A Software for Complete Calibration of
 Multicamera Systems

Tomáš Svoboda
with contributions from D. Martinec, T. Pajdla, O. Chum, T. Werner, and J. Bouguet
Czech Technical University, Faculty of Electrical Engineering
Center for Machine Perception, Prague, Czech Republic
http://cmp.felk.cvut.cz/~svoboda
Computer Vision Lab, ETH Zürich

Outline

- Motivation
- Problem definition
- Proposed solution
- Results
- Applications

Motivation

- multiple cameras became common
- they can be found in ...

Virtual reality room

Telepresence setup

Calibration

- many tasks can be accomplished without knowing anything about the cameras
- however, many more when we know . . .

. . . camera orientations, and . . .

. . . camera internal parameters
from geometry to pixels

Camera calibration is an old problem

- for photogrammetrists (even older problem)
- in computer vision
- many methods exist

Classical approaches - known 3D points

Classical approaches - plate at several positions

http://www.vision.caltech.edu/bouguetj/calib_doc/

Classical methods - revisited

Pros:

- many methods (and free codes)
- precise, even for complicated camera models

Cons (for multicamera systems):

- many cameras \rightarrow hand work is not an option
- large working volume to fill \rightarrow big calibration objects/plates

Our solution - overview

We assume at least approximately synchronized multicamera $(N \geq 3)$ setup.

- use 1-point calibration object easily detectable in images
- wave the calibration point through the working volume freely
- this will create a virtual calibration object (but the 3D position unknown!)
- apply theoretical results from self-calibration field
- estimate as complicated camera model as reasonable
- validate the results

Problem definition:
From \mathbf{u}_{j}^{i} points, for which $\lambda_{j}^{i} \mathbf{u}_{j}^{i}=\mathrm{P}^{i} \mathbf{X}_{j}$ holds
estimate Euclidean projection matrices P^{i}
and coordinates of the 3D points \mathbf{X}_{j}

Pinhole camera model

$$
\lambda_{j}^{i}\left[\begin{array}{c}
u_{j}^{i} \\
v_{j}^{i} \\
1
\end{array}\right]=\lambda_{j}^{i} \mathbf{u}_{j}^{i}=\mathrm{P}^{i} \mathbf{X}_{j}, \quad \lambda_{j}^{i} \in \mathcal{R}^{+}
$$

- ${ }_{j}$ index points
- ${ }^{i}$ index camera
- λ_{j}^{i} projective depths
- \mathbf{u}_{j}^{i} point projections (we find them in images)
- \mathbf{X}_{j} 3D points (we do not know the positions!)
- P^{i} camera matrices

Multicamera linear model

Self-calibration (Euclidean stratification)

$$
\mathrm{W}_{s}=\mathrm{PX}=\underbrace{\mathrm{PH}} \underbrace{\mathrm{H}^{-1} \mathrm{X}}=\hat{\mathrm{P}} \hat{\mathrm{X}} \text {, }
$$

What the software does:

1. Finds the projections \mathbf{u}_{j}^{i} of the laser pointer in the images.
2. Discards misdetected points by pairwise RANSAC analysis.
3. Estimates projective depths λ_{j}^{i} and fills the missing points to make scaled measurement matrix W_{s} complete.
4. Performs the rank 4 factorization of the matrix W_{s} to get projective shape and motion and upgrades them to Euclidean ones.
5. Estimates the parameters of the non-linear distortion
6. Optionally, if some true 3D information is known, aligns the computed Euclidean structures with a world system.

Many cross-validation steps inside.

A very standard laser pointer with a piece of transparent plastic attached.

Finding points

Needs to be a bit more clever than a simple thresholding

Statistical analysis of the images (almost) solves it.

Finding points

Sub-pixel accuracy is desirable

Around 100 ms per image.

Calibration input

Video

$$
\begin{gathered}
\mathrm{W}_{s}=\left[\begin{array}{ccc}
\lambda_{1}^{1}\left[\begin{array}{c}
u_{1}^{1} \\
v_{1}^{1} \\
1
\end{array}\right] & & \\
\vdots & \lambda_{n}^{1}\left[\begin{array}{c}
u_{n}^{1} \\
v_{n}^{1} \\
1
\end{array}\right] \\
\lambda_{1}^{m}\left[\begin{array}{c}
u_{1}^{m} \\
v_{1}^{m} \\
1
\end{array}\right] & \vdots & \\
\cdots & \lambda_{n}^{m}\left[\begin{array}{c}
u_{n}^{m} \\
v_{n}^{m} \\
1
\end{array}\right]
\end{array}\right]=\left[\begin{array}{c}
\mathrm{P}^{1} \\
\vdots \\
\mathrm{P}^{m}
\end{array}\right]_{3 m \times 4}\left[\mathbf{X}_{1} \cdots \mathbf{X}_{n}\right]_{4 \times n} \\
\mathrm{~W}_{s}=\mathrm{PX}=\mathrm{PHH}^{-1} \mathrm{X}=\hat{\mathrm{P}} \hat{\mathrm{X}},
\end{gathered}
$$

However, some $\left[u_{j}^{i}, v_{j}^{i}\right]^{\top}$ may be missing!

Estimation of λ_{j}^{i}
 (Sturm \& Triggs ECCV96)

uses the epipolar geometry

$$
\lambda_{j}^{i}=\frac{\left(\mathbf{e}^{i k} \times \mathbf{u}_{j}^{i}\right) \cdot\left(\mathrm{F}^{i k} \mathbf{u}_{j}^{k}\right)}{\left\|\mathbf{e}^{i k} \times \mathbf{u}_{j}^{i}\right\|^{2}} \lambda_{j}^{k}
$$

We know

$\mathrm{W}_{s}=\left[\begin{array}{ccc}\lambda_{1}^{1}\left[\begin{array}{c}u_{1}^{1} \\ v_{1}^{1} \\ 1\end{array}\right] & \cdots & \lambda_{n}^{1}\left[\begin{array}{c}u_{n}^{1} \\ v_{n}^{1} \\ 1\end{array}\right] \\ \vdots \\ \vdots & \vdots \\ \lambda_{1}^{m}\left[\begin{array}{c}u_{1}^{m} \\ v_{1}^{m} \\ 1\end{array}\right] & \cdots & \lambda_{n}^{m}\left[\begin{array}{c}u_{n}^{m} \\ v_{n}^{m} \\ 1\end{array}\right]\end{array}\right]=\left[\begin{array}{c}\mathrm{P}^{1} \\ \vdots \\ \mathrm{P}^{m}\end{array}\right]_{3 m \times 4}\left[\mathbf{X}_{1} \cdots \mathbf{X}_{n}\right]_{4 \times n}$

$$
\mathrm{W}_{s}=\mathrm{PX}=\mathrm{PHH}^{-1} \mathrm{X}=\hat{\mathrm{P}} \hat{\mathrm{X}},
$$

However, some $\left[u_{j}^{i}, v_{j}^{i}\right]^{\top}$ and λ_{j}^{i} may be missing!

Filling missing points (Martinec and Pajdla ECCV2002)

28/45
$\mathrm{W}_{s}=\left[\begin{array}{ccc}\lambda_{1}^{1}\left[\begin{array}{c}u_{1}^{1} \\ v_{1}^{1} \\ 1\end{array}\right] & \cdots & \lambda_{n}^{1}\left[\begin{array}{c}u_{n}^{1} \\ v_{n}^{1} \\ 1\end{array}\right] \\ \vdots & \vdots & \vdots \\ \lambda_{1}^{m}\left[\begin{array}{c}u_{1}^{m} \\ v_{1}^{m} \\ 1\end{array}\right] & \cdots & \lambda_{n}^{m}\left[\begin{array}{c}u_{n}^{m} \\ v_{n}^{m} \\ 1\end{array}\right]\end{array}\right]=\left[\begin{array}{c}\mathrm{P}^{1} \\ \vdots \\ \mathrm{P}^{m}\end{array}\right]_{3 m \times 4}\left[\mathbf{X}_{1} \cdots \mathbf{X}_{n}\right]_{4 \times n}$

$$
\mathrm{W}_{s}=\mathrm{PX}=\mathrm{PHH}^{-1} \mathrm{X}=\hat{\mathrm{P}} \hat{\mathrm{X}},
$$

Rank-4 factorization

$$
\mathrm{W}_{s}=\left[\begin{array}{c}
\mathrm{P}^{1} \\
\vdots \\
\mathrm{P}^{m}
\end{array}\right]_{3 m \times \mathbf{4}}\left[\mathbf{X}_{1} \cdots \mathbf{X}_{n}\right]_{\mathbf{4} \times n}
$$

So, matrix W_{s} should have rank at most 4

$$
\begin{gathered}
\mathrm{W}_{s}=\mathrm{USV}^{\top} \\
{\left[\begin{array}{c}
\mathrm{P}^{1} \\
\vdots \\
\mathrm{P}^{m}
\end{array}\right]_{3 m \times 4}\left[\mathbf{X}_{1} \cdots \mathbf{X}_{n}\right]_{4 \times n}=\left(\mathrm{U} \sqrt{\mathrm{~S}_{4}}\right)\left(\sqrt{\mathrm{S}_{4}} \mathrm{~V}^{\top}\right)}
\end{gathered}
$$

where S_{4} is the S with only 4 biggest diagonal values, rest is zeroed.

We know

$$
\mathrm{W}_{s}=\mathrm{PX}=\mathrm{PHH}^{-1} \mathrm{X}=\hat{\mathrm{P}} \hat{\mathrm{X}},
$$

We must find a 4×4 matrix H which upgrades the projective structures P, X to metric ones, $\hat{\mathrm{P}}, \hat{\mathrm{X}}$.

Euclidean stratification
 (Pollefeys et al, Hartley, . . .)

based on the idea of absolute quadric (conic)

$$
\begin{gathered}
\hat{\mathrm{P}}^{i}=\mu_{i}\left[\begin{array}{ll}
\mathrm{K}^{i} \mathrm{R}^{i} & \left.\mathrm{~K}^{i} \mathbf{t}^{i}\right] \\
\hat{\mathrm{P}}^{i} \hat{\Omega}_{\infty} \hat{\mathrm{P}}^{i \top} \sim \mathrm{~K}^{i} \mathrm{~K}^{i \top}
\end{array} .\right.
\end{gathered}
$$

where

$$
\hat{\Omega}_{\infty}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Euclidean stratification cont.

absolute conic exists also in the projective world!

$$
\begin{aligned}
& \mathrm{K}^{i} \mathrm{~K}^{i \top} \sim\left(\hat{\mathrm{P}}^{i} \mathrm{H}^{-1}\right)\left(\mathrm{H} \hat{\Omega}_{\infty} \mathrm{H}^{\top}\right)\left(\mathrm{H}^{-\top} \hat{\mathrm{P}}^{i \top}\right) \\
& \mathrm{K}^{i} \mathrm{~K}^{i \top} \sim \mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}
\end{aligned}
$$

We know the projective P^{i}. The projective Ω_{∞} is 4×4 symmetric.

Once Ω_{∞} is known, then we can compute H from

$$
\Omega_{\infty}=H \hat{\Omega}_{\infty} H^{\top}
$$

by eigenvalue decomposition and get the sought Euclidean structures $\hat{\mathrm{P}}^{i}=\mathrm{P}^{i} \mathrm{H}$ and $\hat{\mathbf{X}}_{j}=\mathrm{H}^{-1} \mathbf{X}_{j}$.

Euclidean stratification - Example of solution

assume everything is known except focal lenghts

$$
\mathrm{K}^{i}=\left[\begin{array}{ccc}
f^{i} & 0 & u_{0}^{i} \\
0 & \alpha^{i} f^{i} & v_{0}^{i} \\
0 & 0 & 1
\end{array}\right] \rightarrow \mathrm{K}^{i} \mathrm{~K}^{i \top}=\left[\begin{array}{ccc}
f^{i 2} & 0 & 0 \\
0 & f^{i 2} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Remember that $\mathrm{K}^{i} \mathrm{~K}^{i \top} \sim \mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}$

$$
\begin{aligned}
\left(\mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}\right)_{11}-\left(\mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}\right)_{22} & =0 \\
\left(\mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}\right)_{12} & =0 \\
\left(\mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}\right)_{13} & =0 \\
\left(\mathrm{P}^{i} \Omega_{\infty} \mathrm{P}^{i \top}\right)_{23} & =0
\end{aligned}
$$

$$
\mathrm{W}_{s}=\hat{\mathrm{P}} \hat{\mathrm{X}}
$$

Estimation of non-linear distortion starts from

$$
\hat{\mathrm{X}}_{j} \leftrightarrow \mathbf{u}_{j}^{i}
$$

correspondences. We use the CalTech package
http://www.vision.caltech.edu/bouguetj/calib_doc/
Then it goes back, adapt parameters and . . .

User provides some 3D information. Example: "Cameras No.
$11,13,15$ define the $x y$ plane".

Results - Filling points

The calibration "point" needs not to be visible in all cameras!

Results - Calibrated setups

Results - Linear model

Results - Complete model

Very fine results from (almost) nothing!

Results - Simple setup

40/45

Application example - volumetric reconstruction

I know, it is just toy example. Still, it shows that the metric is OK.

Application example - mobile multicamera setup

Mobile multicamera setup - worker 3D tracking

Video

Mobile multicamera setup - worker 3D tracking

Summary

- waving the point object is the only hand work required
- no user interaction
- complete calibration of 16 camera setup may be done in $60-90$ minutes (95% computation)

Codes, sample data, papers, etc. downloadable from
http://cmp.felk.cvut.cz/~svoboda/SelfCal

