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Motivation

� multiple cameras became common

� they can be found in . . .
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Virtual reality room
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Telepresence setup
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Calibration

� many tasks can be accomplished without knowing

anything about the cameras

� however, many more when we know . . .
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camera positions, and . . .
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. . . camera orientations, and . . .
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. . . camera internal parameters
from geometry to pixels
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. . . nonlinear parameters included
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Camera calibration is an old problem

� for photogrammetrists (even older problem)

� in computer vision

� many methods exist
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Classical approaches — known 3D points
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Classical approaches — plate at several
positions

http://www.vision.caltech.edu/bouguetj/calib doc/
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Classical methods — revisited

Pros:

� many methods (and free codes)

� precise, even for complicated camera models

Cons (for multicamera systems):

� many cameras → hand work is not an option

� large working volume to fill → big calibration

objects/plates
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Our solution — overview

We assume at least approximately synchronized multicamera

(N ≥ 3) setup.

� use 1-point calibration object easily detectable in images

� wave the calibration point through the working volume

freely

� this will create a virtual calibration object (but the 3D

position unknown!)

� apply theoretical results from self-calibration field

� estimate as complicated camera model as reasonable

� validate the results
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Multiple cameras — Geometry
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Problem definition:

From ui
j points, for which λ

i
ju

i
j = P

i
Xj holds

estimate Euclidean projection matrices Pi

and coordinates of the 3D points Xj
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Pinhole camera model

λi
j

 ui
j

vi
j

1

 = λi
ju

i
j = PiXj , λi

j ∈ R+

� j index points

� i index camera

� λi
j projective depths

� ui
j point projections (we find them in images)

� Xj 3D points (we do not know the positions!)

� Pi camera matrices
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Multicamera linear model
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Self-calibration (Euclidean stratification)

Ws = PX = PH︸︷︷︸ H−1X︸︷︷︸ = P̂X̂ ,
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What the software does:

1. Finds the projections ui
j of the laser pointer in the images.

2. Discards misdetected points by pairwise RANSAC

analysis.

3. Estimates projective depths λi
j and fills the missing points

to make scaled measurement matrix Ws complete.

4. Performs the rank 4 factorization of the matrix Ws to get

projective shape and motion and upgrades them to

Euclidean ones.

5. Estimates the parameters of the non-linear distortion

6. Optionally, if some true 3D information is known, aligns

the computed Euclidean structures with a world system.

Many cross-validation steps inside.
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Calibration object

A very standard laser pointer with a piece of transparent

plastic attached.
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Finding points

Needs to be a bit more clever than a simple thresholding

Statistical analysis of the images (almost) solves it.
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Finding points

Sub-pixel accuracy is desirable

Interpolated ROI
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Calibration input

Video
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We know
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However, some [ui
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> may be missing!
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Estimation of λi
j

(Sturm & Triggs ECCV96)

uses the epipolar geometry

C1 C2

X
u1 u2l1 l2e1 e2

λi
j =

(eik × ui
j) · (Fikuk

j)
‖eik × ui

j‖2 λk
j
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We know

Ws =
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However, some [ui
j, v
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> and λi

j may be missing!
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Filling missing points
(Martinec and Pajdla ECCV2002)
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We know
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Rank–4 factorization

Ws =

 P1

...

Pm
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So, matrix Ws should have rank at most 4
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where S4 is the S with only 4 biggest diagonal values, rest is

zeroed.
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We know

Ws = PX = PHH−1X = P̂X̂ ,

We must find a 4× 4 matrix H which upgrades the projective

structures P, X to metric ones, P̂, X̂.
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Euclidean stratification
(Pollefeys et al, Hartley, . . . )

based on the idea of absolute quadric (conic)

P̂i = µi

[
KiRi Kiti

]

P̂iΩ̂∞P̂i> ∼ KiKi>

where

Ω̂∞ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


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Euclidean stratification cont.

absolute conic exists also in the projective world!

KiKi> ∼ (P̂iH−1)(HΩ̂∞H>)(H−>P̂i>)

KiKi> ∼ PiΩ∞Pi>

We know the projective Pi. The projective Ω∞ is 4× 4
symmetric.

Once Ω∞ is known, then we can compute H from

Ω∞ = HΩ̂∞H>

by eigenvalue decomposition and get the sought Euclidean

structures P̂i = PiH and X̂j = H−1Xj.
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Euclidean stratification — Example of
solution

assume everything is known except focal lenghts

Ki =

 f i 0 ui
0

0 αif i vi
0

0 0 1

 → KiKi> =

 f i2 0 0
0 f i2 0
0 0 1


Remember that KiKi> ∼ PiΩ∞Pi>

(PiΩ∞Pi>)11 − (PiΩ∞Pi>)22 = 0

(PiΩ∞Pi>)12 = 0

(PiΩ∞Pi>)13 = 0

(PiΩ∞Pi>)23 = 0

Each camera contributes by 4 contraints.
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We have the metric linear model

Ws = P̂X̂

Estimation of non-linear distortion starts from

X̂j ↔ ui
j

correspondences. We use the CalTech package

http://www.vision.caltech.edu/bouguetj/calib doc/

Then it goes back, adapt parameters and . . .
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Aligning the results with the world
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User provides some 3D information. Example: “Cameras No.

11,13,15 define the xy plane”.
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Results — Filling points
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The calibration “point” needs not to be visible in all cameras!
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Results — Calibrated setups
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Results — Linear model
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Results — Complete model
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Very fine results from (almost) nothing!
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Results — Simple setup
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Application example — volumetric
reconstruction

I know, it is just toy example. Still, it shows that the metric is

OK.
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Application example — mobile
multicamera setup

Video
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Mobile multicamera setup - worker 3D
tracking

Video
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Mobile multicamera setup - worker 3D
tracking
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Summary

� waving the point object is the only hand work required

� no user interaction

� complete calibration of 16 camera setup may be done in

60-90 minutes (95% computation)

Codes, sample data, papers, etc. downloadable from

http://cmp.felk.cvut.cz/˜svoboda/SelfCal


