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Introduction

Reconstruction Pipeline

Motivation

@ High resolution images available

@ State-of-the-art MVS results
still below accuracy of laser
scanners

@ Goal: elimination of sources of
inaccuracy

e imprecise camera calibration
o variable capture conditions

e suboptimal representation 3D Photography
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Introduction

Reconstruction Pipeline

Surface Reconstruction Pipeline

Input images Corresponding Pair-wise
regions disparity maps
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The Idea
Representation
Model Refinement

Depth Map Fusion

Depth Map Fusion [Tyl09]
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@ Image-based representation with a set of reference cameras

@ Global problem of joint estimation of depths and cameras

[Tyl09] R.Tylecek, R.Sara: Depth Map Fusion with Camera Calibration Refinement, CVWW 2009
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The Idea
Representation
Model Refinement

Depth Map Fusion

Why Pair-wise Stereo?

e Mature methods developed and available [Cech07]
@ Less vulnerable to calibration errors than traditional MVS

[Cech07] J.Cech, R.Sara: Efficient sampling of disparity space for fast and accurate matching. BenCOS CVPR 2007
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Representation
Model Refinement

Depth Map Fusion

Depth Map Representation

Depth maps Registered depth maps

=
Back-
projection

@ Effective representation natural to input
data

@ Complexity linear in the number of
reference cameras

Visibility and
discontinuity maps
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The Idea
Representation
Model Refinement

Depth Map Fusion

Model Refinement

Model = depth, visibility and discontinuity maps + cameras

RIC'—RIC + )\ R (R)T(K)'x, = M,

@ Camera-depth constraint for each
correspondence (K-means like)

@ Second-order surface model
(depth continuity assumption)

@ One global optimization problem with
depths )\ and camera translations C
as free parameters
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The Idea
Photo-consistency
Mesh Refinement Contour Matching

Surface Evolution

Surface Reconstruction and Refinement

@ Change of representation to triangular
mesh

@ Depth maps merged with PSR [Kaz06]
@ Good initial estimate of surface

@ Use of camera calibration refined in
previous step

@ Refinement by combined stereo and
contour matching for photo-consistency

[Kaz06] M. Kazhdan, M. Bolitho and H. Hoppe:
Poisson surface reconstruction. Eurographics 2006.
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The Idea

Photo-consistency
Mesh Refinement Contour Matching

Surface Evolution

Photo-consistency Measure

We define a stereo photo-consistency function (Normalized SSD)

2 (X)) — i (X))
2 o2 (X)) o2, (X) )

¢1(X) =
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Given world point X, set of images ;,i=1,..., N

Images I; = I,-0 — (; are offset-corrected for overall color
balance estimated from projections on current surface

e V/(X) is a set of images in which point X is visible

e 7;(X) ~ P;X is perspective projection function

@ 0; independently pre-computed image variances (normalizing
factors)
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The Idea

Photo-consistency
Mesh Refinement Contour Matching

Surface Evolution

Photo-consistency Measure

What is the effect of offset correction?
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The Idea

Photo-consistency
Mesh Refinement Contour Matching

Surface Evolution

Contour Matching

Projection of contour generators on a smooth
surface should match local maxima of image
gradient VI (apparent contours)

> [(VI(m(x)), = (N(X)) )|

keQ(X)

L

20 = fagx|

@ Q(X) — set of cameras that see X as a
contour point

@ Avoids explicit detection of contours in
images

@ Takes direction into account

@ Requires robust detection of contour vertices
(paths)

@ Smooth vs. sharp contour generators
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Contour Matching
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Contour Matching
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Surface Evolution

Photo-consistency Measure

What is the effect of contour matching?
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without contours
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The Idea

Photo-consi:
Mesh Refinement Contour Ma

Surface Evo

Surface evolution

We define a surface energy

EalS) = [ (6100 - avc())da= [ o(x)an ()

combining stereo and contour matching and minimize it by
iterative surface flow [2]

%X) = (H)$(X) = (Vo(X).N) )N, (3)

@ H(X) is the mean curvature of surface at point X
@ implicit regularization

[2] H.Jin: Variational methods for shape reconstruction in computer vision. PhD thesis, Washington Univ. (2003)
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Mesh Refinement Contour Matching
Surface Evolution

Computation of the gradient V¢

@ Sampling of image points on
projection of surface normal

@ Second-order curve fitting for
filtering

@ Pixel-wide image sampling (needs R
adequate mesh resolution)

12

@ Coarse-to-fine strategy A

-

(scale-space approach) osf| ¢ w0

— O i

@ Decreasing window size (by 5% in ® oall T o
iteration down to 0.1 of original 02
. 0
size) o
-0.1 -0.05 0 0.05 01
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Mesh Refinement

Surface Evolution

Computation of the gradient V¢
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Surface Evolution

Computation of the gradient V¢
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projection of surface normal
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Mesh Refinement

Surface Evolution

Computation of the gradient V¢

@ Sampling of image points on
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@ Second-order curve fitting for
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The Idea
Photo-consistency
Mesh Refinement Contour Matching

Surface Evolution

Computation of the gradient V¢

What is the effect of scale-space approach?
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Standard datasets

Experiments

Experiments on Standard datasets

@ Increase of
accuracy

o Edges
emphasized

@ Higher surface
quality

o Flat surfaces
smooth

fountain-P11
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Standard datasets

Experiments

Experiments on Standard datasets

Fountain-P11 dataset detailed rendering.

d) mesh refinement f) result of VU
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Experiments

Standard datasets
Large outdoor datasets

Evaluation on Standard datasets
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Ground truth from
laser scanners

Surface projected to
cameras

Depth measurement
error o

Most details below
ground truth error o

Completeness vs.
Accuracy

[Fur07] Y.Furukawa, J.Ponce: Accurate, dense, and robust multi-view stereopsis. CVPR 2007.

[Vu09] H.Vu, R.Keriven, P.Labatut, J.P.Pons: Towards high-resolution large-scale multi-view stereo. CVPR 2009.
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Standard datasets
Large outdoor datasets

Experiments

Experiments on large outdoor dataset
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input images (238)

Asia scene
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Standard datasets
Large outdoor datasets
Experiments

Experiments on large outdoor dataset

textured

Asia refined result
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Standard datasets

Large outdoor datasets

Experiments

Results on the Asia dataset.

b) elephant’s head c) refined detail
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Standard datasets
Large outdoor datasets
Experiments

Summary

Refinement of Surface Mesh
for Accurate Multi-View Reconstruction

Pipeline for accurate 3D reconstruction
Surface reconstruction with Depth Map Fusion
Camera calibration refinement

Image offset correction

Photometric mesh refinement

e Combining stereo and contour matching
e Scale-space approach
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Standard data
Large outdoor datasets

Experiments

Thank you.
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