Refinement of Surface Mesh for Accurate Multi-View Reconstruction

International Workshop on Representation and Modeling of Large-scale 3D Environments Asian Conference on Computer Vision Xian, China, September 2009

> Radim Tyleček, Radim Šára {tylecr1|sara}@cmp.felk.cvut.cz

Center for Machine Perception, Czech Technical University, Prague

Reconstruction Pipeline

Motivation

- High resolution images available
- State-of-the-art MVS results still below accuracy of laser scanners
- Goal: elimination of sources of inaccuracy
 - imprecise camera calibration
 - variable capture conditions
 - suboptimal representation

3D Photography

→ Ξ →

Reconstruction Pipeline

Surface Reconstruction Pipeline

Refined mesh

Surface mesh

The Idea Representation Model Refinement

Depth Map Fusion [Tyl09]

- Image-based representation with a set of reference cameras
- Global problem of joint estimation of depths and cameras

[Tyl09] R.Tylecek, R.Sara: Depth Map Fusion with Camera Calibration Refinement, CVWW 2009

イロト イポト イヨト イヨト

The Idea Representation Model Refinement

Why Pair-wise Stereo?

- Mature methods developed and available [Cech07]
- Less vulnerable to calibration errors than traditional MVS

[Cech07] J.Cech, R.Sara: Efficient sampling of disparity space for fast and accurate matching. BenCOS CVPR 2007

Backprojection The Idea Representation Model Refinement

Depth Map Representation

Depth maps

Visibility and discontinuity maps

Registered depth maps

• Effective representation natural to input data

• Complexity linear in the number of reference cameras

The Idea Representation Model Refinement

Model Refinement

Model = depth, visibility and discontinuity maps + cameras

$$\mathsf{R}^{j}\mathsf{C}^{i}-\mathsf{R}^{j}\mathsf{C}^{j}+ar{\lambda}_{p}^{i}\,\mathsf{R}^{j}\,(\mathsf{R}^{i})^{ op}(\mathsf{K}^{i})^{-1}\mathsf{x}_{p}^{i}=\lambda_{q}^{j}$$

- Camera-depth constraint for each correspondence (K-means like)
- Second-order surface model (depth continuity assumption)
- One global optimization problem with depths $\bar{\lambda}$ and camera translations C as free parameters

- **→** → **→**

The Idea Photo-consistency Contour Matching Surface Evolution

Surface Reconstruction and Refinement

- Change of representation to triangular mesh
- Depth maps merged with PSR [Kaz06]
- Good initial estimate of surface
- Use of camera calibration refined in previous step
- Refinement by combined stereo and contour matching for photo-consistency

[Kaz06] M. Kazhdan, M. Bolitho and H. Hoppe: Poisson surface reconstruction. Eurographics 2006.

The Idea Photo-consistency Contour Matching Surface Evolution

Photo-consistency Measure

We define a stereo photo-consistency function (Normalized SSD)

$$\phi_{I}(\mathbf{X}) = \sum_{i,j \in V(\mathbf{X}), i \neq j} \frac{2 \|I_{i}(\pi_{i}(\mathbf{X})) - I_{j}(\pi_{j}(\mathbf{X}))\|^{2}}{\sigma_{i}^{2}(\pi_{i}(\mathbf{X})) + \sigma_{j}^{2}(\pi_{j}(\mathbf{X}))}$$
(1)

- Given world point **X**, set of images $I_i, i = 1, \dots, N$
- Images $I_i = I_i^0 C_i$ are offset-corrected for overall color balance estimated from projections on current surface
- V(X) is a set of images in which point X is visible
- $\pi_i(\mathbf{X}) \simeq \mathbf{P}_i \mathbf{X}$ is perspective projection function
- σ_{i,j} independently pre-computed image variances (normalizing factors)

- 4 同 6 4 日 6 4 日 6

The Idea Photo-consistency Contour Matching Surface Evolution

Photo-consistency Measure

What is the effect of offset correction?

with offset correction

without offset correction

イロト イポト イヨト イヨト

The Idea Photo-consistency Contour Matching Surface Evolution

Contour Matching

Projection of contour generators on a smooth surface should match local maxima of image gradient ∇I (apparent contours)

$$\phi_{\mathcal{C}}(\mathbf{X}) = \frac{1}{|\Omega(\mathbf{X})|} \sum_{k \in \Omega(\mathbf{X})} \left| \left\langle \nabla I(\pi_k(\mathbf{X})), \varpi_k(\mathbf{N}(\mathbf{X})) \right\rangle \right|$$

- Ω(X) set of cameras that see X as a contour point
- Avoids explicit detection of contours in images
- Takes direction into account
- Requires robust detection of contour vertices (paths)

• Smooth vs. sharp contour generators

The Idea Photo-consistency Contour Matching Surface Evolution

Contour Matching

Projection of contour generators on a smooth surface should match local maxima of image gradient ∇I (apparent contours)

$$\phi_{C}(\mathbf{X}) = \frac{1}{|\Omega(\mathbf{X})|} \sum_{k \in \Omega(\mathbf{X})} \left| \left\langle \nabla I(\pi_{k}(\mathbf{X})), \varpi_{k}(\mathbf{N}(\mathbf{X})) \right\rangle \right|$$

- Ω(X) set of cameras that see X as a contour point
- Avoids explicit detection of contours in images
- Takes direction into account
- Requires robust detection of contour vertices (paths)

• Smooth vs. sharp contour generators

The Idea Photo-consistency Contour Matching Surface Evolution

Contour Matching

Projection of contour generators on a smooth surface should match local maxima of image gradient ∇I (apparent contours)

$$\phi_{C}(\mathbf{X}) = \frac{1}{|\Omega(\mathbf{X})|} \sum_{k \in \Omega(\mathbf{X})} \left| \left\langle \nabla I(\pi_{k}(\mathbf{X})), \varpi_{k}(\mathbf{N}(\mathbf{X})) \right\rangle \right|$$

- Ω(X) set of cameras that see X as a contour point
- Avoids explicit detection of contours in images
- Takes direction into account
- Requires robust detection of contour vertices (paths)

• Smooth vs. sharp contour generators

The Idea Photo-consistency Contour Matching Surface Evolution

Photo-consistency Measure

What is the effect of contour matching?

with contours

without contours

< 日 > < 同 > < 三 > < 三 >

Introduction The Idea Depth Map Fusion Photo-consistency Mesh Refinement Contour Matching Experiments Surface Evolution

Surface evolution

We define a surface energy

$$E_{\Omega}(S) = \int_{S} \left(\phi_{I}(\mathbf{X}) - \alpha \phi_{C}(\mathbf{X}) \right) dA = \int_{S} \phi(\mathbf{X}) dA \qquad (2)$$

combining stereo and contour matching and minimize it by iterative surface flow [2]

$$\frac{\partial S}{\partial t}(\mathbf{X}) = \left(H(\mathbf{X})\phi(\mathbf{X}) - \langle \nabla \phi(\mathbf{X}), \mathbf{N} \rangle \right) \mathbf{N}, \tag{3}$$

イロン 不同 とくほう イロン

- H(X) is the mean curvature of surface at point X
- implicit regularization

[2] H.Jin: Variational methods for shape reconstruction in computer vision. PhD thesis, Washington Univ. (2003)

The Idea Photo-consistency Contour Matching Surface Evolution

Computation of the gradient $\nabla \phi$

- Sampling of image points on projection of surface normal
- Second-order curve fitting for filtering
- Pixel-wide image sampling (needs adequate mesh resolution)
- Coarse-to-fine strategy (scale-space approach)
- Decreasing window size (by 5% in iteration down to 0.1 of original size)

The Idea Photo-consistency Contour Matching Surface Evolution

Computation of the gradient $\nabla \phi$

- Sampling of image points on projection of surface normal
- Second-order curve fitting for filtering
- Pixel-wide image sampling (needs adequate mesh resolution)
- Coarse-to-fine strategy (scale-space approach)
- Decreasing window size (by 5% in iteration down to 0.1 of original size)

The Idea Photo-consistency Contour Matching Surface Evolution

Computation of the gradient $\nabla \phi$

- Sampling of image points on projection of surface normal
- Second-order curve fitting for filtering
- Pixel-wide image sampling (needs adequate mesh resolution)
- Coarse-to-fine strategy (scale-space approach)

18/28

 Decreasing window size (by 5% in iteration down to 0.1 of original size)

The Idea Photo-consistency Contour Matching Surface Evolution

Computation of the gradient $\nabla \phi$

- Sampling of image points on projection of surface normal
- Second-order curve fitting for filtering
- Pixel-wide image sampling (needs adequate mesh resolution)
- Coarse-to-fine strategy (scale-space approach)
- Decreasing window size (by 5% in iteration down to 0.1 of original size)

The Idea Photo-consistency Contour Matching Surface Evolution

Computation of the gradient $abla \phi$

What is the effect of scale-space approach?

fixed scale

variable scale

Standard datasets Large outdoor datasets

Experiments on Standard datasets

- Increase of accuracy
- Edges emphasized
- Higher surface quality
- Flat surfaces smooth

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

fountain-P11

Standard datasets Large outdoor datasets

Experiments on Standard datasets

Fountain-P11 dataset detailed rendering.

a) input image

b) ground truth

c) depth map fusion

d) mesh refinement

e) result of FUR

f) result of VU

< ロ > < 同 > < 回 > < 回 >

Standard datasets Large outdoor datasets

Evaluation on Standard datasets

- Ground truth from laser scanners
- Surface projected to cameras
- Depth measurement error σ
- Most details below ground truth error σ
- Completeness vs. Accuracy

イロト イポト イヨト イヨト

http://cvlab.epfl.ch/~strecha/multiview/denseMVS.html

[Fur07] Y.Furukawa, J.Ponce: Accurate, dense, and robust multi-view stereopsis. CVPR 2007.

[Vu09] H.Vu, R.Keriven, P.Labatut, J.P.Pons: Towards high-resolution large-scale multi-view stereo. CVPR 2009.

Standard datasets Large outdoor datasets

Experiments on large outdoor dataset

Asia scene

Standard datasets Large outdoor datasets

Experiments on large outdoor dataset

Asia refined result

textured

_ ₽ ▶

→ Ξ → < Ξ</p>

Standard datasets Large outdoor datasets

Results on the Asia dataset.

a) depth map fusion

b) elephant's head

c) refined detail

<ロト <部ト < 注ト < 注ト

Standard datasets Large outdoor datasets

Summary

Refinement of Surface Mesh for Accurate Multi-View Reconstruction

- Pipeline for accurate 3D reconstruction
- Surface reconstruction with Depth Map Fusion
- Camera calibration refinement
- Image offset correction
- Photometric mesh refinement
 - Combining stereo and contour matching
 - Scale-space approach

同 ト イ ヨ ト イ ヨ ト

Standard datasets Large outdoor datasets

Thank you.

<ロ> <同> <同> < 同> < 同>

æ