Modeling and Recognition of Regular Structures in Images demo

Radim Tyleček tylecr1@cmp.felk.cvut.cz

supervised by Radim Šára

Center for Machine Perception, FEL ČVUT Praha

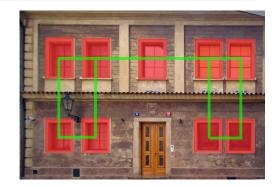
Introduction Structure Image Recognition Results

Interpretation of Facade Images

• Objects of interest:

Images of scenes with strong regular structure

- Goal: Recognize image elements and their relationship
- Problem:

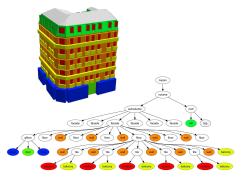

How to combine image model with structural knowledge?

- Playground: Houses, facades, windows...
- Applications: 3D modeling of facades, buildings, cities

Interpretation of Facade Images

Goals:

- **Q** Recognize facade **elements** (windows) and their **relationship**
- Build joint structure and image models and combine them for recognition
- Complexity
- Element attributes
 - Size
 - Position
 - Shape
- Structure
 - Relationship
 - Regularity
 - Exceptions



Facade Structure Modeling

Very strong model: Grammar-based Procedural Modeling

Properties

- rich semantics
- hand design of grammar
- split-based limitation
- overfitting

O.Teboul et al. Segmentation of building facades using procedural shape prior. CVPR 2010.

Facade Structure Modeling

General model: Near Regular Texture Lattice

J.Hays et al. Discovering texture regularity as a higher-order correspondence problem. Proc. ECCV, 2006

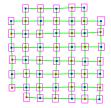
Introduction Structure Image Recognition Results

Facade Structure Modeling

Weak model: Pair-wise neighborhood

Idea:

- Attribute constraints act *locally* on neighbors
- We search for the neighborhood relations
- Attribute constraints: alignment, spacing, similarity
- Structural regularity: neighborhood configurations
- Representation: planar graph with labels


R.Tylecek, R.Sara: Stochastic Recognition of Regular Structures in Facade Images. IPSJ T. Computer Vision and Applications, 2012

Weak Structure Model

Structure Representation:

fairly general to support most real structures attributed neighborhood graph $G = \{V, D, C, N\}$

- V ... vertices = elements (windows)
- *D* ... edges (*uv*) of complete graph,
- C ... binary 'color' labels c_i on V for *Bipartite Graph* constraints
- N ... binary edge labels I_{uv} on D indicate active edges in the neighborhood

random sample from the structure model

Image Modeling

The simplest model: Color

Color likelihood

- Regions of interest
- Background
 - Flat Gaussian distribution
- Foreground
 - Gaussian mixture
- Integral image
 - Allows fast evaluation

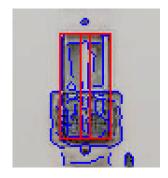
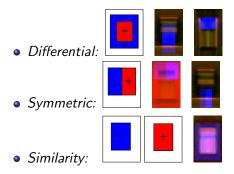


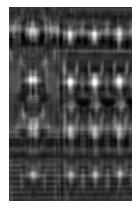
Image Modeling

The simplest features: Edges

Edge likelihood

- Accurate localization
- Image edges detected i.e. by Canny detector
- Window template edge matching
 - Oriented images edges
 - Using distance transform
 - Penalty for orientation mismatch
- Integral image
 - Needs rectification




Image Modeling

Specific features: Detectors

- Detectors trained for given class of objects
- Scale problem, multi scale detection

Mixture of Haar-like features + AdaBoost

Model design:

- **(**) Choose parameters θ
- 2 Choose an image model $p(I|\theta)$
- Choose a structure model $p(\theta)$

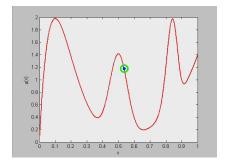
Maximum Likelihood:

Find interpretation with best data fit

$$\theta^* = \arg \max_{\theta} p(I|\theta) \text{ s.t. } p(\theta) > 0$$
(1)

Maximum Aposterior Probability:

Find the most probable interpretation (Bayes)


$$\theta^* = \arg \max_{\theta} p(I, \theta) = \arg \max_{\theta} p(I|\theta) p(\theta)$$
 (2)

Markov Chain Monte Carlo (MCMC)

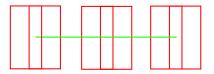
sampling for exploration of parameter space

- Random Walk
- Sample new state θ' conditionally on the current state θ with proposal distribution $q(\theta'|\theta)$
- Proposals with probability ratio < 1 can be also accepted

Proposal Design

- Random initialization
- Proposals can be local and simple
- Proposals $q_m(\theta'|\theta)$ are chosen randomly from a set
 - Attribute modification
 - 2 Complexity modification

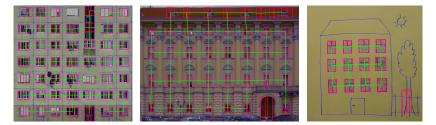
Reversible Jump MCMC


Proposal Design

- Random initialization
- Proposals can be local and simple
- Proposals $q_m(\theta'|\theta)$ are chosen randomly from a set
 - Attribute modification
 - 2 Complexity modification

Reversible Jump MCMC

Experimental Results


Dancing House (Prague)

- Only loosely regular
- Random initialization
- 3000 samples
- Only samples with increasing probability rendered
- Sampling rate shown in real-time

Experimental Results

16 / 19

Radim Tyleček, CMP FEL ČVUT

Modeling and Recognition of Regular Structures in Images

Conclusion

Structure

Implementation of structure model facilitates recognition even with simple and general image features

Recognition

MCMC is effective and powerful way to combine structure with image information

Outlook

Search for more efficient optimization algorithms applicable to regular structures. Use semantic information to constraint 3D reconstruction of facades.

Thank you.

Website: cmp.felk.cvut.cz