 6

 11

 16

Graphical Output Validation: View from the top camera

 12

 13

 15

 14

 1

 2

 3

 4

 5

User provides some 3D information. Example: “Cameras No.

11,13,15 define the xy plane”.

36/45
Results — Filling points

0 100 200 300 400 500 600 700

0

100

200

300

400

500

measured, o, vs reprojected, +, 2D points (camera: 4)

−400 −200 0 200 400 600 800 1000 1200 1400 1600
−500

0

500

1000

measured, o, vs reprojected, +, 2D points (camera: 40)

The calibration “point” needs not to be visible in all cameras!

37/45
Results — Calibrated setups

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

 10

 9

 8

 7

 6

 11

 16

Graphical Output Validation: View from the top camera

 12

 15

 13

 14

 5

 3

 4

 2

 1
−1 0 1

−2

−1

0

1

2

3
 71

 70

 80

Graphical Output Validation: Aligned data

 72

 81

 82

38/45
Results — Linear model

0 100 200 300 400 500 600

0

100

200

300

400

500
measured, o, vs reprojected, +, 2D points (camera: 12)

0 2 4 6 8 10 12 14 16 18
0

1

2

3

4

5

6

7

Id of the camera

2D error: mean (blue), std (red)

pi
xe

ls

39/45
Results — Complete model

0 100 200 300 400 500 600 700

0

100

200

300

400

500

measured, o, vs reprojected, +, 2D points (camera: 12)

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Id of the camera

2D error: mean (blue), std (red)

pi
xe

ls

Very fine results from (almost) nothing!

40/45
Results — Simple setup

−3−2−101

−1

0

1

2

3

4

5

6

 4

reconstructed points/camera setup only inliers are used
 3

 2

2 3 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Id of the camera

2D error: mean (blue), std (red)

pi
xe

ls

41/45

Application example — volumetric
reconstruction

I know, it is just toy example. Still, it shows that the metric is

OK.

42/45

Application example — mobile
multicamera setup

Video

43/45

Mobile multicamera setup - worker 3D
tracking

Video

44/45

Mobile multicamera setup - worker 3D
tracking

45/45
Summary

� waving the point object is the only hand work required

� no user interaction

� complete calibration of 16 camera setup may be done in

60-90 minutes (95% computation)

Codes, sample data, papers, etc. downloadable from

http://cmp.felk.cvut.cz/˜svoboda/SelfCal

