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Stochastic Recognition of Regular Structures
in Facade Images

Radim Tyle¢ek and Radim Séra

Abstract

We present a method for recognition of structured images and demonstrate it on the detection of windows
in facade images. Given an ability to obtain local low-level data evidence on primitive elements of a structure
(like window in a facade image), we determine their most probable number, attribute values (location, size) and
neighborhood relation. The embedded structure is weakly modeled by pair-wise attribute constraints, which allow
structure and attributes to mutually support each other. We use a very general framework of reversible jump MCMC,
which allows simple implementation of a specific structure model and plug-in of almost arbitrary element classifiers.

We have chosen the domain of window recognition in facade images to demonstrate that the result is an
efficient algorithm achieving performance of other strongly informed methods for regular structures.

I. INTRODUCTION

Recent development in the construction of virtual worlds like Google Earth'", Bing Maps 3D™ or
Nokia Maps 3D™ heads toward a higher level of detail and fidelity. The popularity of application such as
Street View' shows that reconstruction of urban environments plays an important role in this area. While
acquisition of extensive data in high resolution is feasible today, their automated processing is now the
limiting factor for delivering more realistic experience and it is a task for computer vision at the same
time. In urban settings, typical acquired data are images of buildings’ facades and their interpretation can
help discover 3D structure and reduce the complexity of the resulting model; for example, it would allow
going beyond planar assumptions in dense street view reconstructions presented by [12]. The complexity
is particularly important when the representation has to scale with the size of cities in applications such
as [9] who plan to combine range data with images. The work of [14] dealing directly with structural
regularity in 3D data also supports our ideas.

While facades as man-made scenes exhibit strong regularity and structure, when compared to arbitrary
natural scenes, they still present a great variety of styles, configurations and appearance. The design of a
general facade model that is able to cover their range is thus a challenging problem, and several approaches
have been proposed to deal with it.

Shape grammars, as introduced in [7] and later picked up by [19], are the basic essence for all
recent methods based on the procedural modeling to overcome the limitations of traditional segmentation
techniques. The idea of shape grammars is that image can be explained by terminal symbols (objects)
obeying a set of rules.
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Some aspects of probabilistic approach were first discussed in [1], including the use of Reversible Jump
Markov Chain Monte Carlo (RIMCMC). The proposed grammar is simple, based on splitting and the
results are demonstrated for highly regular facades only. In a similar fashion [13] determines the structure
by splitting the facade to a regular grid of individual tiles and subdividing them. Meyer and Reznik [10]
presented a pipeline for multi-view interpretation, where heuristics based on interest points were designed
to detect positions of windows, and subsequently used MCMC to localize their borders. Ripperda [15]
has designed a comprehensive dictionary of domain-specific rules; the results presented on simple facades
show this approach has difficulty to achieve good localization.

A recent method of [17] combines trained randomized forest classifiers with a shape grammar to segment
Haussmannian' facades into eight classes. Their model assumes the windows form a grid while allowing
different intervals. In the second step, positions of rows and columns in the grid are stochastically estimated
by a specific random walk algorithm that does not propose dimension changes. Subsequently they proposed
a new parser based on reinforcement learning to speed up the process in [16]. They evaluated their results
quantitatively on a limited dataset of Haussmannian facades in Paris which is available online. In the
same domain, the work of [4] demonstrates how a specific segmentation algorithm can be engineered for
a particular regular style.

The majority of the mentioned algorithms for single-view facade interpretation work with hard con-
straints on grid configurations of windows and employ strong domain-specific heuristics. Additionally,
they require the user design of a specific grammar or training, whereas both processes are prone to
overfitting. In [18] there was presented a segmentation framework, where the structure is modeled softly
by local pair-wise constraints, allowing loosely regular configurations like those in Fig. 5. The present
paper revisits the weak structure model [18], it proposes several simplifying modifications, particularly it
removes some unnecessary complexity in the model, makes it more flexible and improves its modeling
power. The changes resulted in a significant improvement of performance, as discussed in Sec. VI.

II. STRUCTURAL RECOGNITION FRAMEWORK

We consider the problem of recognizing elements in an image, specifically windows in a facade, we
will call them terminal elements. We assume the input image is orthographically rectified, as in Fig. 4. Our
model parameters (variables) consist of complexity &£ (the number of terminal elements), shape attributes
A (size, aspect ratio, etc.), location attributes X (window center locations) and element neighborhood
relation /N. The recognition task can then be formulated as follows: Given image data /, we search for
model parameters 0 = (k, A, X, N) by finding the mode of the joint distribution p(7, ) with

0" = arg max p(I|0)p(6), (1)

which is computed with Bayes theorem from data likelihood p(7|6) and structural model prior p(f). We
will decompose our probability model hierarchically as shown in Fig. 1 and propose pdfs specific for the
task of window detection in facade images. Then we will apply stochastic RIMCMC framework to find
the optimal value 6* by effectively sampling from the space of possible combinations of parameters 6.
More details on its implementation will be given in the following sections.

!Architectural style widely used during the reconstruction of Paris in 19th century.
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Fig. 1. Hierarchy in the probability model. Pdf of a node is a product of its leaves.

III. STRUCTURAL MODEL

We design a probabilistic structural model p(k, N, A, X) in which (k, N, A, X) is a configuration.
The model captures the rules for appearance of a set of similar elements in image with a semi-regular
spatial distribution. Rather than explicitly imposing a lattice or a similar global layout, the model is
based on local pair-wise element neighborhood and attribute constraints. We are given a set of £ € N
elements with locations X = {z; € (0,1)%i = 1,...,k} in the unit image plane. Our neighborhood
representation is independent on the locations X and it is based on a graph G = {V, D}, where nodes V' =
{vi; i=1,... k} correspond to terminal elements and edges D = {(u, v); u,v € V} to neighborhood
relationship between them. Our goal is to define neighbors as terminal elements that are in proximity of
each other and such that they share some attribute values.

We represent the edges D with adjacency matrix N = {luv € {0,1}; (u,v) € V2} that is recovered
as a part of the solution of (1).

A. Structural Prior

This prior describes a class of graphs that are similar to a lattice with a high level of flexibility. It
combines structural regularity p(N|k) and complexity p(k).
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Fig. 2. a) A random sample close to the mode of a softly bipartite graph, nodes V' on positions X are marked with crosses colored red or
blue according to labels Z. Edges D are in green, terminal elements’ shapes are in magenta. b) The window shape template is parametrized
by its width w; € (0, 1), height h; € (0, 1), both relative to image height I}, and the width of the central column ¢; € (0,1) relative to the
window width. c) The shape template (red) is matched with image edges (blue).
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Structural Complexity. The prior on the number of elements is modeled by Poisson distribution
p(k) = Pois(k, \y) where ), is the expected number of terminal elements in an image.

Structural Regularity. We restrict G to a reasonable graph family. In [18] a planar relative neigh-
borhood graph was used, but in certain situations it was too restrictive, preventing the inclusion of an
edge where desirable. Instead, we choose now a more general softly bipartite graph. A bipartite graph
is two-colorable, meaning that we can assign a binary label ¢; € {0,1} to every node such that every
edge connects nodes with different labels. However, in our case we relax this condition by allowing edges
connecting equally colored nodes but assigning them a low probability p, (softness). We introduce a set
of hidden variables Z = {z;;i = 1,...,k} and model them with

p(ZIN) = T 0z zollan), where p(elly, = 1) = {750 7™ 2)
(u,0)eD L—p., 2u 7 2.
In the case of no edge we use uniform distribution p(z,, z,|lw, = 0) = % Note that the graph of a complete
lattice (or its subgraph) is bipartite, but when some elements are missing in the middle, it may be not
(chords can create odd cycles).
The preferred number of edges in the graph is modeled by binomial distribution

p(N|k) = (Z Luv, dy(K), d. )), 3)

where d, (k) = 2(k — V/k) is the number of edges in a complete square lattice with & nodes and d.(k) =
+k(k —1) in a complete graph.

B. Spatial Regularity

This part of the model describes rules for the relative position of neighboring elements. We parametrize
the spatial relation of two elements (u,v) in polar coordinates, i.e. by distance p,, = ||X, — X,|| and
angle ¢, = atan2(y, — Yy, T, — T,). We want to model multiple assumptions on p(X|N, k) that are not
independent, each of them represented with a pdf of the same variables X. Therefore we combine them
in the form of a probability mixture [11]:

P(X|N) = wapa(X|N) + wsps(X|N) + wepe(X|N), 4)

and k& was omitted in p(-) for simplicity of notation. The

W=

where we have chosen w, = w, = w, =

functions p,, ps, p. are described next.
Alignment. The first assumption on the position of elements is that neighboring elements should be

horizontally or vertically aligned parallel to axes of the rectified input image. We express it in

pa(XIN) = [ »(dusllwn), )
(u,v)eD
where p(Quy|luy = 1) = Beta(duy, By, 1), Guw = ( + cos4pyu,) € (0,1) maps the angle to the unit
interval. The probability in the case of a suppressed edge is uniform, p(¢,,|l,, = 0) = 1.
Spacing. The second assumption is that the distance p,, between elements in a neighborhood should
most probably be equal. Let’s first define a sorted circular list for a given terminal element w of its
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n neighbors v; R(u) = {v;|(u,v;) € D,lys, =1, Puy, < Pun,., } ordered by angle, where no element is
preferred as starting. Then we model the assumption by evaluating together distances to neighbors in

k
po(XIN) = T p({pubucnc|N), in which ©)
u=1
L . [ tPuvr Puvs Puv
P Puw; N = _D1r< ) PRI = 7a>p<pu)) (7)
<{ }| ) n [ Ou Ou Ou ] g

where the factor % is due to the free starting element, o, = Y ', pu, is the sum of distances to neighbors;
the mean distance p, = + o, has prior p(p,) = Beta(py, a,, 8,). The symmetric Dirichlet pdf assigns the
highest probability exactly when pu,, = puv, = " = Puv,-

Periodicity. Analogically, the next assumption for angles ¢,,, is that the neighbors of a given element
u should be evenly distributed around it, in terms of their relative angles. We have

k
PX|N) = Hp<{<pm}wemu)yzv), in which )
u=1
1 . Puvy — Puv Puv, — Puvn_1
W HN) = —D( 2 Lo Puo no1] )
p(few }IN) = —Dir( [== o ©)

where the Dirichlet pdf assigns the highest probability to configurations in which the differences between
the neighbors’ angles are equal to each other, i.e. 7 for two neighbors, 2?“ for three, 7 for four, etc. This
assumption partly replicates the alignment rules in p,, however its purpose is to softly suppress multiple
neighbors with closely similar ¢,, but different p,,.

C. Shape Attributes

Aside from the locations X, the appearance of terminal elements is described with shape attributes.
Our terminal elements are represented by a rectangular shape template with its borders parallel to image
borders. The shape attributes A = {W, H, T} = {A; = (w;, h;,t;) € (0,1)%i =1,...,k} are described
in Fig. 2, the relative central column position attribute ¢ is specific to the ‘window’ class elements.

The attribute model can be described as a Markov Random Field on graph GG with unary and binary
factors, assuming element’s attributes are conditionally independent of all other attribute variables given
its neighbors (local Markov property). This is formulated in

k
p(Alk, N, X) = po(A|X) [T p1(A) ] po(Au, Aullin), (10)
=1 (u,v)€D
\—~ -~ o
p1(A4) p2(A|N)

where we additionally specify that when any two shape rectangles overlap each other, then p,(A|X) =0
effectively avoids such configuration (with the simplifying assumption of independence on p; and p,).
Shape prior. The unary factors are attribute priors

p1(A;) = p(ti|ws, hi)p(w;|hi)p(hs), (11)

where p(t;|w;, h;) = Beta(t;, ay, 5;), the aspect ratio has an asymmetric Dirichlet distribution p(w;|h;) =

Dir([w?‘jh,, w‘}fﬁh‘], {aa,ﬂa}), and the height prior is p(h;) = Beta(h;, ap, p)-
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TABLE 1
STRUCTURAL MODEL PARAMETERS.

parameter | Ak Pz Bo | ap | ap,Bo | @y | ar, Bt | an,Br | Qa,Ba | as
value 50 | 0.01 10 10 5,20 10 | 20,10 2,40 20,20 3

Shape similarity. Our attribute constraints reflect the fact that neighboring elements most probably
have the same shape. This can be described with binary factors in

P Wy, Wy )P huahv p tuatv y if luv = 17
1, if 1, = 0,

Wy, Wa
W, +Wy T We+Wo

the case of [,, = 0 the distribution is uniform. Analogically we define the pdfs for i and ¢.

where p(w,, w,) = Dir(]

], ozs) is a symmetrical distribution with its mode at w, = w,, in

D. Parameter Learning

The parameters of the structural model were first learned by fitting the respective distributions to values
computed on the annotated training image set described in Sec. VI. However, for some small or highly
regular datasets, the variance of the regularity and similarity variables can be very small, approaching
a Dirac pdf, resulting in numerical and sampling problems with the fitted pdfs. For such variables, we
specified the minimum variance shown in Tab. I based on empirical tests, what also helped to establish
balance between individual parts of the model. In the future we would like to find a solution to the
problem of complex model tuning such that requires less interaction.

For this setting we have verified our model p(k, N, A, X') by constructing a random sample generator
from the distribution, generating a sequence of 10° samples and selecting the most probable sample in
the sequence. As expected, we got a regular configuration shown in Fig. 2a).

IV. DATA LIKELIHOOD

The input image [ = {i; i = 1,...,1, - I} is defined as a set of pixels and we assume it is rectified,
i.e. the window borders are parallel to the image borders, and I,,, [}, are image width and height.

The data likelihood model p(I|k, A, X, N) is similar to [18]. We express the probability of observing
an image [ given a configuration (k, A, X, N). We combine two independent features: image edges J and
color C' in p(I|k, A, X,N) =p(J|k, A, X, N)p(C|k, A, X, N). We use color to detect regions of interest
and edge features for localization of the window borders.

A. Edge Likelihood

We assume that window borders correspond to edges and represent them by oriented edge image
J = {J;;i € I}, which segments the image into horizontal edge, vertical edge and background regions.
It is then matched with the edge image R(A, X) rendered from the current configuration specified by
attributes A, X and the shape template in Fig. 2. The underlying pdf p(J|A, X) = [[,,; p(Ji| Ri(A, X))
is described in detail in [18]. It is efficiently evaluated from pre-computed integral edge images, one for
each orientation, yielding constant computational complexity O(1) per edge; this speed-up is possible
thanks to rectified images and helps make random sampling (Sect. V) very efficient.
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B. Color Likelihood

We extend the simple color model from [18] and model the input color image C' = {¢; € (0,1)%:=1,...

with a multivariate Gaussian mixture distribution with m = 3 components that targets the ‘window’ class.
We use the configuration (A, X) to partition pixels either to foreground (window) set Cy or background
(non-window) set Cj, such that C'y N Cj, = 0. Assuming pixel independence, the probability of observing

p(C14,X) = [T poies) T] psles) = ‘prcj (13)

1eCy jely jeCy

segmented image is

where the background probability py(c;) = p, = 107 is uniformly constant, || is the image size in pixels
and the foreground color model is expressed by ps(c;) = > i, w;j N (¢j|ui, X;). The mixture parameters
wj, [i, 2; are learned as ML estimates obtained with the EM algorithm [5] by fitting color of ‘window’
class pixels sampled from the annotated training image set.

Like in edge likelihood, color likelihood is evaluated using pre-computed integral images in linear time,
and as (13) suggests, we evaluate foreground pixels only.

V. RECOGNITION ALGORITHM

We have chosen Reversible Jump MCMC framework [8] that fits our task of finding the most probable
interpretation of the input image in the terms of target probability p(¢, ) in (1), which has a very complex
pdf as it is a joint probability of both attributes and structure. Our solution §* is found as the most probable
parameter value the chain visits in a given number of samples.

While the MCMC algorithm is simple, we need to carefully design proposal distribution ¢ that should
approximate target distribution p(6, 1) well so that it is easy to sample from it. We should point out
that the quality of the resulting interpretation is determined by the probability model, on the other hand
the time necessary to reach the solution is influenced by the proposal distributions. It turns out that by
exploiting the estimated structure we can efficiently guide the random walk of our chain by repeatedly
sampling the new state #' from the vicinity of the current state using conditional probability ¢(60'|6).

The conditional sampler ¢(¢'|0,1) — 6 is a mixture of individual samplers such that each modifies
a subset of parameters ¢ based on a specific proposal distribution g¢,,(0'|¢, ). The top-level sampler
only chooses from ¢(m|@) which of the individual samplers m will be used to propose the next move.
We use the set of samplers from [18] to explore the space of parameters # and extend them to fit the
specific needs of the new structural model and to improve the acceptance rate. Their design must fulfill
Markov Chain properties of detailed balance and reversibility of all moves, i.e. given a move there must
always exist a reverse move m’, and their probability ratio must be reflected in the acceptance ratio of
Metropolis-Hastings (MH) algorithm:

pU10")p(0") q(m|0') gm(0]6") g
p|0)p(0)  g(m/|0)  qm(010) = g (u10)
—_—— —— ——

Qam aq Qu,

J, (14)

where o, reflects the choice of individual samplers, «, is the proposal density ratio (ct; = 1 when the
proposals are symmetric), «,, and .J_, are related to dimension changes and will be described in Sec. V-C.
The proposed move is accepted with probability A = min {1, «}. The chain is initialized with ky = 0,
then the only allowed proposal is to add a new element (see Sec. V-C).

kY
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A. Proposal Selection

The sampler mixture distribution ¢(m) is constructed hierarchically, we first choose a probability gr; =
0.1 of reversible jump proposals, from which follows that the ordinary MH jumps have ¢y = 1 —qrs =
0.9. In the second step, we choose uniformly one of the jumps from the appropriate set of proposals
(either ¢(m|M H) or q(m|R.J)) presented in Sections V-B and V-C.

Proposing dimension changes is expensive, therefore we adapt the proposal distribution according to
the current state to achieve a speed up by reducing reversible jumps. This is done by constructing a
conditional distribution ¢;(R.J|0;) = qrs + Te~*, we choose in practice T' = %, 7 = 10*. The vanishing
adaptation (i.e. ¢;(R.J|0;) — qr,) guarantees convergence of the chain even if it is no longer ergodic due
to its adaptation [2].

B. Metropolis-Hastings Moves

The moves introduced in this section perform attribute modifications, thus do not modify the model
complexity £ and can be evaluated by a classical MH algorithm (14), where the ratio has «,, = 1 and
J, =1

We pick up an element i ~ U({1,...,k}) from discrete uniform distribution and perturb some of its
attribute values randomly. We have adopted the drift, resize, flip and resample from [18], here we propose
modifications and extensions for the new model.

Enforce attribute constraints. This move proposes changes to the attributes according to the current
neighborhood, A}, X! ~ q(A;, Xi|]A, X, N). We pick up a random edge (u,v) ~ U(D) and transfer a
randomly selected attribute (h,w or t) value over the edge from one element to another according to the
specific constraints, i.e. al, = a,.

Modify neighborhood. We include a move to allow changes to the neighborhood structure: It picks up
a random edge (u,v) ~ q(u,v|X) and changes its label I/, = 1—1,,, effectively suppressing or recovering
the edge. The edge proposal ¢(u,v|X) is an empirical distribution on {p%vi}vie R(u) to prefer nodes closer
to each other, reflecting the idea of proximity of neighbors.

Modify node coloring. This move picks up a random node i ~ ¢,(k|N) and changes its node color to
z} =1 — z;. The distribution ¢.(k|V) is constructed to prefer nodes 7 from a set where the two-coloring
property of softly bipartite graph is violated, i.e. some of its neighbors u have the same color z, = z;.
We choose from this set with ¢, = 0.9.

C. Reversible Jump Moves

We also need to find the number of elements k, that controls the dimension of the vector of parameters
A, X. In order to compare the models in different dimensions, we need to define dimension matching

functions ¢_,, g, for both direct and reverse moves in (14) where — refers to direct move, <— to reverse

Of— (evu%)

50 is the Jacobian of the transformation,

move, u are dimension matching variables and J_, = ‘

following the notation given in [8].

Birth and Death. By inserting a new element into our model we propose an increase of dimension
k — k' =k + 1, or in the case of death a decrease k — k' = k — 1. The derivation of the acceptance
ratios is given in [18].
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I L

a) basic b) flipped

Fig. 3. Splitting scenarios.

In the basic case of birth the new position is sampled uniformly, z, ~ U and the new attributes from
the prior a, ~ p1(A). The jumps below are special cases of birth that exploit the structure for predicting
values for the new elements, which can be generally described as sampling from a., z. ~ ¢(a,z|N). We
designed them to sample from the marginal distributions of the structural model where possible.

Append. In this case of the birth jump we first choose uniformly an existing terminal element i ~ U (k)
and place the new element relatively to its position according to =, = x; + pr(yp), where v(p) =
[sin(y) cos(p)] and we sample p ~ p(py,) and ¢ ~ p(pu|luy = 1) from the regularity marginals.
Its attributes a, are sampled relatively to a; from the marginal Beta pdf of similarity by § ~ py(A|N)
and then a, = ai%‘s. We explicitly set the edge /;, = 1 and the Jacobian here is J_, = p.

Replicate. This jump is similar to append, but we directly sample an edge (u,v) ~ U(D) and set the
new window position to x, = x, + puV(puw) Where p,, and ¢, are replicated from the sampled edge.
The Jacobian is here J_, = p.

Extend. In this case we add two new elements %, *; at once and connect them with edges to create
a new face (4-cycle) in the graph GG. We sample an edge (u,v) ~ U(D) and set the new positions to
Ty = Ty + puwl(ps) and z., = 2, + puV/(p.) Where o, = @y, £ 7, the sign is chosen randomly.
The attribute values are replicated from a, to a., and a, to a.,. The face is completed by adding edges
Ly = Doy = bupsy = 1.

Split and Merge. The split move proposes increase of dimension £ — k' = k + 1, where an existing
element is transformed into two new ones. Its purpose is to create a shortcut in the parameter space, because
an equivalent concatenation of the above moves has a small acceptance. The general split scenarios are
shown in Fig. 3. We choose the element v € {1,..., k} to be split, the split direction (horizontal/vertical)
and sample the split factors s;; € (0,1) from Beta distribution as the communicating variables u_, =
[ s11 S12 S21 S22 | =s. The alpha and beta parameters are chosen according to a given split scenario,
i.e. for the vertical scenario s11, s12 ~ Beta(2,2), s9; ~ Beta(1,10), s ~ Beta(10, 1). We work with the
element rectangles represented by upper-left and lower-right corners B(X, A) = {Bi = [bn bio bay bgg} =
[2; — 3w, yi — $hi, x; + $w;,y; + 3hi] }. The corresponding dimension matching function is then

[ (Byus) = (B, [s11 812 591 s22)) = ({B-w, Bl,, B*},[]) = (B'.[]), (15)
where for horizontal orientation the rectangles are set to
B* = {{bi1 + s12wu, b1z + s22hu }, {(1 — s12)wy, (1 — s21)hu} }, (16)
B; = {{bn, 512}, {Snwm 822%}}, (17)
which inserts B* into the set. The case for vertical orientation is derived analogically. The Jacobian (for

B-,,B},B*)

both orientations) J_, = ‘6( BBy | = w?h? is calculated from the variables that actually change.
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The inverse move is merge, for which we have no communication variable u, = [] (it is deterministic),
and choose the two neighboring elements B,,, Bt € B’ to be merged into one. To establish reversibility,
we define inverse matching function as

f<—(B,7U<—) = f%({BﬂU,B;,BT}, H) = ({B},S) ~ (B,u_>), (18)

where BT is the removed element and B, is the merged element, B = {B’\ B'}. The split configuration

is detected and ratios s are calculated from the affected element pair B,, BY, inversely to (17). In the
q%(s), where ¢, (s) = p(s11)p(s12)p(s21)p(s22) is the prior

probability of the split and o, = kiH reflects terminal element selection.

For merge, where k — k' = k — 1, the merged element rectangle B, is a bounding box of the merged
O(B'ss)| __ 1

oB) | wihy®
labeling, the derivation of merge move is the same as for split, except for the inversion of ratios, i.e.

k+1
k

configuration.

split move acceptance we now have «, =

elements B, Bf and the Jacobian is now J_, = ‘ Again, with appropriate change of

oy = and o, = ¢ (s), where the corresponding split factors s must be calculated from the input

D. Convergence and Complexity

We have found that the typical necessary number of MCMC samples (classifier calls) is proportional
to image size in pixels |/| (from 30% for easy instances to 200% for the difficult ones). As a result, we
fixed the number of samples in our current method to a pessimistic estimate, but our experiments suggest
that significantly shorter sampling time could be achieved with a suitably designed stopping condition.
Another option is to use a more efficient sampling scheme, i.e. [6] for the continuous part or [3] for the
discrete variables (labels).

VI. EXPERIMENTAL RESULTS

We have performed a number of experiments with the implementation of window detection in facades
of various styles to demonstrate the universality of our approach. We have run the Markov Chain for
5 x 10° iterations in our experiments, which roughly equals to visiting all pixels in the analyzed images.
With our Matlab implementation, the running time was under one minute on a standard 2 GHz CPU.

The only public dataset known to us that allows quantitative comparison in this area has been provided
by [17]. The dataset consists of 30 rectified and annotated images of facades from a street in Paris, which
share attributes of Haussmannian style but differ in illumination conditions. We have trained our model on
20 of them and 10 were used for testing. Direct comparison is not possible, because they segment facade
pixels into eight different classes of elements and our window detector defines only two (window/non-
window). To deal with this issue, we have used a similar reduction as in [18] and merged the columns of
confusion matrix given in [17] into two, treating all original classes other than window as our background
(non-window).

The results in Tab. II for window and wall suggest that the proposed method is performing better in
the terms of high specificity when compared both to the procedural segmentation (PS) framework [17]
and the weak structural model constrained to relative neighborhood graphs (RNG) [18], also see Fig. 6.
We attribute this to the extended color likelihood model with Gaussian mixtures in the HSV color space
(which is less sensitive to the illumination changes), on the other hand, it resulted in a small drop in
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Fig. 4. Top row: Visualization of selected results from Parisian dataset [17], facade a) is occluded by plants, in facade b) a cast shadow is
present. False positive windows are also window-like regions: They have good response from both classifiers and match with the neighbors.
Detected windows are shown in red, neighborhood edges in green and image edges are emphasized in blue. Bottom row: Posterior histograms
for complexity k.

sensitivity to the window class. The new bipartite structural model with parameters learned from the
annotations also contributed to the results, it is able to support windows completing the structure even
where the likelihood response is low. This allows us to achieve good results even when the illumination
varies and partial occlusion of windows is present, as shown in Fig. 4.

Posterior histograms shown in Fig. 4 for complexity k£ demonstrate different difficulty of the images,
which is quantified by estimated entropy H. In the case of a) there is another less probable interpretation
for k£ = 15 (missing some rows of windows), resulting in higher H.

To prove our framework is not limited to a particular style, we demonstrate results on modern buildings
and even hand drawn images in Fig. 7 and Fig. 5. Note the appearance of edges in Fig. 7a) connecting the
‘shifted’” middle column, which was not possible in [18] due to the RNG constraint. The shape parameter
t in Fig. 7b) which was fixed in [18] is now inferred along with the other parameters of the model.

Finally, we have made experiments with loosely regular facade of Dancing House shown in Fig. 5a),
where window alignment shows significant deviation from the grid structure and we were successful in
correctly locating all windows lying on the major plane as well as their neighborhood.

VII. CONCLUSION

We have presented a recognition framework that uses a weak structure model to locate elements in
images, and demonstrated its potential in the task of window detection in facades. Our experiments have
demonstrated that structural regularity given by pair-wise attribute constraints can efficiently guide a
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Fig. 5. Results on non-standard facade images.

Fig. 6. Rows I and 3: Results of the proposed method on the ten test images in the Parisian dataset. Rows 2 and 4: Results on the same
set from [18].
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TABLE 11
QUANTITATIVE RESULTS ON THE PARISIAN DATASET [17] SHOWN AS PERCENTAGE OF PIXELS FROM EACH CLASS SPECIFIED IN A ROW.
THE AREA IS THE PERCENTAGE OF PIXELS OF A GIVEN CLASS IN THE WHOLE TEST SET. PS STANDS FOR PROCEDURAL
SEGMENTATION [17], RNG FOR RELATIVE NEIGHBORHOOD GRAPH [18].

ground truth [17] PS [17] RNG [18] proposed
class area hit | miss || hit | miss hit | miss
window 11 81 19 83 17 76 24
wall 48 83 17 84 16 98 2
balcony 12 72 28 60 40 89 11
door 1 71 29 65 35 100 0
roof 4 80 20 51 49 95 5
chimney 1 0 100 83 17 96 4
sky 7 94 6 99 1 100 0
shop 14 95 5 60 40 99 1
other 2 0 100 61 39 96 4
area-weighted 81 19 77 23 93 7

Fig. 7. Interpreted facades of modern buildings.

stochastic process that estimates element locations and neighborhood at the same time. We have shown
that the conjunction of a weak non-specific classifier and a weak structural model can lead to performance
that would be hardly achievable by a well-trained specific classifier.

In our future work we would like to endow our recognition framework with an ability to handle relations
on multiple levels that would i.e. allow two different structural components to overlap.
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