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Abstract

We propose a method for stochastic parsing of images

with regular structures exhibiting symmetries, such as fa-

cades of buildings. The translational symmetry is repre-

sented by an array of elements (windows) that is generated

with a stochastic grammar which allows structural excep-

tions and spatial deviations for individual elements. The re-

flection symmetry of the elements is automatically inferred

as a part of the learning process, where a set of random

weak features is boosted into a final mixture.

A hierarchical probability model is built for the at-

tributed ’words’ generated by the proposed grammar. The

image parsing result is then found as the most probable in-

terpretation visited with MCMC sampler which is designed

to efficiently explore the space of possible configurations.

1. Introduction

Stochastic grammars are becoming increasingly popular

as a way of representing the prior knowledge about struc-

ture and relationship of objects in the images. They were

found suitable for both generation and recognition of struc-

tured scenes in 2D and 3D, and as such have applications in

both computer graphics and vision, i.e. in reconstruction of

urban scenes [8]. In this paper we will be interested in their

use for recognition of symmetric structures in images.

Our goal is to model regular structures rather then gen-

eral relations between parts and objects in part-based mod-

els [4, 3], but we establish a similar hierarchy of layers

which is in our case given explicitly by different nested re-

gions - arrays, elements and features. We build on a gen-

eral assumption that the embedding of constraints such as

symmetry, similarity and regularity in the model allows to

achieve better performance than the general approach.

Shape grammars were introduced in [5] and later picked

up by [21] as the basic essence for a number of recent pars-

ing methods to overcome the limitations of traditional seg-

mentation techniques. The idea of shape grammars is that

image can be constructed as a word in a specific language

by applying rules on symbols.

In facade modeling, a wide-spread class of shape gram-

mars are split-based grammars that originate in procedural

modeling [13, 16, 1]. They hierarchically split the entire

image into orthogonal regions of different classes. A re-

cent representative [19] combines trained randomized for-

est classifiers with shape grammar to segment Haussman-

nian facades into eight classes. Their model assumes win-

dows form a grid while allowing different intervals. In the

second step, positions of rows and columns are stochasti-

cally estimated by a specific random walk algorithm. Sub-

sequently they have proposed a new parser based on rein-

forcement learning to speed up the process in [18]. Their

results were quantitatively evaluated on a dataset of Hauss-

mannian facades in Paris which is available on-line. An ap-

proach closer to our was chosen in [20], where the structure

is modeled by weak pairwise priors.

The recognition of symmetries and their application for

vision problems has also received more interest in the last

years. The case of translational symmetry was treated

in [7, 14], where lattices are detected in areas seen as near-

regular textures. A similar approach applied to rotational

and reflective symmetries was implemented in [12]. A large

set of symmetries, including helical, is discovered in 3D

data in [15], where the usability of symmetries is demon-

strated on the task of surface completion. While the men-

tioned methods detect arbitrary repetitive patterns, our in-

terest is in objects of specific appearance.

The goal of this paper is to show a flexible structural

model suitable for parsing of raw images with possibly mul-

tiple instances of symmetric structures of image elements,

such as facades with windows.

We follow an approach that stands on the concept of

scopes [17], where a configuration of objects is placed in

a ‘container’, which is an image interval (in the simple case

a rectangle). It allows us to directly work with nesting rela-

tions, represent structures that overlay each other and frees

us from the need to explain the entire image as opposed to

the split-based grammars. Also we do not explicitly assume

we are given a structured (facade) image on the input, and

can answer ‘there is probably no facade’, when the model

prefers to model entire image as the background.
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For a higher level of flexibility, we introduce spatial and

structural exceptions into otherwise regular arrays of ele-

ments. They bring the benefits of the possibility to repre-

sent a wider range of structures and it has also showed that

the proposed stochastic recognition can faster traverse the

space of possible configurations.

2. Grammar

Our goal is to describe a semi-regular array of elements

as in Fig. 2. The spatial layout of the terminal elements

is a lattice with possible individual deviations of location

(spatial deviations). We allow empty positions in the array

(holes), i.e. an item of the array is left out (structural excep-

tion) and introduce additional attributes for representation

of these exceptions.

We will represent this with attributed context-sensitive

stochastic grammar, with contextual sensitivity through at-

tribute constraints. The language of our grammar describes

how the image I contains sub-regions we will call scopes

Σ, each scope S defines an array A that splits into rows R

or columns C containing terminal elements w, which can

be formally written as in Fig. 1. We will use the convention

that bold face letters denote vectors or matrices and sub-

scripts their variable dimension throughout this paper.

2.1. Attributes

Scope set Σl and scope S. Each of l scopes in the set

has defined scope rectangle xi ∈ (0, 1)
4

and array dimen-

sions mi, ni ∈ N. The values of all spatial attributes are

relative to the parent, i.e. for scopes it is the image rectan-

gle. In this paper, we will proceed only with a single scope

in the image, its actual implementation is subject of our cur-

rent work, thus we fix l = 1.

Array Am×n, rows Rnand column Cm. All terminal el-

ements in the array have common size d = {h,w} ∈

(0, 1)
2

and define row and column positions ri, ci ∈ (0, 1).
An array can be expanded either by removing the last row

or column.

Terminal elements w (d, r, c,∆, h). Each element has

independently defined position deviation ∆ = {δr, δc} ∈

(0, 1)
2
. Its actual rectangle of size d is then centered on the

position given by (r+ δr, c+ δc). The structural exceptions

are represented with binary hole labels h ∈ {0, 1}, where

h = 0 marks presence of an element and h = 1 a structural

exception, what results in treating the element area as the

background. For simpler view the reader can identify the

terminal elements with windows throughout this paper.

3. Probability Model

We build a probability model on the set of attributes θ

of the structural model generated by the proposed grammar

and the image data I , and express it as the product of likeli-

hood and prior:

p(θ, I) = p(I|θ)p(θ). (1)

3.1. Structure Prior

The prior for structural attributes is defined as

p(θ) = p(x)p(r|w,m)p(c|h, n)p(∆|h,w,m, n) (2)

p(H|m,n)p(m,n|h,w)p(h,w).

Scope prior. The scope is expected to fill the

image, which is modeled by setting p(x) =
Be(‖x‖ , βx, 1), βx =10 for the occupied area, its

actual position is uniformly distributed.

Window size prior. It is independently set to p(h,w) =
p(h|w)p(w) with Beta distributions for width and aspect

that were fitted to the training data.

Array size. Array size prior is p(m,n|h,w) =
p(m|x,w)p(n|x, h) with binomial distributions

p(m|x,w) = Bi (m,mmax, αm) , (3)

where mmax =
⌊

mw
|x|

⌋

is the limit given by the terminal ele-

ment and scope widths, and αm = 0.5 models the expected

free space between the terminal elements (analogically for

columns in p(n|x, h)).

Row and column positions. The array rows are expected

to be equispaced, this is modeled with a homogeneous

Dirichlet distribution on inter-row distances:

p(r|w,m) =
1

B(α)

m
∏

i=0

(ri+1 − ri − w)αi−1, (4)

where we additionally define r0 = 0 and rm+1 = 1 to

include the border intervals. The parameter αi = 3 con-

trols the width of modes of marginal Beta distributions of

row positions and where the non-overlapping constraint is

implicitly enforced. Column position prior p(c|h, n) is de-

fined analogically.

Spatial deviations. The local deviations from the grid de-

fined by r and c are normally distributed with the scale of

the terminal element’s size:

p(∆|h,w) =
m
∏

i=1

n
∏

j=1

p(δcij |w)p(δ
r
ij |h), (5)
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I −→ Σl (xl,ml,nl)

Σl+1 (xl+1,ml+1,nl+1) −→ Σl (xl,ml,nl) ◦ S(xl+1,ml+1, nl+1)

S(x,m, n) −→ Am×n (d, rm, cn)

Am+1×n (d, rm+1, cn) −→ Am×n (d, rm, cn) ◦Rn (d, rm+1, cn)

Am×n+1 (d, r, cn+1) −→ Am×n (d, rm, cn) ◦ Cm (d, rm, cn+1)

Rn+1 (d, r, cn+1) −→ Rn (d, r, cn) ◦ w (d, r, cn+1,∆, h)

Cm+1 (d, rm+1, c) −→ Cm (d, rm, c) ◦ w (d, rm+1, c,∆, h)

A0×0 −→ ε

R0 −→ ε

C0 −→ ε

Figure 1. Proposed grammar in Chomsky Normal Form [9] with start symbol I, non-terminal symbols in capitals and terminal symbol and

attributes in lower-case.

c1 c2 c3

r1

r2
∆ h

w

(x11, x12)

(x21, x22)

w

I

S

Figure 2. Scope and array parametrization (green), terminal elements (red) with centers.

where p(δcij |w) = N
(

δcij
w
, 0, σδ

)

scales horizontal devia-

tion with width, analogically for vertical and height.

Structural exceptions. The presence of holes is modeled

by

p(H) =
m
∏

i=1

n
∏

j=1

p(hij), (6)

where p(hij = 1) = ph = 0.1 and p(hij = 0) = 1− ph =
0.9.

3.2. Image Likelihood

The likelihood of the given input image I is defined for a

combination of foreground (interiors of terminal elements)

and background areas If and Ib

p(I|θ) =
∏

i∈I

p(Ii|θ) =
∏

i∈Ib

pb(Ii|θ)
∏

j∈If

pf (Ij |θ). (7)

The background pixels Ib are evaluated individually and

uniformly, foreground pixels are grouped by elements in

p(I|θ) = p
|I|
b

m
∏

i=1

n
∏

j=1

(

pf (Iij)

pb(Iij)

)|d|

, (8)

where Iij denotes all pixels in the element rectangle at row

i and column j, and |I|, |d| are dimensions of the image and

element in pixels. The foreground probability is given by a

mixture of weak features Φ

pf (Iij) =
∑

ϕ∈Φ

p(ϕ)pf (Iij |ϕ). (9)
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If the terminal element is excluded from the array (hidden,

hij = 1), then its area is treated as a background, it is not

evaluated and we set pf (Iij) = pb. In the standard case

(hij = 0) the probability pdf is given by a specific feature.

We designed three families of features to discriminate fore-

ground from the background, because they are computed

frequently during sampling, they must be simple enough to

be fast. To cope with this limitation, we choose features

calculated from integral images. They are described in the

next sections as well as the actual selection of the feature

set.

3.2.1 Differential features

The first family is based on randomly generated basic set of

Haar-like features [11], which are expected to work well in

the largely orthogonal world of arrays. A feature is specified

by its rectangle within terminal element scope, type (single

split, double split, central), orientation (horizontal/vertical),

split position within the rectangle and the number of im-

age channel on which a feature is evaluated. We work with

six channels generated from the input RGB image: hue,

saturation, intensity, edges (detected by standard Canny)

and horizontal and vertical gradients of the intensity image.

Since the surrounding area of the terminal element of inter-

est plays an important role for its localization, we extend

the actually evaluated area for input to the classifier by 20%

in all directions.

The Haar-like feature responses (differences between the

split parts) are then fitted to the range of (−1, 1) and the

classification threshold is shifted by t0. The transformation

is based on the statistics of positive and negative samples in

the training set, which should ideally have clearly separated

modes. The classification threshold t0 ∈ (−1, 1) is com-

puted in Bayesian way from Beta distributions fitted to the

training samples as in Fig. 3.

Instead of taking directly the likelihood ratio, we can

now define sigmoidal pdf (Fig. 4) on this response t ∈
(−1, 1)

Sig(t|t0, σ) =
1

Z(σ)

1

1 + e−σ(t−t0)
,

where Z(σ) = 1
σ
(log(1+eσ)− log(1+e−σ)) is a partition

function and σ controls the cutoff slope, which is set as the

mean of the standard deviations of the fitted Beta distribu-

tions. This pdf can be now simply inserted into the set of

features (9) as

pf (Iij |ϕ) = Sig(Hϕ · Iij |tϕ, σϕ) (10)

where Hϕ is the Haar-like feature mask.

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x

p
(x
)

σ=0.01

σ=0.1

σ=0.3

Figure 4. Sigmoidal pdf for different values of σ.

3.2.2 Symmetric features

While the features described in the previous section are

based on differences of feature’s rectangles, we can also

in the same fashion evaluate their similarity, which corre-

sponds to the reflection symmetry. The only change is that

we expect the means of values in both Haar-like rectangles

to be equal, and model it with a zero-mean normal distribu-

tion on values of the differences of responses t:

p(t|σ) = N (t, 0, σ),

which is fit to the positive samples and inserted into set as

in the previous section.

This gives us the potential to learn any reflection sym-

metry with horizontal or vertical axis that is present within

the element area (including the symmetry of entire element

area) by selection of discriminative features described later

in Sec. 3.3. Depending on the training data, the reflection

symmetries can be included in the final model or not, unlike

translational symmetry of arrays which is enforced explic-

itly by grammar (though allows exceptions).

3.2.3 Similarity features

The appearance of terminal elements in the model should

be most probably equal. We model this by introducing a

hidden variable Īf that represents the appearance, and then

evaluate

pch
(

If (rm, cn)|Īf
)

= N
(
∥

∥

∥
I
m,n
f,ch − Īch

∥

∥

∥
, 0, σch

)

.

where ‖·‖ is a measure of similarity, such as SSD between

terminal element area and its appearance template. How-

ever, this computation is expensive and grows with image

resolution. The actual measure we used is difference of

mean values of element and template, which can be com-

puted easily with integral images. We deterministically set

the appearance to be the mean over all terminal elements

Īch = 1
MN

∑

mn I
m,n
ch in the image, and then insert these

features into the generated set for all channels. It acts in

the model as an adaptive component that can increase the

ability of generalization in the proposed method.
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Figure 3. Left: Haar-like feature for vertical gradient channel. Right: histogram of its responses for positive class (red) and negative class

(blue), fitted sigmoidal pdf in green (scaled).
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Figure 5. Left: Symmetric feature for intensity channel evaluates similarity of the two rectangles. Right: Responses for positive class are

small (red) and higher for negative class (blue).

3.3. Learning

Most parameters of the structural model were inferred

by fitting respective distributions (as given in the probabil-

ity model) to the training samples. In certain cases (when a

specific value is given in the text) we assigned them manu-

ally because it was not obvious how to extract them or there

were not enough samples to build a statistics. However, our

intention is to train all parameters automatically in the fu-

ture.

To learn the the feature mixture for image likelihood

in (9), we employ the well known concept of boosting to

combine a set of weak classifiers into a single, powerful

one. The output feature set F and the weights p(f) of the

individual features in (9) are selected with FloatBoost [10]

from the set of 100 generated and filtered weak features (un-

promising ones are directly discarded). Moreover the least

weighted features that fail to improve results on the vali-

dation set are removed in order to reduce overfitting and

computation cost. The whole selection process is repeated

100× and ultimately all selected features are combined into

one set and boosted once more. The resulting set typically

contains ∼ 30 features.

4. Recognition

The solution θ∗ for a given input image is found as the

most probable sample

θ∗(I) = argmax
θ

p(θ, I)

visited in the run of Markov Chain Monte Carlo. It allows

us to efficiently explore the space of all possible attribute

configurations by means of a random walk and to traverse

different dimensions at the same time.

4.1. Independent sampling

For initialization of the chain we can sample θ0 ∼ p(θ)
directly from the prior distributions, first scope x and ter-

minal element size h,w, then array dimensions m,n and

subsequently all other attributes.

4.2. Conditional sampling

The conditional sampler θ′ ∼ q(θ′|θ, I) is a mixture

of individual samplers such that each modifies a subset

of parameters θ based on a specific proposal distribution

qs(θ
′|θ, I). The main sampler chooses from q(s|θ) which

of the individual samplers s will be used to propose the next
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move. We will now propose the set of samplers that will ex-

plore the space of parameters θ. Their design must fulfill

Markov Chain properties of detailed balance and reversibil-

ity of all moves, i.e. given a move there must always exist a

reverse move s′, and their probability ratio must be reflected

in the acceptance of Metropolis-Hastings (MH) algorithm:

A = min

{

1,
p(θ′, I)

p(θ, I)
·
qs′(θ|θ

′, I)

qs(θ′|θ, I)
·
q(s′|θ′)

q(s|θ)

}

. (11)

Change element size h,w

Adjust the terminal element dimensions by adding a random

vector either to height h′ = h + dh, dh ∼ N (0, σh) or

similarly to width w.

Move scope x. Adjust the position of the scope rectangle

by adding a random vector x′ = x+ dx, dx ∼ N (0, σx).

Resample row and column positions r, c.

Uniformly draw a row (or column) i. The distribution

for its new position within the corresponding interval is

Be(ατ , βτ ) with mode centered in a random portion τ ∈
{

1
2 ,

1
3 ,

2
3

}

r′i ∼ q(ri|ri−1, ri+1). (12)

For the first and last position, the support distance is

given by positions of the nearest two rows/columns r′1 ∼
q(r1|r2, r3).

Resample positions deviations δij .

Uniformly choose a terminal element at position ij, then

resample its deviation from the prior δ′ij ∼ p(δij |w, h).

Change structural labels hij .

Uniformly choose a terminal element at position ij, then

invert its hole label h′
ij = 1− hij .

Add and remove rows or columns m,n.

This proposal changes the dimension of the parameter vec-

tor θ and such operation requires additional factors in (11),

as described in [6].

Add (birth). It is possible to insert a new row in be-

tween of two present rows, before the first or after the last.

In the last two cases the scope is extended to fit a new row if

necessary. The new position is sampled as in (12). The cor-

recting factor in acceptance ratio for dimension matching is

in this case 1
p(ri|R¬i)

.

Remove (death). Remove random row or column. The

correcting factor in acceptance ratio for dimension match-

ing is inverse of Add, thus p(ri|R¬i).

Resample positions deviations δ.

Uniformly choose a terminal element at position ij, then

resample its deviation from the prior δ′ij ∼ p(δij |w, h).

5. Experiments

We have performed experiments on the rectified facades

of images to evaluate the performance of the proposed

method. We have used two facade image databases [19, 2]

and trained both classifier and the structural model to de-

tect arrays of windows. The images in [2] were automati-

cally rectified and both databases were split into three parts

for training, validation and testing purposes. Positive sam-

ples (windows) were manually filtered to exclude unrepre-

sentative ones (occluded, distorted, etc.). Negative samples

were taken randomly around the positive ones such that the

pixel in the center does not belong to the positive class. The

MCMC was run for a fixed number of 5 × 104 samples,

what corresponds roughly to visiting 30% of image pixels

and 10 minutes of CPU time. Both sampling and its imple-

mentation are subject to further optimization.

The typical results are presented in Fig. 6, where certain

amount of vertical ambiguity can be observed in the image

likelihood b), which is resolved by the row position prior in

the output result c). Note that also doors are included in the

array since they have similar appearance and the classifier

is not trained to distinguish between the door and window.

The black areas in the corners were outside the original (un-

rectified) images. More results can be seen in Fig. 7, notice

how is our method successful in determining the scope po-

sition and to handle the structural exceptions (missing win-

dow). In some cases here the spatial deviations from the

regular positions help to better localize the element.

Results on the Parisian database were compared with

split-based methods proposed in [18, 19], however direct

comparison is here not possible as they solve multi-class

problem, but still it is the only result we can set against.

Quantitative results on relevant window and wall classes are

given in Tab. 1 and selected images are displayed in Fig. 8.

The difficulty in our case rises from the fact we purposely

model the background uniformly, in contrast to [18, 19]

where the single wall classifier can with ease fit its ochre

color over the entire dataset. Though no strong conclusions

can be made and without intention to compete, we evalu-

ate the performance of our method as comparable with the

previous ones while the model is more biased towards false

negatives.
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a) input image b) image likelihood c) parsing result

Figure 6. Results on a typical image, its likelihood b) is computed with the correct window size as seen in c).

Figure 7. Results on selected images from Prague [2]

Class PS [19] RL [18] WSM [20] our

window 81 81 83 78

wall 83 84 84 89
Table 1. Quantitative evaluation on Paris dataset [19], recognition

rate in percents.

6. Conclusion

The proposed method based on the concept of scopes

was presented as a competitive alternative to existing mostly

split-based methods, while allowing wider range of possi-

ble applications thanks to its higher generality. The overall

hierarchy of nested scopes ‘image - array scope - terminal

element - feature’ comes out as a flexible representation that

is open to future extensions and suitable for intended appli-

cations such as structural priors for 3D reconstructions.

Our current interest is to work with multiple array scopes

in one image, which will allow us for example to segment

streets into individual houses and extension to more object

classes. Simultaneously we want to complete the learning

of all parameters from the training data and explore un-

solved problems related to sampling, such as termination

criteria and learning proposal densities.
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Figure 8. Results on three selected images from the Parisian dataset [19]
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[20] R. Tyleček and R. Šára. A weak structure model for regular

pattern recognition applied to facade images. In Proc. ACCV,

volume 6492 of LNCS, pages 450–463, 2010. 1, 7

[21] S. Zhu and D. Mumford. A stochastic grammar of images.

Foundations and Trends in Computer Graphics and Vision,

2(4):362, 2006. 1

8




