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Abstract

This thesis deals with application of symmetry principles to computer vision problems of object
detection in images. The focus is put on the ways how our prior knowledge on translation,
reflection and rotation symmetries can be encoded in probabilistic models. Conceptually
the position of our object-centered approach lies between general symmetry detection and
strongly informed procedural modeling.

In particular we present two methods for parsing of facade images, where translation
symmetry manifests in the structure of architectural elements like windows, doors and cornices.
In both cases the structural model is based on local interactions between objects and the
symmetry is represented in the spirit of Gestaltian grouping principles of proximity, similarity
and continuity.

The initial method Weak Structure Model uses efficient random sampling to infer the
most probable configuration of windows. Experimental results suggest that a simple data
model accompanied with appropriate symmetry prior can outperform other methods with
more specific window classifiers.

The next approach called Spatial Pattern Templates aims to learn the important relations
of the facade structure beforehand rather than inferring it at inference time like in the previous
case. This process is facilitated by conditional random field framework, where powerful
training methods are available. We have also found that the available datasets cannot provide
a number of samples sufficient for such training. We have resolved this obstacle by assembly
of a rich and large CMP Facade Database, which is now available to other researchers.

The last method explores the remaining reflection and rotation symmetries. At this time
the Bayesian inference is used to handle a hierarchical model extending from the low-level
geometry of reflection symmetry to dihedral symmetry groups. Objectness and compactness
priors are included to reduce ambiguity in the detection. The increased complexity of the
model is compensated by utilization of an advanced inference method, which allows to
rigorously reason about number of detected components by means of model selection. In
result we show this approach improves performance on standard datasets, particularly in the
case when multiple objects are present.

vii



viii Doctoral Thesis



Anotace

Tato práce se zabývá aplikací principů symetrie na problémy počítačového vidění jako je
detekce objektů v obrazech. Zaměřuje se na způsoby jakými lze do pravděpodobnostních
modelů zakódovat naší znalost o translační, osové a rotační symetrii. Naš přístup založený na
objektech koncepčně leží mezi obecnými metodami pro detekci symetrií a silně informovaným
procedurálním modelováním.

Konkrétně představujeme dvě metody pro analýzu obrazů fasád domů, kde se translační
symetrie projevuje na struktuře architektonických prvků jako jsou okna, dveře a římsy. V
obou případech je model struktury založen na lokální interakci mezi objekty a symetrie je
reprezentované ve smyslu Gestaltovských shlukovacích pravidel pro blízkost, podobnost a
návaznost.

Úvodní metoda se slabým strukturním modelem používá efektivní náhodné vzorkování
pro nalezení nejpravděpodobnější konfigurace oken. Experimentální výsledky naznačují, že i
jednoduchý datový model doplněný vhodným apriorním modelem může překonat jiné metody
využívající specifických klasifikátorů oken.

Následující přístup založený na šablonách prostorových vzorů si klade za cíl se předem
naučit významné vztahy mezi prvky fasád, narozdíl od předchozího, kde je toto součástí
vzorkování. Učení je zprostředkováno použitým podmíněným náhodným polem, pro které
jsou k dispozici účinné metody pro trénování. Přitom jsme zjistili, že dostupné datasety
neobsahují dostatečný počet vzorků pro trénování. Tuto překážku jsme odstranili sestavením
vlastní databáze fasád, která je nyní dostupná ostatním výzkumníkům.

Závěrečná metoda zkoumá osovou a rotační symetrii. V tomto případě je použita
Bayesovská inference pro hierarchický model sahající od geometrie osové symetrie na nízké
úrovní až po dihedrální symetrické grupy. Objektovost a kompaktnost jsou přitom použity
jako apriorní vlastnosti pro snížení nejednoznačnosti při detekci. Vyšší komplexnost modelu
je kompenzována využitím pokročilých inferenčních algoritmů, které umožňují rigorozně
odvodit počet nalezených komponent výběrem správného modelu. Výsledky ukazují že tento
přístup zvyšuje přesnost na standartních datasetech, zejména v případech kdy se v obraze
nachází více objektů.
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Chapter 1

Introduction

“It is the harmony of the diverse parts, their symmetry, their happy balance; in a word it is
all that introduces order, all that gives unity, that permits us to see clearly and to comprehend
at once both the ensemble and the details.”

Henri Poincare (1854-1912)

Symmetry is a natural phenomenon and our visual perception system learned to use
it as a guide to explain what we see. Particularly in the cases when the observed scene
is ambiguous the reasoning tends to prefer explanations which follow some innate prior
principles. Psychologists in their research on human perception came up, among other
concepts, with principles of grouping also known as Gestalt laws (Goldstein, 2009). The
observation that humans naturally perceive objects as organized patterns and objects can be
then explained with a set of principles such as proximity, similarity, continuity or symmetry.
When we extend the narrow meaning of symmetry from reflection and include rotation and
translation isometries as in geometry, we can cover many of these principles with a single
general term – symmetry.

In analogy these principles are used in computer vision, where pattern recognition methods
facilitate image understanding. In this context symmetry has been applied at all levels of
processing, from low-level features to 3D models, and also validated as a useful regularizer in
difficult inference tasks. In this role of a prior a range of applications opens, but at the same
time the mechanism encoding the prior knowledge and its seamless integration in the model
become equally important.

Simultaneous symmetry detection has become a discipline of its own, where researchers
foster their methods in an effort to deliver a reliable, widely usable and effective feature
detection technique impacting object recognition. Although considerable progress has been
made over the decades, such a universal symmetry detector is still not available today.

1



2 Chapter 1: Introduction

1.1 Overview

Rather than attempting the universal symmetry detector problem, this thesis is focused more
on the regularizing aspect of symmetry to computer vision problems, particularly in object
detection and image parsing.

While Bayesian framework suits the task of prior knowledge integration naturally, it
has been sparsely applied to symmetry in practice, mostly in favor of approaches defining
energy functions with a form suitable to a particular optimization method. With recent
advances and new methods available to implement Bayesian inference we can relax our limits
on the model complexity and maintain practical tractability at the same time. We will
construct probabilistic models to capture the essence of symmetry in the spirit of the
above mentioned Gestalt principles, and make use of the added value the Bayesian framework
delivers.

More specifically we will address the problem of facade image parsing with this approach,
where translation symmetry is dominant. The world of facades is sufficiently rich in
complexity of structure to be challenging while reasonably limited for analysis. In particular,
we will develop methods where priors act locally and allow some degree of flexibility. The
Bayesian approach will help us to resolve the underlying problem of how many objects are
present. The problem of variable number of objects is inherent to translation symmetry,
which makes it more prominent than in general object detection.

A next task in the same area is to come up with a method which is able to learn the
structure of relations between translation symmetric objects. We will also publish a new
dataset which is sufficiently large and rich for training purposes.

Based on the experience gained with simpler models we will finally construct a hierarchi-
cal model to deal with ‘classical’ reflection symmetry detection both at low-level (geometry)
and high-level (component and group priors). At a high level the remaining elementary 2D
symmetry, rotation, will be also used to constrain the detection with dihedral groups.
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1.2 State of the Art

The goal of this section is to analyze existing methods in symmetry detection and its
application to regularity modeling in computer vision. We will first give a brief introduction
to symmetry, its types, groups and related concepts.

1.2.1 Symmetry Concepts

From the broad range of results accumulated in symmetry theory, we will go through the
basic concepts relevant to this thesis. Let us start with the formal definition of geometric
symmetry (Liu et al., 2010):

Let S ⊂ Rn be an object and g be an isometric (distance preserving) mapping g. We say
S has a symmetry g if and only if g(S) = S (automorphism). In other words the object S
has invariance under the transform g. The S can be a point set, intensity or color image,
surface etc., and the symmetry is its property. Note that identity is the trivial symmetry.

1.2.1.1 Primitive Symmetry Types in 2D

A primitive symmetry of S is atomic, i.e. it cannot be decomposed as a concatenation of two
non-trivial symmetries of a different type. There is a fixed set of primitive symmetry types for
a given dimension and metric. In the simplest 1D case there are reflection and translation1

only. In Euclidean 2D space we add rotation and transflection to get four primitive symmetry
types. Extending to 3D we get the helical and rotoreflection primitive symmetry types and
there are more of them appearing in the higher dimensions. Hyperbolic spaces house similar
primitive symmetry types analogical to Euclidean ones.

Since we are interested in image analysis, we will restrict ourselves to Euclidean 2D
space and its four primitive symmetry types illustrated in Fig. 1.1, considering an image
function f(x) and a point x = (x1, x2).

Translation symmetry is defined with

f(x) = f(x + ∆), (1.1)

where ∆ ∈ R2 is the translation vector.
Reflection symmetry (also called bilateral or mirror) is essentially defined for the case

of reflection w.r.t. axis x2 with

f(x) = f((−x1, x2)). (1.2)

In the general case we can parameterize such transformation with

f(x) = f(µ+ R(x− µ)), (1.3)
1Only some infinite sets are translation invariant.
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a) Translation b) Reflection

c) Rotation d) Transflection

Figure 1.1: Objects with primitive symmetries in 2D demonstrated on real-world examples
from symmetry datasets (except d). The objects shown in the images are only approximately
invariant under the specified symmetry mappings.
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a) Cyclic b) Dihedral c) Orthogonal

Figure 1.2: Symmetry groups in 2D with point invariance. Images from Liu et al. (2010).

where µ ∈ R2 is the axis location and R = I− 2uu> is the Householder reflection matrix for
axis orientation u = (cosϕ, sinϕ).

Rotation symmetry is defined similarly with

f(x) = f(µ+ F(x− µ)), (1.4)

where µ ∈ R2 is the rotation center and

F =
 cosϕ sinϕ
− sinϕ cosϕ

 (1.5)

is the rotation matrix for angle ϕ = 2π
n
. The integer n ∈ N is the order (fold) of rotation.

Transflection symmetry (also called glide) is a combination of partial translation and
reflection. In the case of transflection w.r.t. axis x2 it is defined as

f(x) = f((−x1, x2 + δ)), (1.6)

where δ ∈ R. Contrary to the intuition this is also a primitive symmetry, because neither the
given individual translation nor the reflection mapping is a symmetry of the whole object
S. This type of symmetry is rare in practice and rather specific, we will not consider the
transflection further.

1.2.1.2 Symmetry Groups

An interesting observation with extensive theoretical implications is that there are special
symmetry sets G where symmetries g ∈ G are compatible or complementary to each other in
such a way that their compositions give the same result w.r.t. certain object S = g(S).

Formally we define a symmetry group G of S as a mathematical group {G, ∗} closed
under transformation composition (g1 ∗ g2 ∈ G for all g1 ∈ G, g2 ∈ G and by composition we
mean chaining g1(g2(S)) = (g1 ∗ g2)(S) = g(S)). The symmetry groups can be essentially
characterized by discreteness, finiteness and invariance. These properties will be described
on examples in Fig. 1.2.

Cyclic group Cn is formed by n rotation symmetries of order n ∈ N, i.e. ϕi = 2π
n
i, i =

0, . . . , n− 1. Non-trivial Cn is a finite discrete group with a rotation center as the invariant
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point2. The degenerate case of n = 1 is just identity.
Dihedral groupDn is formed by rotation of order n combined with n reflections, otherwise

its characterization is the same as for the cyclic group.
Orthogonal group O(2) is the limiting case of Dn when n → ∞. It is an infinite

continuous group of an unoriented disk with rotation center as the invariant point. It contains
infinitely many rotations and reflections w.r.t. to a given invariant point.

An important class of crystallographic groups is found in periodic patterns repeated along
some dimensions of the given space. There is a finite number of such distinct symmetry
groups in any Euclidean space and there is a compositional structure (hierarchy) among
them. Their invariant is a space unit delimited by the repetition period in Rn. There are
24 crystallographic groups in 2D and even 230 in 3D. In the 2D case relevant for us there
are further two following subclasses, also see Fig. 1.3. In practice we understand images
capturing finite objects as ‘cropped out’ of an infinite pattern.

Frieze groups are strip patterns repeating along one dimension in 2D. There are seven
discrete infinite groups formed by compositions of 1D translation with rotation (order n = 2),
reflection (horizontal or vertical) or transflection. Fig. 1.3c shows example of group called ml
by crystallographers, composed of translation+reflection.

Wallpaper groups are lattice patterns repeating in two dimensions in 2D, generated by
two linearly independent vectors, which simultaneously define the lattice unit and tiling.
There are 17 discrete infinite groups formed by compositions of 2D translation with rotation
(orders n = 2, 3, 4, 6), reflection (horizontal or vertical) or transflection. Fig. 1.3d shows an
example of translation+reflection group called pmm.

1.2.1.3 Symmetry in Images

Images of real-world objects captured by projective cameras are generally a result of per-
spective transformation. This causes objects with symmetry patterns to appear deformed
in the images unless the camera is specifically restricted, i.e. when it is orthographic (or
perspective) and fronto-parallel oriented w.r.t. planar surface of an observed object.

It is often sufficient to consider affine transformations only and to define skewed symmetry
groups as affinely transformed Euclidean symmetry groups (Liu et al., 2010). In this
affine (and also projective) space the original Euclidean symmetries are related by affine
transformations and form a hierarchy.

While the symmetry patterns can be significantly deformed by perspective projections as
in Fig. 1.4, there are certain characteristics called invariant features, which are not affected
by the projection. Invariant features can be used for detection (Gool, 1998).

2Precisely the case of i = 0 is identity with plane invariance, but this includes the given rotation point
invariance as well.
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a) Cyclic C4 b) Dihedral D5

c) Frieze ml d) Wallpaper pmm

Figure 1.3: Discrete symmetry groups in 2D demonstrated on real-world examples from
various symmetry datasets. The objects shown are only approximately invariant under the
specified symmetry mappings.

Figure 1.4: Affine projections of wallpaper symmetry group pmm in a real-world image.
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1.2.2 Symmetry Detection

Symmetry detection is an important computer vision problem (Davis, 1977), which has
been used to constrain other problems such as recognition (Hayfron-Acquah et al., 2003),
retrieval (Lee, 2013) and reconstruction (Yang et al., 2005; Sinha et al., 2012). A survey
by Liu et al. (2010) provides background to general symmetry detection from images and
reviews some related methods.

A most basic method for symmetry detection, also called direct approach, is a straightfor-
ward implementation of symmetry definition: Apply symmetry transformation g to image
S and compare the result g(S) with the original S, i.e. using SSD3 measure, and decide
whether symmetry is present. When the symmetry parameters are unrestricted, the pool
of tentative symmetries g has to be large, which is computationally demanding (recursive
multi-resolution strategy can help). In practice this approach will work only with perfectly
symmetric (artificial) images and fail in the presence of background clutter, appearance
changes, partial occlusion or noise common to real-world images.

Symmetry detection methods can be characterized primarily by the scale at which they
operate: Local symmetries are supported only by a subset of the image or shape, in contrast
a global symmetry explains entire shape or even image. As the title of this thesis suggests we
will focus on global symmetries, which can be attributed to one or more objects in the image.

1.2.3 Reflection and Rotation

The first reference to an algorithmic treatment of bilateral reflection symmetry by Birkhoff
(1932) goes back even before computer vision itself was established. Over the decades a
number of algorithms has been proposed for different types of symmetry, for a comprehensive
overview we forward the reader to the survey by Liu et al. (2010).

Some of the more theoretical results in global symmetry detection, such as basis function
(i.e. RBF) and moment-based methods (Marola, 1989) turned impractical for real-world
images. A modern approach based on matching of local SIFT features proposed by Loy and
Eklundh (2006) is now considered a baseline method. Recently, methods based on different
features such as image edges (Wang et al., 2014) have been proposed.

The standard inference technique used for symmetry detection however remains voting
in Hough or similar space, i.e. every two keypoints determine a reflection symmetry axis
and if a symmetry test (geometry, similarity) is passed they cast a vote into a bin given by
the axis parameters. Symmetry instances are retrieved from maximal peaks in the voting
space accumulator, where thresholding and non-maximal suppression are used to avoid false
positives and multiple detections. Corresponding parameters and voting space discretization
choices are mostly empirical and their optimal tuning for images with multiple instances
of symmetry is difficult. The discrete nature of the binning also does not allow for exact
estimation of the symmetry parameters.

3Sum of Squared Differences, SSD(x,y) =
∑

i(xi − yi)2.
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The only method detecting dihedral and cyclic symmetry groups known to us was presented
by Lee et al. (2008). It applies polar transformation to the image with centers at all pixel
locations and efficiently analyses the obtained ‘frieze expansions’ using DFT to determine
rotation order and group. This exhaustive scheme resembles direct approach, also by requiring
≈ 10× more processing time compared to Loy and Eklundh (2006).

The application of Gestalt theory for reflection symmetry detection has been investigated
by Michaelsen et al. (2013), where local SIFT feature symmetries are grouped together
following the continuation and proximity principles. This clustering approach however
does not discard remaining local symmetries, which results in false positives when global
symmetries are the goal. A general question arises from this behaviour: Where is the line
between local and global symmetry and how can an algorithm distinguish them?

1.2.4 Translation

Translation symmetry detection, often found as a subgroup of repeating wallpaper patterns,
is essentially described with a generating lattice (or grid in the orthogonal case). In real-world
images it is usually characterized as near-regular texture (Liu et al., 2004), which allows
deviations from the exact symmetry in both geometry and appearance. The lattice extraction
can be formulated as higher order correspondence problem, where individual texture elements
(texels) are detected using SIFT or correlation (Hays et al., 2006b), the search is however
computationally intensive and sensitive to noise.

A more efficient algorithm for deformed lattice detection has been proposed by Park et al.
(2009). It uses keypoints clustered by appearance to propose a pair of vectors generating the
lattice, which initialize a regular MRF model for lattice element locations. The locations are
estimated using mean-shift belief propagation followed by thin-plate spline warping.

Rather than seeing the image as continuously repeating texture with its element not
clearly specified, we will be interested in the case when there are multiple instances of a
known object distributed according to a lattice or similar regular layout, such as in the next
section.

1.2.5 Facade Parsing

While the output from a general translation symmetry detector has limited direct use, we
can make use of symmetry principles to constrain structured object detection by relaxing the
wallpaper symmetry class constraints to reach a wider range of applications.

While facades as man-made scenes exhibit strong regularity and structure, when compared
to arbitrary natural scenes, they still present a great variety of styles, configurations and
appearance. The design of a general facade model that is able to cover their range is thus a
challenging problem, and several methods have been proposed to deal with it.

There are two major approaches to the facade parsing problem. Top-down approach relies
on the construction of a generative rule set, usually a grammar, and the result is obtained
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stochastically as a word in the language best matching the input image (Simon et al., 2011).
Automatic construction of a grammar has been proposed by Martinović and Van Gool
(2013) but they do not generalize well outside of the style they were generated for, particularly
due to recursive orthogonal splitting of the facade image. Learning is possible also for simple
grammars like grid in Tyleček and Šára (2011b), but such model does not express more
complex structural relations.

Bottom-up approaches instead combine weak general principles, which are more flexible
and their parameters can be learned. The hierarchical CRF (Ladicky et al., 2009), which
aggregates information from multiple segmentations at different scales, has been applied
to facades in Yang and Förstner (2011), where binary potentials model consistency of
adjacent labels within as well as across segmentations. Here neighboring segments with
similar appearance are more likely to have the same label (contrast-sensitive Potts model).
The three-staged method Martinovic et al. (2012) combines local and object detectors
with a binary Potts CRF on pixels. The result is further sequentially processed to adjust the
labels according to the alignment, similarity, symmetry and co-occurence principles, each
of them applied with a rather heuristic procedure. Additional principles are designed for a
specific dataset and in fact resemble grammatical rules.

Shape grammars, as introduced in Gips (1975) and later picked up by Zhu and Mumford
(2006), are the basic essence of all recent methods based on the procedural modeling to
overcome the limitations of traditional segmentation techniques. The idea of shape grammars
is that an image can be explained by terminal symbols (objects) obeying a set of rules.

Some aspects of probabilistic approach were first discussed in Alegre and Dellaert
(2004), including the use of RJMCMC. The proposed grammar is simple, based on splitting,
and the results are demonstrated for highly regular facades only. In a similar fashion Müller
et al. (2007) determines the structure by splitting the facade to a regular grid of individual
tiles and subdividing them. Mayer and Reznik (2007) presented a pipeline for multi-view
interpretation, where heuristics based on interest points were designed to detect positions
of windows, and subsequently used MCMC to localize their borders. They also include
rectification algorithm based on RANSAC to extract vanishing points from straight lines.
Ripperda and Brenner (2007) has designed a comprehensive dictionary of domain-specific
rules; the results presented on simple facades show this approach has difficulty to achieve
good localization.

A method of Teboul et al. (2010) combines trained randomized forest classifiers with a
shape grammar to segment Haussmannian4 facades into eight classes. Their model assumes
the windows form a grid while allowing different intervals. In the second step, positions
of rows and columns in the grid are stochastically estimated by a specific random walk
algorithm that does not propose dimension changes. Subsequently they proposed a new
parser based on reinforcement learning to speed up the process in Teboul et al. (2011). In
the same domain, the work of Chun and Gagalowicz (2011) demonstrates how a specific

4Architectural style widely used during the reconstruction of Paris in 19th century.
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a) Near Regular Texture b) Shape Grammar
(Hays et al., 2006b) (Teboul et al., 2011)

Figure 1.5: General and strong approach to facade image analysis.

segmentation algorithm can be engineered for a particular regular style.
We argue that regular texture analysis (Fig. 1.5a) is too general to understand the

structure in the image, because it does not uniquely specify the image element. On the other
side shape grammars, particularly split-based (Fig. 1.5b), tend to be overly domain specific
and restrictive or, in other words, ‘strong’. Our interest lies therefore in investigating the gap
between general and strong, which can be characterized with the adjective ‘weak’.

Recent development in the construction of virtual worlds like Google Earth or Microsoft
Bing Maps 3D heads toward a higher level of detail and fidelity. The popularity of application
such as Street View shows that reconstruction of urban environments plays an important
role in this area. While acquisition of extensive data in high resolution is feasible today, their
automated processing is now the limiting factor for delivering more realistic experience and
it is a task for computer vision at the same time. In urban settings, typical acquired data
are images of buildings’ facades and their interpretation can help discover 3D structure and
reduce the complexity of the resulting model; for example, it would allow going beyond planar
assumptions in dense street view reconstructions presented by (Micusik and Kosecka, 2009).
The work of (Pauly et al., 2008) dealing directly with structural regularity in 3D data also
supports our ideas. The complexity is particularly important when the representation has
to scale with the size of cities in applications such as (Hohmann et al., 2009). The fresh
results of Martinovic et al. (2015a) show that depth information from 3D model helps
to classify the facade surface and suggest that integration of 2D and 3D features with weak
rules is promising.
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1.2.6 Facade Datasets

The increased interest in facade image parsing has led to introduction of several annotated
datasets, which allow to quantitatively assess performance of new methods and compare their
results with the previous ones. In the following we list datasets in the order they appeared
and discuss their properties and relevance.

eTRIMS Dataset (Korč and Förstner, 2009) A consistent dataset of 60 non-rectified
facade images was created in a dedicated project. They follow rather weak architectural
principles as only sparse structure is present in the case of small houses. A small size of this
dataset limits learning of structure models, which usually require more samples.

ECP Dataset (Teboul et al., 2010) A dataset of 104 Haussmannian facades from a
single street in Paris (Rue Monge) is quite homogeneous. The images were rectified and
background removed. This simplified setting has led to popularity among researchers and
allows procedural approach to be directly applied. A revision of the initial annotation was
submitted by Martinovic et al. (2012). Current methods score above 90% pixel-wise
accuracy, which reaches the margin of annotation error. Recently also additional data have
been captured in the same street to perform multi-view 3D reconstruction (Riemenschneider
et al., 2014).



State of the Art 13

LabelMe Database (Fröhlich et al., 2010) There is a large dataset of general street
images with abundance of object classes annotated (Russell et al., 2008), however only
a small subset of them can be used in practice due to low consistency and completeness of
facade elements annotation (randomly missing windows). A subset from this dataset was
selected by Fröhlich et al. (2010) to match ECP classes in an effort to increase the number
of samples for learning, but the resulting quality is not satisfactory for translation symmetry
analysis.

Graz Dataset (Riemenschneider et al., 2012) This small dataset is in its form similar to
ECP, but the architectural styles from Graz are varied (Classicims, Biedermeier, Historicism,
Art Noveau). It is rather over-simplifying as windows out of the dominant lattice are not
annotated.
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Dataset eTRIMS ECP LabelMe Graz

Images 60 104 895 50

Classes 8 8 8 4

Building, Wall • • • •

Car •

Door • • ◦ •

Pavement •

Road •

Sky • • • •

Vegetation •

Window • • ◦ ◦

Balcony • ◦

Roof • •

Chimney • •

Shop • ◦

Figure 1.6: Comparison of existing facade datasets. Incomplete annotation is marked ◦.

The contents of mentioned datasets is summarized in Fig. 1.6. Their analysis shows there
is no dataset fulfilling the desirable properties of variability, consistency, completeness with a
number of annotated images sufficient for structure learning. In reaction to this fact a new
dataset fulfilling both quantitative and qualitative demands will be presented in this thesis
(Chapter 3).
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1.3 Preliminaries on
Probabilistic Modeling and Inference

This section will present common terminology, notation and techniques related to models
and methods proposed in this thesis. These are just tools with respect to this thesis and
the following text discusses most popular options and does not aim to be a comprehensive
enumeration of the state-of-the-art in this area.

1.3.1 Probabilistic Model

Most of the formalism presented here follows Šára (2014) and our previously published
results presented in this thesis were updated to match it.

1.3.1.1 Primitive Elements

Let X = {x1, . . . , xn} represent data in a given image I. The elements of X will be called
primitive elements or primitives in short. Each primitive corresponds to an independent
measurable observation specific to a given problem, such as data point, correspondence or
image pixel. They represent a minimal substructure (atom) participating in the inference,
like a minimal sample in RANSAC. Their set and the number n are fixed.

1.3.1.2 Components

The class of problems this thesis is concerned with aims to identify unknown number k of
instances of an object in X, such as number of clusters in clustering problems. The number
k will be called complexity of the model. The individual object instances j = 1, . . . , k will be
called model components.

For instance, in a standard point clustering problem the components are clusters with
centers and we want to find an unknown number of clusters k. The primitives xi ∈ X are
the individual points in Rd, and the probabilistic model describes a point deviation from the
centers.

1.3.1.3 Configurations

We assume that data X can be explained by allocating (assigning) each primitive xi to one
of the k components or to background (clutter). The primitives assigned to some component
are considered inliers, while those assigned to background are outliers. We will formally
consider background as the (k+ 1)-th component indexed with j = 0 to simplify the notation
by assigning all primitives to a component. The partitioning of the set of n primitives X
into k + 1 component sets will be called a configuration Z with representation specific to a
particular method.
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1.3.1.4 Groups

A set of components can be further partitioned into subsets called groups, which allows to
model component interaction through statistical depndencies. There are k̆ groups in the
model and allocation of components to groups is a grouping Z̆.
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1.3.1.5 Parameters

Let θ = (θ̇, θ̆, θ̂, θ̄) be model parameters, where

θ̇ are configuration parameters (global), e.g. component probability,

θ̂ are shape parameters common to all components, e.g. common cluster size,
orientation etc.,

θ̆ are group parameters, e.g. group centers, and

θ̄ = (θ̄1, . . . , θ̄k) are component parameters, e.g. cluster centers.

Parameters θ are considered random variables. Random variables associated to primitives or
components will be called attributes where appropriate.

The following table summarizes variable notation used throughout this thesis:

Symbol Description Domain Cardinality

θ model parameters

θ̂ common shape parameters

θ̇ configuration parameters

ξ prior hyperparameters continuous

k complexity (number of components) discrete

θ̄ component parameters continuous k

θ̆ group parameters continuous k̆

k̆ number of groups discrete 1

I image continuous

X data continuous n

xi primitive element of data continuous d

Z configuration discrete n

zi primitive allocation discrete

Z̆ grouping discrete k

z̆j group allocation discrete

The concrete domain will be specified in the individual models. Some symbols will be
clarified in the following text.
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1.3.1.6 Features

In order to simplify the model we will sometimes define feature functions or features in short,
which transform attributes x = (x1, . . . , xn) to a different (feature) space more convenient for
desired modeling purposes w.r.t. the given image I. This is particularly useful in the case
when it would be oversimplifying to assume independence p(x) = ∏n

i=1 p(xi). The general
form for a discriminative feature y = (y1, . . . , yn) defined as the output of a transformation
function f is given by

y = f(x; I) = f(x1, x2, . . . xn), (1.7)
yi = fi(x; I). (1.8)

We apply the chain rule for variable substitution in a pdf by inserting the determinant of the
transformation Jacobian Jf to get

p(x) = p(y)
∣∣∣∣∣df(x)

dx

∣∣∣∣∣︸ ︷︷ ︸
Jf (x)

, (1.9)

assuming f is parametric, differentiable (smooth) and bijective. This is followed by indepen-
dence assumption

p(y) =
n∏
i=1

p(yi) =
n∏
i=1

p(fi(x)) (1.10)

resulting in
p(x) = Jf (x)

n∏
i=1

p(yi). (1.11)
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1.3.2 Structured Models

We will understand structured models as models for a set of individual objects or components
which describe interaction between the components (their structure or context). By modeling
their dependencies they differ from unstructured models which assume independence of the
components.

Examples of some early computer vision instances of structured probabilistic models as
we understand them in this thesis are the works by Moghaddam and Pentland (1995) or
Schmid (1999), where spatial coherence of sets of correspondences in recognition is modeled.

1.3.2.1 Variable Number of Parts

Problems this thesis is concerned with have a common property that the number of objects
present in the image or complexity k is not known in advance and has to be inferred from
the data. This is different from a class of deformable part models with a given number of
specific parts, such as in human body detection or face recognition (Felzenszwalb and
Huttenlocher, 2005; Girshick et al., 2011), where parts mark eye, nose, head, torso,
limbs etc.

The problem at hand is to identify k instances of an object in data X, for which we
will have a parametric probabilistic model. In the trivial case there can be even no object
present (k = 0), which case is often ignored by detection algorithms, that pick up the first
best object at hand, or make the decision based on thresholding of the detection score. In
general this problem is similar to estimation of a Gaussian mixture with unknown number
of components (Green, 1995). In the context of computer vision the problem has been
encountered i.e. in motion segmentation (Weiss and Adelson, 1996) and detecting the
number of model instances is still considered one of the most difficult things in model
fitting (Wang et al., 2012).

1.3.2.2 Bayesian Models and Priors

The classical approach reasons about data X by directly evaluating their statistical function
p(X | θ), formally seen as a likelihood function

L(θ | X) = log p(X | θ) (1.12)

of the unknown parameters θ with fixed X, and expressed in logarithm for convenience.
However the likelihood function is not a conditional pdf w.r.t. θ and also generally it is not
considered a density. Traditionally in statistics a data sample X is a set of independent
(iid) sample points (measurements). If we associate X with a given intensity image the
interpretation has to change slightly because each pixel measures intensity of a different part
of the observed scene and the pixels are generally not iid. The segmentation of pixels into
independent parts (i.e. background/foreground) is then subject to the image data model.
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We can however extend the classical observation model and invert the arguments explicitly
using Bayes theorem. This requires to define a prior distribution on parameters p(θ | ξ),
where ξ are its own (given) parameters; these are usually called hyperparameters to distinguish
them from the original model parameters. The actual inversion then proceeds with

p(θ | X, ξ) = p(X | θ, ξ) p(θ | ξ)
p(X | ξ) , (1.13)

where we can identify individual terms of a parametric Bayesian statistical model (Robert,
2007) as follows:

p(θ | X, ξ) is the posterior probability (density),

p(X | θ, ξ) is the data probability (density),

p(θ | ξ) is the prior probability (density),

p(X | ξ) is the data evidence, in the continuous setting this term equals the marginal

p(X | ξ) =
ˆ
p(X | θ, ξ) p(θ | ξ) dθ (1.14)

and can be thought as the normalizing function for the posterior.

Note that p(X | θ, ξ) may serve two roles – a generative model for dataX given parameters θ, ξ
or as likelihood of parameters θ given data X and hyperparameters ξ.

Priors generally allow to regularize the problem, which brings the final estimate of the
parameters closer to the desired values, especially in the presence of noise and outliers. Priors
are fundamental to structured models by encoding our knowledge on the structure.

A choice of appropriate priors is essential to Bayesian modeling and there is a significant
body of literature which deals with this task. There are several general considerations.

When the posterior distribution is in the same family as the prior distribution we call it
a conjugate prior. This convenient property is achieved when the integration (1.14) can be
carried out with a closed-form result. For all exponential family distributions (Sec. 1.3.7.1)
there is such conjugate prior (Gelman et al., 2003).

The hyperparameters ξ in (1.13) are considered given or fixed, but picking a single value
for each of them can be suboptimal. In this case we can simply chain a new prior for
these hyperparameters in our model; such prior is usually called a hyperprior. Let ψ be its
hyperparameters, then

p(θ, ξ, ψ | X) = p(X | θ, ξ, ψ) p(θ | ξ, ψ) p(ξ | ψ) p(ψ)
p(X | ξ, ψ) , (1.15)

is a hierarchical Bayesian model (Robert, 2007) with hyperparameters ξ, ψ and hyperpri-
ors p(ξ | ψ) p(ψ). As suggested in (1.15) there can be naturally multiple levels in the hierarchy.
Actually it is just a standard Bayesian model with a superset of parameters Θ = {θ, ξ, ψ}
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and chain rule applied to its prior p(Θ). With respect to this observation the use of hyper-
is just a convention and there is no strict line between ‘normal’ and ‘hyper’. Theoretical
results (Robert, 2007) suggest that a fully specified hierarchical Bayesian model (1.15)
is a better estimator of the posterior distribution than one with some hyperparameters
fixed (1.13).

If there is no information about a hyperparameter, uninformative prior may be appro-
priate, such as for p(ψ) in (1.15). These have generally uniform distribution with no more
hyperparameters, but for unbound parameters (i.e. real) a special approach proposed by
statisticians is needed (Jeffrey’s priors, improper priors (Gelman et al., 2003)).

1.3.2.3 Graphical Models

A Probabilistic Graphical Model (PGM) uses a graph to conveniently represent dependencies
within a set of parameters (variables), where graph nodes correspond to the random variables
(component or configuration parameters) and edges to direct probabilistic interactions between
them (Koller and Friedman, 2009).

In the case of a directed graph we talk about a Bayesian network. An oriented edge u→ v

in this graph indicates conditional dependency p(v | u). A conditional factorization requires
chaining of the components, which is usually not available in two-dimensional images.

In the undirected case it is called a Markov Random Field (MRF). It is a generalized
case of a linear Markov Chain (MC). The probability is factorized as a product of specific
potential functions, which are usually taking the exponential form in

p(Z,X; θ,Q) ∝
∏
q∈Q

exp
− ∑

j∈φ(q)
θj ϕj(zq,xq)

 , (1.16)

where Q is the set of cliques (complete subgraphs), ϕj are non-negative potential functions
(factors) from a predefined set φ(q) defined for a clique q. The ϕj is a function of all node
variables (zq,xq) in a collection φ(q) and its weight is θj . This factorization is possible thanks
to the fundamental theorem of Hammersley and Clifford (1971) which links the MRF with
Gibbs distribution when the joint density (1.16) is strictly positive. Note that potentials ϕj
are not expected to be probability distributions (i.e. marginal), but they are just terms in
a joint distribution p(Z,X), which need to be summed over Z,X space for normalization
of (1.16). However, any exponential family pdf (Sec. 1.3.7.1) can be embedded in (1.16).

The MRF is popular in image segmentation and classification (Gould et al., 2008)
thanks to its ability to handle high-dimensional spaces, efficient parameter inference and
availability of hyperparameter learning methods. On the other hand it requires the graph to
be fixed for a given data input, which does not leave much space to apply it to problems with
variable number of parts. We can rather cast these problems as assignment of primitives to
classes interpreted as semantic components.

A variant called Conditional Random Field (CRF) introduced by Lafferty et al. (2001)
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models directly the conditional distribution p(Z | X), where Z is a configuration (Sec. 1.3.1.3)
of labels and θj .
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1.3.3 Inference Methods

A complex probabilistic model would be useless if we had no practical method to infer
(estimate) its parameters from data. In this section we will mention the standard methods
which can be applied to the structured models of our interest.

The process of inference of the model parameters θ from the data X can be generally
expressed with

θ∗ = arg max
θ

f(θ | X). (1.17)

1.3.3.1 Maximum Likelihood Estimation

The estimation in the classical case (1.12) is known as Maximum Likelihood (ML) estimation,
which is a direct maximization of the

θ∗ = arg max
θ

p(X | θ), (1.18)

treated as a function of θ, which is the only function we have to specify. With the assumption
of independence of observations we can write

p(X | θ) =
∏
xi∈X

p(xi | θ), (1.19)

which conveniently translates into log-likelihood as

L(X | θ) =
∑
xi∈X

log p(xi | θ), (1.20)

and the estimate θ∗ maximizing (1.18).
The ML estimation is usually chosen when there is no additional information on the

parameters but the data observation model; as such it simply cannot be used with structured
models.

1.3.3.2 Maximum a Posteriori Estimation

When we plug in a prior in (1.13) we proceed with Maximum A Posteriori (MAP) estimation

θ∗ = arg max
θ

p(X | θ) p(θ), (1.21)

where we can safely drop p(X) from (1.13) because it does not depend on θ. The estimate
can be found similar to ML with an extra term for the prior in (1.20). However, chances
to get a closed-form estimator from MAP are generally lower and a search for appropriate
prior distribution can be cumbersome, which is the major point in the criticism of Bayesian
approach.
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In the context of models with variable number of parts we can consider complexity k as
one of the parameters, k ∈ θ, and use (1.21) to estimate them all simultaneously with MAP.

1.3.3.3 Bayesian Estimation

Both ML and MAP return only a single estimate of values θ∗ for the parameters. In contrast
the Bayesian estimation calculates the full posterior distribution p(θ | X, ξ), for which the
denominator p(X | ξ) from (1.13) must be also calculated. This further restricts the prior
choice such that integration (1.14) can be carried out. However p(X | ξ) need not to be
available in closed-form, we can calculate it numerically (enumerating a discrete distribution)
or it can be sufficient to estimate it (using random sampling).

The benefit of obtaining the full posterior is we can further analyze the parameter space.
We can calculate the variance associated with the MAP estimate or find alternative estimates
when the posterior is multimodal. We can also use it for prediction.

1.3.3.4 Model Selection and Two-Level Inference

Rather than direct estimation of complexity k hinted in Sec. 1.3.3.2 we can employ Bayesian
estimation and treat the problem of the unknown number of components as a model selection
problem. Following Šára (2014) we can treat complexity k not as a parameter of a single
model but instead we consider multiple models with different complexity k = 0, 1, 2, . . . , km.
This results in a hierarchical model

p(X, θ, k) = p(X | θ, k) p(θ | k) p(k). (1.22)

Two-level Bayesian inference (MacKay, 2003) is then used to perform model selection,
the task of selecting a model from a set of candidate models, given data. The selection
criterion in this case is Bayes factor (evidence ratio) generalized to multiple models. In the
context of this thesis the goal of inference is two-fold:

1. Determine the most probable complexity k∗ according to

k∗ = arg max
k

p(k | X) = arg max
k

ˆ
p(X, θ, k) dθ, (1.23)

in which p(k | X) is the posterior marginal from (1.22).

2. Given k∗, determine the most probable parameters θ

θ∗ = arg max
θ

p(θ | X, k∗). (1.24)

In practice the actual inference procedure usually performs both levels simultaneously.
Approximate information criteria for model selection (Bayesian BIC, Akaike AIC, etc.) are
overly simplifying for complex models of our interest.
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1.3.4 Random Sampling Methods

One of the possible options for implementing the general approaches mentioned in the previous
section is to use random sampling. Computing marginals of complex probabilistic functions
typically requires a sampling method. Naive sampling methods would result in an algorithm
that is too slow in practical-size problems. In this section we will review relevant sampling
methods and discuss their applicability to structured models with a variable number of parts.

1.3.4.1 RANSAC

Although not probabilistic, Random Sample Consesus (RANSAC) by (Fischler and Bolles,
1981) is presumably the most popular algorithm for stochastic inference of parameters in
computer vision. Its key idea is to use sampling of parameters θ from the empirical distribution
of data X, which makes it efficient; we can make use of this mechanism also in the context of
probabilistic sampling.

Even when the optimized ‘energy’ function can be arbitrary, we cannot directly apply
RANSAC to problems with variable number of components. Greedy sequential estimation of
individual components turns out to be suboptimal as discussed in (Zuliani et al., 2005),
where it has been extended for joint sampling of all components but still the complexity k
is considered given. This has been overcome by method of Wang et al. (2012) but the
determination of k remains empirical.

1.3.4.2 MCMC

Markov Chain Monte Carlo (MCMC) is a class of advanced methods for sampling from
arbitrary probability distributions, which is particularly useful for Bayesian inference (Gilks
and Roberts, 1996). The major advantage over independent sampling (like in RANSAC)
lies in the Markov process where a new sample is conditioned on the previous one (but
not on further preceding states). The dominant sub-classes in MCMC are random walk
methods, but some variants implement deterministic ‘shortcuts’ to improve convergence and
efficiency (Duane et al., 1987; Roberts and Tweedie, 1996).

Gibbs sampling is a popular MCMC method (Geman and Geman, 1984) because it is
formally simple, but requires marginal distributions for all parameters, which usually does
not allow to apply it for complex structured models.

The universal method in the MCMC family is Metropolis-Hastings (MH) algorithm, which
allows to obtain samples from an arbitrary target distribution π(θ) even when we cannot
directly sample from it. The basic idea is that instead of direct sampling we take samples
from auxiliary proposal distribution q(θ′ | θ) and filter them by an probabilistic acceptance
algorithm. A sample is accepted randomly with acceptance probability a(θ | θ′). It is derived
from the detailed balance condition that guarantees reversibility of MC for its stationary
distribution π:

π(θ)T (θ′ | θ) = π(θ′)T (θ | θ′), (1.25)
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where we express the transition T (θ | θ′) as the proposal q and acceptance-rejection a

T (θ′ | θ) = q(θ′ | θ) a(θ′ | θ). (1.26)

Together we get the acceptance equation

a(θ′ | θ)
a(θ | θ′) = π(θ′) q(θ | θ′)

π(θ) q(θ′ | θ) , (1.27)

which a particular acceptance function must fulfill. A common choice (Hastings, 1970) is

a(θ′ | θ) = 1 ∧ π(θ′) p(θ | θ′)
π(θ) p(θ′ | θ) , (1.28)

where a ∧ b = min(a, b).
While in theory MH can accommodate structured models with any level of complexity,

there is a price associated with this generality. In practice we are limited by our ability to
design proposal distributions sufficiently close to the target distribution. If unsuccessful,
the majority of proposed samples would be rejected (low acceptance rate), rendering the
sampler inefficient and slowly converging. Associated performance indicator is the mixing
rate describing the sampling process agility and efficiency in exploring configuration and
parameter spaces; it can be loosely characterized as average correlation of consecutive states
in MC.

With rapidly increasing number of random variables in computer vision models this
problem is aggravated by the curse of dimensionality (Bellman and Bellman, 1961) in
optimization. Most notably high-dimensional spaces are sparse and random walk must travel
further to explore them because finding a tight bounding distribution is usually difficult.
Also combinatoric aspect gets in the way as the number of possible explanations of the data
grows exponentially.

1.3.4.3 Reversible Jump

The standard MH algorithm needs to be extended when the dimension of the parameter
space θ ∈ Θ is uknown, which is the case of the models with variable number of parts k. The
mechanism accounting for the dimension changes in accordance with the measure theory is
known as Reversible Jump (Green, 1995).

In the standard implementation of RJ a proposal only changes the complexity k by a fixed
step (e.g. ±1, add/remove a component). A typical implementation involves also a pair of
component split/merge proposals (Jain and Neal, 2000). Recently Pandolfi et al. (2014)
has proposed a more efficient sequential multipoint proposal variant, where several sequential
complexity proposals are jointly considered as candidates from which one is selected.

The simplest method to obtain p(X | k) in Bayesian selection of complexity (Sec. 1.3.3.4) is
a histogram of posterior samples obtained from a RJ-MCMC sampler. For each k, the sampler
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also remembers the best configuration found for the particular complexity in terms of (1.22).
With detailed balance and reversibility conditions fulfilled the resulting configuration is
asymptotically globally optimal.

1.3.4.4 Adaptive Methods

As mentioned above in Sec. 1.3.4.2, the choice of proposal distributions is critical for practical
efficiency of MCMC. The proposals are usually controlled by a set of inference parameters
such as the variance of the proposed model parameter change (length of a step in random
walk). For given input data it is possible to find an optimal value of such parameter w.r.t.
convergence, however for a different input the value will be no longer optimal.

A solution to this problem is on-line adaptation of selected proposal distribution parame-
ters (Rosenthal, 2011), where basically the step length in a random walk is adjusted to
achieve target acceptance5. Its goal is to achieve efficient mixing (Atchadé, 2006; Shaby
and Wells, 2010a). The introduction of adaptation caused a small revolution in MCMC
methods and brought them closer to practical sampling and inference methods.

1.3.4.5 Population Methods

With parallel computation resources becoming available in the recent years, several approaches
have been proposed to enhance MCMC methods both quantitatively (speed up by parallel
sampling, (Neiswanger et al., 2014)) and more interestingly qualitatively (efficiency, conver-
gence (Laskey and Myers, 2003)) by running a population of MH samplers simultaneously.
The statistical information from a population of samplers is used to inform the proposal
distributions for individual samplers in the population. Experimental results (Laskey and
Myers, 2003) show that the population learns more efficiently than the individual samplers
with no information exchange.

Our recent experience shows that population methods can solve harder inference prob-
lems where there are many maximizers of (1.24) that are distant in the configuration
space, or in other words the alternative solutions θ∗1, θ∗2, are close w.r.t. target distribu-
tion |π(θ∗1)− π(θ∗2)| → 0, but distant w.r.t. proposal distribution q(θ∗2 | θ∗1)→ 0.

1.3.4.6 Hybrid Methods

Several approaches have been proposed that complement the random walk in MCMC with
deterministic steps (Neal, 2011; Duane et al., 1987; Roberts and Tweedie, 1996), which
has led to call them generally hybrid methods.

Stochastic Approximation Expectation-Maximization (SAEM) algorithm (Delyon et al.,
1999) is a modern variant of Monte-Carlo EM algorithm. From the perspective of MCMC,
this technique provides a way how all the produced samples from π(θ) can be stochastically
averaged (expectation) to (re-)estimate the parameters θ (maximization).

5In Gaussian setting short steps (small changes) have higher acceptance than long steps.
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The histogramming of posterior complexities for obtaining p(X | k) mentioned in
Sec. 1.3.4.3 can be replaced by a more efficient marginal estimation, e.g. using the thermo-
dynamic integration (Calderhead and Girolami, 2009) and the best-sample wait can be
replaced by the EM algorithm for parameter estimation.

A consistent framework for such process has been implemented in a hybrid inference
method called LiSAEM (Šára, 2014), which blends several existing concepts together
and not only efficiently estimates the number of components but also provides estimates
for other parameters (component parameters, variance, outlier probability). To achieve
computationally efficient algorithm, its inference model is constructed so that the amount
of random sampling is kept to a minimum. This is achieved by combining hybrid sampling
ideas with PEARL-like optimization based on a set of random labels (Isack and Boykov,
2012) and a Riemannian version (Bui-Thanh and Ghattas, 2012) of Metropolis-Adjusted
Langevin algorithm (Roberts and Tweedie, 1996) as an efficient proposal mechanism for
parameters θ. The engine uses many additional ideas from the literature some of which are
mentioned above.

1.3.5 Inference and Learning for Graphical Models

From a vast number of methods providing inference and learning in graphical models (Koller
and Friedman, 2009), we pick up a selection related to MRFs.

In general case exact inference in MRFs is not possible, but approximation techniques are
available. The standard approximate algorithm is Loopy Belief Propagation (LBP), which is
based on message passing over graph edges when nodes iteratively ‘vote’ for their neighbors
values given their own value. Its convergence properties are however degrading with increasing
complexity of the graph structure; this also holds for stochastic approximation methods
(MCMC). Variants of LBP covering the original graph with subgraphs and combining the
particular solutions on the subgraphs have shown better performance (Kolmogorov, 2006).

The specific cases when exact inference is possible either limit the graph topology or the
choice of potential functions. If in the first case the graph is a chain or tree, message passing
(LBP) converges to exact solution (in analogy to the forward-backward and Viterbi algorithms
for linear chains). In the latter case if a submodularity condition on the potentials holds then
max-flow algorithms (alpha-expansion, alpha-beta swapping) return exact solutions (Kohli
et al., 2009).

In the case of CRF learning of weights θ (hyperparameters in this case) is possible using
ML or Maximum Pseudo Likelihood (MPL) approximation to a joint distribution assuming
conditional independence (Lafferty et al., 2001).

The limiting factor for application of MRFs to our problems of interest is that parameter
set including complexity must be fixed prior to inference. We therefore do not discuss methods
from this area in detail.
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1.3.6 Notation Remarks

Vectors will be generally typeset in bold face, e.g. x = (x1, x2, . . . ) with elements xi, and
matrices in bold capitals, e.g. X. The bold face does not apply to Greek alphabet.

1.3.7 Probability Distributions

We list abbreviations used throughout this thesis, along with the common parametrization
for reference. Detailed explanation can be found in the most of textbooks on probability and
statistics.

Continuous:

pdf probability density function

N Normal (Gaussian), univariate, N (x; µ, σ) = 1
σ
√

2π e
− (x−µ)2

2σ2 , σ > 0,

Nc Circular Normal (von Mises), Nc(x; µ, κ) = eκ cos(x−µ)

2πI0(κ) , κ > 0,

Exp Exponential, Exp(x; λ) = λe−λx, λ > 0,

IG Inverse Gamma, IG(x; α, β) = βα

Γ(α)x
−α−1 exp

(
−β
x

)
, α, β > 0,

Be Beta, Be(x; α, β) = xα−1(1−x)β−1

B(α,β)
, α, β > 0,

Dir Dirichlet, symmetric, Dir(x1, . . . , xk−1;α) = Γ(αk)
Γ(α)k

∏k
i=1 x

α−1
i , α > 0,

U Uniform, U(Ω) = 1
|Ω|

Discrete:

pmf probability mass function

B Binomial, B(k; n, p) =
(
n
k

)
pk(1− p)n−k, p ∈ [0, 1], n ∈ N,

Ber Bernoulli, Ber(k; p) = pk(1− p)1−k for k ∈ {0, 1}.

Pois Poisson, Pois(k; λ) = λke−λ

k! , λ > 0,

U Uniform, U(n) = 1
n
, n ∈ N.

These abbreviations will be used to refer to the probability density (mass) function of a given
type, i.e. the fact that variable x has normal probability density function with a given mean µ
and variance σ2 will be for convenience expressed as

p(x) = N (x; µ, σ2) = 1
σ
√

2π
e−

(x−µ)2

2σ2 ,
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where symbols after ‘;’ are fixed distribution hyperparameters. This is slightly different to
the common notation

x ∼ N (µ, σ2),

where the symbol N represents the distribution itself, we will use the both expressions. The
symbol ∼ is used to emphasize that x is sampled (generated) from the given distribution.

The symbol p will be used more loosely for both probability density and mass functions
and likelihood, the concrete meaning is determined by the context and by the discrete or
continuous domain of its arguments. We will use the simplified notation p(x) instead of px(x),
i.e. the identity of the function p is determined by its arguments. For example p(x) and p(y)
are two different functions, precisely px(x) and py(y). In the case we need to specify two
different functions of the same arguments this will be denoted explicitly, i.e. p1(x) and p2(x).
In the case of arguments with variable indices such as p(xi), i = 1, 2, 3, . . . , we specify the
same function for all xi, unless explicitly specified otherwise.

1.3.7.1 Exponential Family Distributions

An exponential family distribution can be written as

p(x | θ) = h(x)g(θ) exp
[

W∑
w=1

ηw(θ)Tw(x)
]
, (1.29)

where ηi are natural parameters and Ti are sufficient statistics of the exponential-class
model. All distributions given above belong to the exponential family, in some cases certain
parameters must be fixed (those that change the support of the distribution).
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1.4 Thesis Goals

Based on the analysis of state of the art we set the following goals:

• Try to use principles of weak grouping for symmetric object detection.

• Design a probabilistic model for image symmetries involving multiple elements.

• Propose an inference mechanism for detecting such symmetries that does not overseg-
ment.

• Provide a good estimator of complexity for symmetries of unknown order.

• Attempt to learn important structural relations.

Each of the following chapters addresses some of these goals. The most complex model is
presented in Chapter 4. The main results are summarized in Chapter 5.
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Chapter 2

Weak Structure Model

“From now on we can compare our data with the model we actually want to use rather than
with a model which has some mathematical convenient form. This is surely a revolution.”

Peter Clifford (1993)1

2.1 Introduction

For our initial approach to symmetry detection we have chosen a level of structure complexity
that allows us to solve some real-world problem while we can oversee its individual parts
and analyze their impact on the overall performance. This has brought us to translation
symmetry detection in the world of facades with a large pool of facade elements in different
architectural styles. It has become our playground for recognition of structured images.

2.2 Overview

We will present a method for detection of windows in facade images. Given an ability to
obtain local low-level data evidence on individual components (windows), we determine
their most probable number, locations, size and neighborhood relation. The embedded
structure is weakly modeled by pair-wise attribute constraints, which allow structure and
attributes to mutually support each other. We will use a general framework of Reversible
Jump MCMC (Sec. 1.3.4.3) to perform MAP estimation of component count and parameters
(Sec. 1.3.3.2), which is the simplest probabilistic approach applicable to structured models
with variable number of components.

We initially designed a probabilistic model based on a grid with rows and columns (Tyleček
and Šára, 2011b) which also allows exceptions both in locations and structure, see Fig. 2.1.

1The Royal Statistical Society meeting on the Gibbs sampler and other statistical Markov Chain Monte
Carlo methods, Journal of the Royal Statistical Society, Series B, 55(1), p. 53.

33
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c1 c2 c3

r1

r2 ∆ h

w

w

Figure 2.1: Grid model with rows ri and columns ci allows local deviations ∆ from the grid
for limited flexibility.

With a classifier trained specifically for windows it performed well, but its flexibility was
limited.

To allow also loosely regular configurations like those in Fig. 2.14, we have proposed
another method, where the structure is modeled softly by local pair-wise constraints (Tyleček
and Šára, 2011a, 2012). The two variants of this model with different structural prior will
be presented in this chapter. In the domain of window recognition in facade images we will
demonstrate that the result is an efficient algorithm achieving performance of other strongly
informed methods for regular structures. The majority of the algorithms for single-view facade
interpretation mentioned in Sec. 1.2.5 work with hard constraints on grid configurations of
windows and employ strong domain-specific heuristics, which may result in overfitting.

Our work can be also seen as an object-specific extension of a general lattice discovery
method by Park et al. (2009), but in our case the layout is not constrained to a lattice,
which results in a more complex model.

2.3 Problem Description

We consider the problem of recognizing specific objects (facade windows), which correspond to
components. In this case the primitive elements are image pixels (Sec. 1.3.1). We assume the
input image is orthographically rectified, as in Fig. 2.8. This was achieved by an automatic
rectification method using vanishing point detection similar to (Förstner, 2010).

Our model parameters θ consist of complexity k (the number of components), component
parameters θ̄ (window locations and size) and configuration parameters θ̇ (neighborhood of
components). The recognition task can then be formulated as follows: Given image data I,
we search for model parameters θ = (k, θ̄, θ̇) by finding the mode of the joint distribution
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model

p(I, k, θ̄, θ̇)

image likelihood
p(I | k, θ̄, θ̇)

structural model
p(k, θ̄, θ̇)

edge
p(J | k, θ̄, θ̇)

color
p(C | k, θ̄, θ̇)

spatial regularity
p(µ | k, θ̇)

size model
p(σ | k, µ, θ̇)

structural prior
p(k, θ̇)

structural regularity
p(θ̇ | k)

complexity
p(k)

binomial prior
p(B | k)

lattice prior
p(L | k)
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Figure 2.2: Hierarchy in the probability model. Term in this diagram is a product of its
two child terms. The structural prior is the discrete part of the model which conditions the
remaining continuous part.

p(I, θ) with
θ∗ = arg max

θ
p(I | θ) p(θ), (2.1)

which is computed with Bayes theorem from data model p(I | θ) and structural model prior
p(θ). We will decompose our probability model hierarchically as shown in Fig. 2.2 and
propose pdfs specific for the task of window detection in facade images. Then we will apply
stochastic RJMCMC framework (Sec. 1.3.4.3) based on random walk to find the optimal
value θ∗ by effectively sampling from the space of possible combinations of parameters θ.
More details on its implementation will be given in the following sections.

We will now describe individual terms in our model basically from right to left as they
appear in Fig. 2.2, starting with the independent variables. The terms will be summarized at
the end of this section in Tab. 2.1.

2.4 Probability Model

We design a probabilistic structural model p(k, θ̄, θ̇) in which (k, θ̄, θ̇) is a configuration.
The model captures rules for appearance of a set of similar components in an image with
a semi-regular spatial distribution. Rather than explicitly imposing a lattice or a similar
global layout, the model is based on local pair-wise component neighborhood and parameter
constraints. We are given a set of k components with parameters θ̄ = (µ, σ). The location
parameters in vector µ are defined in the unit image plane with

µ = (µ1, . . . , µk), µi ∈ (0, 1)2 (2.2)

and similarly the size and shape is described with vector

σ = (σ1, . . . , σk), σi ∈ (0, 1)2. (2.3)
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Our neighborhood representation θ̇ is independent on the locations µ and it is based on
a complete graph N , where nodes correspond to components and edges to neighborhood
relationship between them. Our goal is to define neighbors as components that are in
proximity of each other and similar to each other in size and shape, i.e. they share some
parameter values.

The neighborhood is encoded with pairwise labels L on edges in N as

L = (luv ∈ {0, 1} ; (u, v) ∈ {1, ..., km}2, u < v) (2.4)

that are recovered as a part of the solution of (2.1). The mutual neighborhood of two
components is indicated by luv = 1 (active edge), otherwise luv = 0 when the neighborhood
is suppressed (inactive edge). In other words luv = 1 means the components u and v are
neighbors. In the following text the (u, v) will denote edges in N , i.e. component pairs
from (2.4).

The prior p(θ) in our model will be specified up to a normalization term, which is difficult to
obtain in closed form as a function of k due to the complex dependencies between component
parameters. Instead we will fix the number of variables in the model by including terms for
all possible km components. The set of km components is split in k active components and
k̄ = km − k inactive components. All edges from an inactive component are also inactive
(luv = 0). The terms in p(θ) for inactive components are uniform and there are no component
parameters θ̄ specified for them. The normalization term is then a function of fixed km and a
constant w.r.t. the maximization in (2.1) which allows to carry out MAP inference (Sec. 2.6).

2.4.1 Structural Prior

This prior describes a class of 2D graphs that are similar to a lattice (grid) graph2, but its
drawing need not be a regular tiling. The goal is to allow higher level of flexibility, which
is required in practice for structures like in Fig. 2.14. The model consists of a structural
regularity term p(θ̇ | k) and complexity term p(k). The configuration parameters θ̇ represent
global model structure, concretely the component neighborhood L.

2.4.1.1 Structural Complexity

The prior on the number of components is modeled by a binomial distribution

p(k; pc, km) = B(k; pc, km) =
km
k

 pkc (1− pc)km−k, (2.5)

where km ∈ N is the maximum number of components in the model and pc ∈ (0, 1) models
their expected count relative to km.

2We will understand ‘grid’ as a regular square plane graph, which is a special case of a more general
‘lattice’.
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Figure 2.3: Relative Neighborhood Graph condition. Two planar points u and v are connected
by an edge whenever there does not exist a third point r that is closer to both u and v than
they are to each other (in Euclidean metric). The condition defines a ‘forbidden zone’ (red).

2.4.1.2 Structural Regularity

We want to regularize the neighborhood L by introducing grid-like constraints. We have
evaluated two options.

Since we are dealing with image components parameterized by their locations µ in the
image plane, we can limit the edge labels luv = 1 in L to induce only planar subgraphs
of N . The Relative Neighborhood Graph (RNG3) is a natural choice (Tyleček and Šára,
2011a) and it is defined by the condition demonstrated in Fig. 2.3. This choice defines a
function θ̄ 7→ L, which forces luv = 0 where the actual component locations µ violate the
RNG constraint.

However in certain situations the RNG is too restrictive, preventing the neighborhood
where it would be desirable. In Tyleček and Šára (2012) we have presented the second
option, which is a more general Softly Bipartite Graph (SBG) (see Fig. 2.6). A bipartite
graph is two-colorable, meaning that we can assign a binary label bi ∈ {0, 1} to every node
such that every edge connects nodes with different labels. This property imposes strong
constraints on the structure of graph cycles. However, in our case we relax this condition
by allowing edges connecting equally colored nodes but assigning them a low probability pb
(softness). For the SBG we extend θ̇ with a set of hidden variables B = (bi; i = 1, . . . , km)
and model them with a Gibbs distribution w.r.t. N in

p(B | L, k) ∝
∏
u,v

p(bu, bv | luv), (2.6)

where the joint distribution for a pair of binary variables bu, bv is given by

p(bu, bv | luv; pb) =


1
2pb, luv = 1, bu = bv,

1
2(1− pb), luv = 1, bu 6= bv,

1
4 , luv = 0 (inactive edge).

(2.7)

3RNG can be computed from Delaunay Triangulation efficiently in O(n) time.
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Note that the regular grid graph and its node-induced subgraphs are bipartite, but this
no longer holds when some nodes are removed from the grid and the associated edges are
joined in both directions. The softness of the SBG however allows for irregular lattices where
odd-length cycles are present, such as in Fig. 2.14b.

The structural regularity term takes in the SBG case the form of

p(θ̇ | k) = p(B | L, k) p(L | k). (2.8)

The p(B | L, k) term was omitted for the RNG case.
The term p(L | k) common to both the structure priors is described next. Let dc(k) be

the number of edges in the complete graph N (the number of variables luv)

dc(k) =
(
k

2

)
. (2.9)

The preferred number of neighbors (active edges in the graph N) is the number of edges in a
regular square grid with k nodes

dg(k) = 2(k −
⌊√

k
⌋
), (2.10)

where bxc denotes the greatest integer number lower or equal to x. Let

q(k) = dg(k)
dc(k) = 4√

k(
√
k + 1)

. (2.11)

Then the actual number of neighbors

Σ(L) =
∑
uv

luv (2.12)

is modeled with
p(L | k) = q(k)Σ(L) (1− q(k))dc(k)−Σ(L) , (2.13)

which corresponds to a binomial distribution compensated for the number of graphs with the
same observed number of active edges.

2.4.2 Spatial Regularity

This part of the model describes rules for the relative location of neighboring components
similar to translation symmetry in a lattice or continuity and proximity principles in Gestalt
theory.

We parameterize the spatial relation of components in relative polar coordinates (see
Fig. 2.4) by

p(µ | k, θ̇) ∝ p(ρ, φ | k, θ̇) p(µ1), (2.14)
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where ρ = (%uv; (u, v) ∈ N) and φ = (ϕuv ∈ [0, 2π)); (u, v) ∈ N) such that for a given pair of
components (u, v) the distance is calculated with

%uv = %(µu − µv) = ||µu − µv|| = %vu (2.15)

and the orientation (angle) of the location difference vector µu − µv with

ϕuv = ϕ(µu − µv) = ϕvu + π, (2.16)

i.e. the opposite direction (u→ v or v → u) is associated with the opposite angle. Note the
original Cartesian coordinates µ can be recovered from relative polar coordinates ρ, φ up to a
global offset, which can be specified e.g. by the absolute location of the first component µ1.
Its pdf p(µ1) = 1 is uniform.

In order to establish a distribution on ρ, φ let us introduce a line graph D dual to N ,
where nodes in D correspond to neighbors (active edges) in D and there is an edge between
two nodes in D iff the two edges in N share a common node. There is a maximal clique
(complete subgraph) in D associated4 with each node u from N . The corresponding local
neighborhood of u will be denoted with N(u) and further specified as a sorted circular list of
its nu neighbors vi ordered by angles relative to u:

N(u) =
{
vi; i = 1, . . . , nu, luvi = 1, ϕuvi ≤ ϕuvi+1

}
, (2.17)

where no component is preferred as starting. Then we can implement the symmetry principles
in a Gibbs distribution w.r.t. D(N) in

p(ρ, φ | k, θ̇) ∝
∏
u,v

p(%uv)︸ ︷︷ ︸
priors

p(ϕuv)
∏
u,v,w

ps(%uv, %uw)︸ ︷︷ ︸
spacing

∏
u

pa (ϕuvi ; vi ∈ N(u))︸ ︷︷ ︸
alignment

, (2.18)

where p(%uv), p(ϕuv) are prior terms unary w.r.t, We assume local Markov property, i.e.
component parameters θ̄j are conditionally independent of all other, given its neighbors.
The exponential form of the distribution following (1.16) is straightforward when the factors
in (2.18) described below have the form of an exponential family distribution, which is our
case. The continuous unit domain of µ guarantees the normalization of (2.18) can be carried
out and the resulting partition function is fixed by km. As such the normalization of (2.18)
is not required to perform the maximization in (2.1).

4The inverse however does not hold because there can be cliques of order three (triangles) in D, which do
not correspond to to any node in N , i.e. in a triangular lattice there are also such cliques corresponding to
faces (triangles) in N . We do need to identify such cases because there is a uniform model for all order 3
cliques (Sec. 2.4.2.3).
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Figure 2.4: A component u with four neighbors vi ∈ N(u) and their relative polar coordinates
(angle ϕ and distance ρ) parametrize spatial regularity for locations µ.

2.4.2.1 Spatial Priors

The prior assumption on the position of components is that neighboring components should
be horizontally or vertically aligned parallel to axes of the rectified input image. This
translates in a prior for orientation ϕuv preferring certain absolute angles: −π

2 , 0,
π
2 , π. The

prior orientation is modeled with circular normal (von Mises) distribution in

p(ϕuv; κc) = 1
4Nc(4ϕuv; 0, κc) = 1

4
eκc cos 4ϕuv

2πI0(κc)
, (2.19)

where κc is the concentration parameter and I0 is the modified Bessel function of order 0.
Note that the prior is symmetric, p(ϕuv; κc) = p(ϕvu; κc).

The prior on relative distances %uv is a beta distribution with pdf

p(%uv; αd, βd) = Be(%uv; αd, βd) = %αd−1
uv (1− %uv)βd−1

B(αd, βd)
. (2.20)

2.4.2.2 Spacing

The second assumption is that the distance ρuv between components in a neighborhood
should most probably be equal. We model the assumption pairwise in

ps(%uv, %uw; βr) = 1
%uv + %uw

Be( %uv
%uv + %uw

; βr, βr), (2.21)

where u 6= v 6= w are indices of two edges in N sharing a node u and βr is the concentration
parameter. We choose beta distribution in this case because it describes our knowledge on
the observed data sufficiently well and matches with the rest of the model. Similar practical
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hi
ti

wi

Figure 2.5: Window shape template. It is parametrized by its width wi ∈ (0, 1), height
hi ∈ (0, 1), both relative to image height Ih, and the width of the central column ti ∈ (0, 1)
relative to the window width.

reasons motivate our choices of terminal (beta) distributions also elsewhere in this model.

2.4.2.3 Alignment

The assumption for orientations ϕuv is that the neighbors of a given component u should be
evenly distributed around it in terms of their relative angles as in Fig. 2.4. We model the
alignment in a joint function of these orientations

pa (ϕuvi ; vi ∈ N(u); αϕ) = 1
nu
×


Dir

(
(ϕuv2−ϕuv12π , . . . ,

ϕuvn−ϕuvn−1
2π ); αϕ

)
, nu ≥ 4,(

1
π

)nu
, nu ∈ {2, 3},

(2.22)
and the factor 1

nu
is due to the free starting component. The Dirichlet pdf assigns the highest

probability to configurations in which the differences between the neighbors’ angles are equal
to each other, i.e. π for two neighbors, 2π

3 for three, π
2 for four, etc. The cases nu = 3

corresponds to the corners and sides in the case of grid structure and we fall back to the
uniform distribution U(π) = 1

π
for every ϕuvi in the clique. The case nu = 1 is covered by the

prior (2.19).

2.4.3 Size Parameters

Aside from the locations µ, the appearance of components is described with size and shape
parameters σ. Our components are represented by a rectangular shape template with its
borders parallel to image borders. The size and shape parameters of a component is a vector

σi = (wi, hi, ti) ∈ (0, 1)3, (2.23)

its parts are described in Fig. 2.5, the central column position parameter ti is relative to the
width hi and specific to ‘window’ components.

The shape model is a Gibbs distribution w.r.t. N with unary and binary factors

p(σ | k,N, µ) ∝ p0(σ | µ)
km∏
i=1

p1(σi | k)︸ ︷︷ ︸
prior

∏
u,v

p2(σu, σv | luv)︸ ︷︷ ︸
similarity

, (2.24)
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where we additionally specify a global non-overlapping prior by setting p0(σ | µ) = 0 when
any two shape rectangles overlap each other (with the simplifying assumption of independence
on p1 and p2). The exponential form of the distribution following (1.16) is straightforward
when the factors p1 and p2 are based on exponential family distributions, just as in the
following text.

2.4.3.1 Size Prior

The unary factors are size and shape parameter priors

p1(σi | k) =

p(ti | hi) p(wi | hi) p(hi), i ≤ k,

1, k < i ≤ km,
(2.25)

where the term for inactive components is uniform U(1) for all size parameters. We choose
to model the central column width with beta distribution

p(ti | hi; αt, βt) = Be(ti; αt, βt). (2.26)

The typical aspect ratio (rectangular window) is modeled with Beta distribution

p(wi | hi; αa, βa) = 1
wi + hi

Be
(

wi
wi + hi

; αa, βa
)
, (2.27)

where the factor 1
wi+hi is due to transformation wi 7→ wi

wi+hi for the beta pdf. The height prior
is chosen as

p(hi) = Be(hi; αh, βh). (2.28)

2.4.3.2 Size Similarity

Our size constraints reflect the similarity principle, i.e. neighboring components should most
probably have the same size and shape. This can be described with binary factors in

p2(σu, σv | luv) =

p(wu, wv) p(hu, hv) p(tu, tv), if luv = 1,
1, if luv = 0,

(2.29)

where
p(wu, wv) = 1

wu + wv
Be
(

wu
wu + wv

; αs
)

(2.30)

is a Beta distribution with its mode at wu = wv, in the case of luv = 0 the distribution is
uniform. Analogically we define the pdfs for h and t similarity.
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Term Eq. Param. Description pdf Hyperparameters

p(k) (2.5) k complexity prior B km = 100, pc = 0.5
p(bu, bv | luv) (2.6) θ̇ bipartite coloring Ber pb = 0.01
p(L | k) (2.13) θ̇ edge count B -

p(ϕuvi ; vi ∈ N(u)) 2.22 θ̄ location alignment Dir κa = 10
p(ϕuv | luv) (2.19) θ̄ alignment prior Nc κo = 10

p(%uv, %uw | luv) (2.21) θ̄ location spacing Be αd = 5, βd = 20
p(%uv | luv) (2.20) θ̄ spacing prior Be βr = 20
p(wi | hi) (2.27) θ̄ aspect prior Be αa = 20, βa = 10
p(hi) (2.28) θ̄ height prior Be αh = 2, βh = 40

p(ti | wi) (2.26) θ̄ column prior Be αt = 2, βt = 40
p(wu, wv) (2.30) θ̄ size similarity Be αs = 3

Table 2.1: Structural model parameters and their distributions.

2.4.4 Hyperparameters

In this chapter we avoid the complete specification of hyperpriors and associated hierar-
chical Bayesian inference. For simplicity we restrict ourselves to empirical estimation of
hyperparameters. The initial values of parameters of the structural model were obtained
by Maximum Likelihood fitting of the respective distributions to values computed on the
annotated training image set described in Sec. 2.7. In our case this however resulted in too
concentrated pdfs (low variance), which did not perform well during inference (low mixing
rate).

We therefore performed grid search with several higher variance parameter values and
picked up those which performed best on the training set (highest accuracy) shown in Tab. 2.1.
This also helped to establish balance between individual parts of the model.

For this setting we have verified our model p(k, θ̄, θ̇) by constructing a random sample
generator from the distribution, generating a sequence of 106 samples and selecting the most
probable sample in the sequence. As expected, we got a regular configuration shown in
Fig. 2.6.

2.5 Data Model

The input image I = (i; i = 1, . . . , Iw · Ih) is defined as a set of pixels and we assume it is
rectified, i.e. the window borders are parallel to the image borders, and Iw, Ih are image
width and height. Although our model parameters are continuous relative to the image frame,
we will discretize them to evaluate image data pixel-wise. This can be seen as allocation of
pixels to components.

In the data likelihood model p(I | k, θ̄, θ̇) we express the probability of observing an image
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Figure 2.6: A random sample close to the mode of a Softly Bipartite Graph. Nodes on
positions µ are marked with crosses colored red or blue according to labels B. Edges
with luv = 1 are in green, component shapes are in magenta.

I given a configuration (k, θ̄, θ̇). We combine two independent features: image edges J and
color C in

p(I | k, θ̄, θ̇) = p(J | k, θ̄, θ̇) p(C | k, θ̄, θ̇). (2.31)

We use weak color information to detect regions of interest and image edge features for precise
localization of the window borders.

2.5.1 Image Edge Model

We assume that window borders correspond to edges, and use Canny detector to find them.
However, this model will not fully hold in real world situations, when we obtain the input
by detecting edges in a picture—there can be windows which do not have all pixels with
underlying edges and vice versa, some edges do not belong to any windows at all. The latter
case will typically prevail.

We use binary imaging model for window edges represented by oriented edge image
J = {Ji ∈ {0, h, v} ; i ∈ I}, where Ji = h if pixel i belongs to a horizontal edge detected in
I (foreground), resp. Ji = v for vertical edge; otherwise Ji = 0 (background). We define
d(J) ∈ [0, 1] as a distance transform of the edge image J normalized by max(Ih, Iw), see
Fig. 2.8. We use the gradient of d(J) to distinguish between horizontal and vertical edges.

Similarly, we introduce edge image R(θ̄) rendered from the current configuration specified
by θ̄ and the shape template in Fig. 2.5 with nearest neighbor discretization of relative
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Figure 2.7: The shape template (red) is matched with image edges (blue)

parameters θ̄ into pixel domain I. Assuming pixel independence, we can write

p(J | θ̄) =
∏
i∈I
p(Ji | Ri(θ̄)) (2.32)

where the probability of observing a pixel i in the edge image J given the rendered configuration
R is given by

p(Ji | Ri) Ji = 0 Ji = h Ji = v

Ri = 0 p0 = 0.8 pn = 0.1 pn = 0.1
Ri = h pd(d(i)) (1− px) pd(0) (1− px) px

Ri = v pd(d(i)) (1− px) px pd(0) (1− px)

Each row in this table is a conditional probability summing to one. In the case of
Ri ∈ {h, v} it is a mixed distribution of explicit penalty px for edge orientation mismatch
and a continuous Beta pdf based on edge distance d(i) ≥ 0

pd(d(i)) = Be(d(i); βd = 500, 1)

which makes rectangles close to edges more probable and acts as a guide for directing the
random walk in the inference (Sec. 2.6). The px = 10−9 is the probability assigned when the
edge specified by the configuration crosses an image edge in the opposite direction (horizontal
×vertical).
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Figure 2.8: Sample edge image J (left) and its distance transform d(J) (right), where bright
colors indicate pixels far from edges corresponding to high penalty for component edges
passing through them.

The edge terms can be efficiently evaluated from pre-computed integral edge images, one
for each orientation h, v, yielding constant computational complexity O(1) per edge; this
speed-up is possible thanks to rectified images and helps make random sampling (described
in Sect. 2.6) very efficient.

2.5.2 Image Color Model

We extend the simple color model from Tyleček and Šára (2011a) and model the input color
image C = (ci ∈ [0, 1]3; i = 1, . . . , Iw · Ih) with a multivariate Gaussian mixture distribution
with m = 3 components that targets the ‘window’ class. We use the configuration θ to
partition pixels either to foreground (window) set Cf or background (non-window) set Cb such
that Cf ∩ Cb = 0. Assuming pixel independence, the probability of observing a segmented
image is

p(C | θ̄) =
∏
i∈Cb

pb(ci)
∏
j∈Cf

pf (cj), (2.33)

where the background probability pb(ci) = pb = 1 is uniformly constant on the unit domain
and the foreground color model is expressed by

pf (cj) =
m∑
i=1

ωj N (cj | µci ,Σc
i). (2.34)

The mixture parameters ωj, µi,Σi are learned as ML estimates obtained with the EM
algorithm (Dempster, A.P. et al., 1977) by fitting color of ‘window’ class pixels sampled
from the annotated training image set.
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Like in edge model, color is evaluated using pre-computed integral images in linear time,
we query four values per component. As (2.33) suggests, we evaluate foreground pixels only.

2.6 Inference

We have chosen Reversible Jump MCMC framework (Green, 1995) that fits our task of
finding the most probable interpretation of the input image in the terms of target probability
p(θ, I) in (2.1), which has a very complex pdf as it is a joint probability of both shape,
locations and structure. This approach has been used by independent researchers in similar
inference tasks with variable dimensions (Ripperda and Brenner, 2007, 2009). Our solution
θ∗ is found as the most probable parameter value θ = (k, θ̄, θ̇) the chain visits in a given
number of samples. The result is a naive MAP estimation of the number of components by
direct maximization of a posterior of variable dimension (Sec. 1.3.3.2) and the procedure
requires the probabilities over terms with variable dimensions to be properly normalized in
order to compare configurations with different complexity. The MAP choice has alternative
in the two-level inference (Sec. 1.3.3.4) that will be applied in Chapter 4.

As suggested in Sec. (2.4) our probability model is however not fully normalized due to
the Gibbs distributions in the spatial regularity part (2.18) and (2.24), which are defined up
to a constant depending on N , which is generally hard to estimate.

While the MH algorithm itself is simple, we need to carefully design proposal distribution q
that should approximate target distribution p(θ, I) well for the efficient sampling. We should
point out that the quality of the resulting interpretation is determined by the probability
model, on the other hand the time necessary to reach the solution is influenced by the proposal
distributions. It turns out that by exploiting the estimated structure we can efficiently guide
the random walk of our chain by repeatedly sampling the new state θ′ from the vicinity of
the current state using conditional probability q(θ′ | θ).

The conditional sampler q(θ′ | θ, I) → θ′ is a mixture of individual samplers such that
each modifies a subset of parameters θ based on a specific proposal distribution qm(θ′ | θ, I).
The top-level sampler only chooses from q(m | θ) which of the individual samplers m will be
used to propose the next move. Their design must fulfill Markov Chain properties of detailed
balance and reversibility of all moves (Winkler, 2003), i.e. given a move there must always
exist a reverse move m′, and their probability ratio must be reflected in the acceptance ratio
of Metropolis-Hastings (MH) algorithm (Sec. 1.3.4.2). The chain is initialized with k = 0,
then the only allowed proposal is to add a new component (Sec. 2.6.3).

2.6.1 Proposal Selection

The sampler mixture distribution q(m) is constructed hierarchically, we first choose a proba-
bility qRJ = 0.1 of reversible jump proposals, from which it follows that the ordinary MH
jumps have qMH = 1− qRJ = 0.9. In the second step, we choose uniformly one of the jumps
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from the appropriate set of proposals (either q(m |MH) or q(m | RJ)) presented in the next
Sections 2.6.2 and 2.6.3.

Proposing dimension changes is expensive, therefore we adapt the proposal distribution
according to the current state to achieve a speed up by reducing reversible jumps. This is
done by constructing a conditional distribution

qt(RJ | θt) = qRJ + Te−
t
τ , (2.35)

we choose in practice T = 1
4 , τ = 104. The vanishing adaptation (i.e. qt(RJ | θt)→ qRJ) guar-

antees convergence of the chain even if it is no longer ergodic due to its adaptation (Andrieu
and Thoms, 2008).

2.6.2 Metropolis-Hastings Moves

The moves introduced in this section perform size, shape or location modifications, thus
do not modify the model complexity k and can be evaluated by a classical MH algorithm
(Sec. 1.3.4.2).

2.6.2.1 Size and Location Modification

This move picks up a component i ∼ U(k) from a discrete uniform distribution and perturbs
some of its parameter values randomly. Additionally, these samplers can be designed to
exploit image data to increase the acceptance rate. In the window detection scenario, we
have implemented three variants for this type of proposals (also see Fig. 2.9):

• Drift - random variation of position by ∆ ∼ N (0, σ∆) without changing the size,

µ′i = µi + ∆. (2.36)

• Resize - change size by randomly picking up one of four rectangle sides (left/right/top/bottom)
or corners and moving it by ∆ ∼ N (0, σ∆)

θ̄′i = θ̄i + ∆. (2.37)

The drift and resize both propose similar local changes and share the same σ∆ in order
to reduce the number of free parameters in the method.

• Flip - fix one of the rectangle sides and flip the window around it, size is not changing,

µ′i = µi ± wi or µ′i = µi ± hi. (2.38)

This allows for faster exploration of the configuration space when the fixed side is
matching a salient image edge (drift has small acceptance in this case).
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a) Drift b) Resize c) Inherit Size

Figure 2.9: Illustration of component parameter proposals. Components are red rectangles,
red arrows mark the change. Green edge connects two components and the black arrow
indicates inheritance of size.

Instead of these purely random proposals, it would be possible to implement a more advanced
Langevin diffusion (Marshall and Roberts, 2012), which can be adapted for optimal
performance but involves computation of the gradient of log probability (ev. also the Hessian).
Particularly in the case of oriented edge model (2.32) there are some difficulties, which
prevented us from using it in experiments for this problem, but it will be applied in the
following chapter.

2.6.2.2 Component Resampling

This move is a more radical variant of the previous one, we pick up a component i and change
of all its parameters by sampling from the prior distribution σ′i ∼ p1(σi) given in (2.24).

2.6.2.3 Inherit Size

This move is in spirit similar to the exchange of genes in genetic algorithms (crossover). It
proposes changes to the parameter of a component according to a chose neighbor,

θ̄′i ∼ q(θ̄i | θ̄, N). (2.39)

We uniformly choose a random edge (u, v) and transfer a randomly selected component
parameter (µ,h,w or t) value over the edge from one component to another according to the
specific constraints, resulting in proposal such as h′u = hv or µ′u = µv (see Fig. 2.9c).

2.6.2.4 Switch Edge

A move to allow changes to the neighborhood structure picks up a random edge (u, v) ∼
q(u, v | θ̄) and changes its label l′uv = 1− luv, effectively suppressing or recovering the given
edge.

The edge proposal q(u, v | θ̄) is an empirical distribution on { 1
ρuvi

; vi ∈ N(u)} to prefer
nodes closer to each other, reflecting the idea of proximity of neighbors.
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2.6.2.5 Switch Node Color

When SBG is used this move picks up a random node i ∼ qb(i | N) and changes its node color
to b′i = 1− bi. The distribution qb(i | N) is constructed to prefer nodes i from a set where
the two-coloring property of softly bipartite graph is violated, i.e. some of its neighbors u
have the same color bu = bi. We choose from this set with qb = 0.9.

2.6.3 Reversible Jump Moves

An inseparable part of our task is to find the number of components k that controls the
dimension of active component parameters θ̄. While the number of variables is fixed with km
(Sec. 2.4) in practice the change of k means activation or inactivation of components. Ac-
tivation process is however equivalent to sampling of the component parameters for a new
components and we will use the standard RJ terminology including ‘dimension matching’ in
the following text even when it is not precise.

The standard MH acceptance (Sec. 1.3.4.2) has to be extended for RJ with

A = 1 ∧ p(I | θ
′) p(θ′)

p(I | θ) p(θ) ·
q(m | θ′)
q(m′ | θ)︸ ︷︷ ︸

am

· qm(θ | θ′)
qm(θ′ | θ)︸ ︷︷ ︸

aq

· q←(u← | θ′)
q→(u→ | θ)︸ ︷︷ ︸

au

·J→, (2.40)

where am reflects the choice of individual samplers, aq is the proposal density ratio (aq = 1
when the proposals are symmetric), au and J→ are related to complexity changes in reversible
jumps (described below). The proposed move is accepted with probability A ∈ (0, 1] (given
by truncated probability ratio). In order to compare the models in (2.40) we need to define
dimension matching functions q→, q← for both direct and reverse moves, where → refers to
direct move, ← to reverse move, u are dimension matching (communication) variables and

J→ =
∣∣∣∣∣∂f→(θ, u→)
∂(θ, u→)

∣∣∣∣∣ (2.41)

is the Jacobian of the transformation, following the notation given in Green (1995).
There is a set of edges and neighborhood variables luv associated with each (in)activated

component, concretely all edges linking a removed component are suppressed (luv = 0) and
corresponding proposal pdf q(u, v) from Sec. 2.6.2.4 must be included in the acceptance ratio.
When activating a component its associated edges stay suppressed, unless otherwise specified
below. If some edge is enabled (luv = 1), its proposal pdf is also included in (2.40).

2.6.3.1 Birth and Death

By inserting a new component into our model we propose an increase of dimension k 7→
k′ = k + 1. We choose the communication variables to be u→ = [σ∗, µ∗], where we sample
the parameters of the new component θ̄∗ = (σ∗, µ∗) ∼ q(σ, µ) and obtain a new state where
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we append them5 in σ′ = (σ, σ∗) and µ′ = (µ, µ∗). The corresponding dimension matching
function is

f→(θ̄, u→) = f→(θ̄, θ̄∗), (2.42)

which inserts θ̄∗ into the set, and its Jacobian J→ = 1. We will use the following notation
within this section: terms in [. . . ] refer to communication variables and terms in {. . . } to
parameters.

The reverse move is death, for which we have no communication variable u← = [ ] (empty),
only choose a component i to be removed from the set. To establish reversibility, we define
inverse matching function as

f←
(
θ̄′, u←

)
= f←

(
θ̄′, [ ]

)
, (2.43)

where σi, µi are the removed6 variables and σ = σ′ \ σi, µ = µ′ \ µi. The corresponding birth
move acceptance is then

abirth = p(θ′, I)
p(I)

q(m | θ′)
q(m′ | θ) ·

q(i | k′)
q(∗ | k) ·

1
q→(σ∗ | σ) · 1, (2.44)

where q→(σ∗ | σ) = p1(σ) is directly the prior probability of the new window (2.25), q(i |
k′) = 1

k′
and q(∗ | k) = 1

k
are the probabilities of selecting the windows ∗, i.

By removing an existing component from the set (death) we propose a decrease of
dimension k 7→ k′ = k − 1, and choose a window i ∼ U(k) to be removed. With an
appropriate change of labeling, the derivation of death move will be the same as for birth,
except for the inversion of ratios in (2.44) and corresponding reindexation.

In the basic case of birth the new position µ∗ is sampled uniformly and the new size
parameters are sampled from the prior σ∗ ∼ p1(σ). The jumps detailed below are special
cases of birth that exploit the structure of the current configuration for predicting values
of the new components, which can be generally described as sampling from θ̄∗ ∼ q(θ̄ | N).
We designed them to sample from the marginal distributions of the structural model where
possible, which is expected to have a high acceptance probability A resulting in more efficient
exploration of the configuration space (mixing).

2.6.3.2 Append

In this case of the birth jump we attempt to predict a location for the new component based
on the prior information. We first choose uniformly an existing component i ∼ U(k) and

5Recall that σ, µ without subscripts are parameter arrays and subscripted σ◦, µ◦ are parameters of a single
component. By (x, x◦) we mean the element x◦is appended after the last item in array x.

6The x \ xi indicates removal of the i-th element from the array x, i.e. we extend the set operator \ for
arrays.
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θ:

θ′:

Figure 2.10: Replicate extends an array of components following its orientation and spacing.

place the new component relatively to its position according to

µ∗ = µi + ρν(ϕ), (2.45)

where ν(ϕ) = [ sinϕ, cosϕ ], we sample ρ ∼ p(%uv) and ϕ ∼ p(ϕuv | luv = 1) from the priors
(2.19) and (2.20). Its shape parameters σ∗ are sampled relatively to σi from the marginal
Beta distribution (2.29) of similarity by δ ∼ p2(σ | N) and then

σ∗ = σi
1− δ
δ

. (2.46)

We explicitly set the edge li∗ = 1 and the Jacobian here is J→ = ρ.

2.6.3.3 Replicate

This jump is similar to append, but we predict the new position based on the existing structure
i.e. to add a new component to the end of an array (see Fig. 2.10). We uniformly sample an
edge (u, v) and set the new window position to

µ∗ = µv + ρuvν(ϕuv), (2.47)

where ρuv and ϕuv are taken from the sampled edge. The size is replicated by taking the
mean of the two sampled components

σ∗ = 1
2 (σu + σv) . (2.48)

The Jacobian is here J→ = ρuv.

2.6.3.4 Extend

The above introduced proposals have low acceptance when a single new component is added
as the first one in a new row or column (in the regular case), because the structure prior
puts a low probability on this configuration. Adding two components at a time can be more
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horizontal vertical

a) basic

horizontal vertical

b) flipped

Figure 2.11: For split first a diagonal (basic/flipped, indicated by points in corners) is chosen
and then the orientation (horizontal/vertical, indicated by dotted line), resulting in four
possible scenarios. The black rectangle can be split into two rectangles (red and blue),
or inversely red and blue rectangles can be merged to the black rectangle (their common
bounding box). In the general non-overlapping case there are four possible scenarios.

successful, so in this case we add two new components ∗1, ∗2 at once and connect them with
edges to create a new four-cycle in the graph N . We uniformly sample an edge (u, v) and set
the new positions to

µ∗1 = µu + ρuvν(ϕ∗), (2.49)
µ∗2 = µv + ρuvν(ϕ∗), (2.50)

where ϕ∗ = ϕuv± π
2 and the sign is chosen uniformly. The size parameters are replicated from

σu to σ∗1 and σv to σ∗2 . The face is completed by activating edges lu∗1 = lv∗2 = l∗1∗2 = 1.

2.6.3.5 Split and Merge

The split move proposes increase of dimension k 7→ k′ = k + 1, where an existing component
is transformed into two new ones. This move is a shortcut for an equivalent sequence of drift
and birth detailed above. Split is expected to have higher acceptance than the partial moves
combined, because the intermediate configurations have low probability. The same applies
to the inverse move merge which shortcuts death and drift by replacing two neighboring
components by their bounding box; this merging procedure has impact on the split procedure,
because they have to be exactly reversible. There are four splitting scenarios corresponding
to the relative position of the two split or merged components in Fig. 2.11 and we need to
sample them all in order to have inverse split for any merge move and vice versa.

To simplify the calculations we will work with the component rectangles represented by
upper-left and lower-right corners B (bounding box), which can be obtained from the location
and size parameters θ̄i = (µi, wi, hi, ti) using

B(θ̄i) = Bi =
[
µi1 −

wi
2 , µi2 −

hi
2 , µi1 + wi

2 , µi2 + hi
2
]
, (2.51)

B(θ̄) = (B1, . . . , Bk). (2.52)

We choose and fix the component v ∈ {1, . . . , k} to be split, the split direction (horizon-
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tal/vertical) and sample the split factors sij ∈ (0, 1), which describe locations of the two split
rectangles relative to the original rectangle (bounding box), as shown in Fig. 2.12. They are
sampled from the beta distribution as the communicating variables

u→ = [ s11 s12 s21 s22 ] = s.

The beta pdf parameters are chosen according to the given split scenario, i.e. for the horizontal
scenario

s11, s12 ∼ Be(βs1, βs1), s21 ∼ Be(1, βs2), s22 ∼ Be(βs2, 1).

The corresponding dimension matching function is then

f→(B, u→) = f→
(
B, [s11 s12 s21 s22]

)
=
(
{B,B∗}, [ ]

)
=
(
B′, [ ]

)
, (2.53)

which in the basic horizontal scenario modifies Bv =
[
b11 b12 b21 b22

]
into

B′v = [b11 + s12wv, b12 + s21hv, (1− s12)wv, (1− s21)hv], (2.54)

and inserts new B∗ into the set of components

B∗ = [b11, b12, s11wv, s22hv].

The case for flipped or vertical orientation is derived analogically. The parameters B′ for
other components than v are copied from B and the Jacobian

J→ =
∣∣∣∣∣∂(B′, B∗)
∂(B,B∗)

∣∣∣∣∣ = w2
v h

2
v (2.55)

is calculated given v from the variables that actually change: Bv 7→ B′v. The other scenarios
yield the same result.

The inverse move is merge, for which we have no communication variable u← = [ ] (it is
deterministic), and choose the two neighboring components Bv, B

† ∈ B′ to be merged into
one. To establish reversibility, we define inverse matching function as

f←(B′, u←) = f←
(
{B¬v, B′v, B†}, [ ]

)
=
(
{B}, s

)
∼
(
B, u→

)
, (2.56)

where B† is the removed component and Bv is the merged component, B = {B′ \B†}. The
split configuration is detected and ratios s are calculated from the affected component pair
Bv, B

†, inversely to (2.54). In the split move acceptance we now have au = 1
q→(s) , where

q→(s) = p(s11) p(s12) p(s21) p(s22) (2.57)

is the prior probability of the split and αq = k
k+1 reflects component selection.
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Figure 2.12: Split bounding box Bi (black) with relative split locations s (dashed) for
horizontal scenario and proposal Beta pdfs (dotted, approx.).

For merge, where k 7→ k′ = k − 1, the merged component rectangle B′v is a bounding box
of the merged components Bv, B

† and the Jacobian is now

J→ =
∣∣∣∣∣∂(B′, s)
∂(B)

∣∣∣∣∣ = 1
w2
v h

2
v

. (2.58)

Again, with appropriate change of labeling, the derivation of merge move is the same as for
split, except for the inversion of ratios, i.e. aq = k+1

k
and au = q→(s), where the corresponding

split factors s must be calculated from the input configuration. The pair of components to
merge is sampled from the edge proposal q(u, v | θ̄) in Sec.2.6.2.4 to components close to
each other.

2.6.4 Convergence and Complexity

The overview of implemented proposals is given in Tab. 2.2.
We have found that the typical necessary number of MCMC samples (and classifier calls)

is proportional to image size in pixels |I| (from 30% for easy instances to 200% for the difficult
ones). As a result, we fixed the number of samples in our current method to a pessimistic
estimate, but our experiments suggest that significantly shorter sampling time could be
achieved with a suitably designed stopping condition (see Fig. 2.13). Another option is to use
a more efficient sampling scheme, i.e. Duane et al. (1987) for the continuous part or Barbu
and Zhu (2005) for the discrete variables (labels).

2.7 Experimental Results

We have performed a number of experiments with the implementation of window detection
in facades of various styles to demonstrate the universality of our approach. We have run
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sample #1 sample #50 sample #100

sample #150 sample #200 sample #500

sample #1000 sample #1500 sample #2000

sample #2500 sample #3000 sample #5000

Figure 2.13: Inference progress of the proposed RJMCMC sampler. Detected windows are
shown in red, neighborhood edges in green and image edges are emphasized in blue.
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Parameter Move Proposal pdf and parameters

µ θ̄ drift N σ∆

σ, µ θ̄ resize N σ∆

µ θ̄ flip - -
σ θ̄ resample p1(σ) see (2.24)
σ, µ θ̄ inherit q(θ̄i | θ̄, N) -
N θ̇ switch edge q(u, v | θ̄) -
B θ̇ switch color qb(i | N) qb = 0.9
k +1 birth U(µ), p1(σ) see (2.24)
k -1 death U(k) -
k +1 append p(%uv), p(ϕuv), p1(σ) (2.19), (2.20)
k +1 replicate U(N) -
k +2 extend U(N) -
k 1→ 2 split Be βs1 = 2, βs2 = 10
k 2→ 1 merge q(θ̄i | θ̄, N) -

Table 2.2: List of proposals and their typical acceptance ratios. Reversible jumps changing
dimension are in the bottom part of the table.

the Markov Chain for fixed 5× 105 iterations in our experiments, which roughly equals to
visiting all pixels in the analyzed images. With our Matlab implementation, the running
time was under one minute on a standard 2 GHz CPU.

The only public dataset known to us that allows quantitative comparison in this area has
been provided by Teboul et al. (2010). The dataset consists of 30 rectified and annotated
images of facades from a street in Paris, which share attributes of Haussmannian style but
differ in illumination conditions. We have trained our model on 20 of them and 10 were
used for testing. Direct comparison is not possible, because they segment facade pixels into
eight different classes of components and our window detector defines only two (window/non-
window). To deal with this issue, we have used a similar reduction as in Tyleček and Šára
(2011a) and merged the columns of confusion matrix given in Teboul et al. (2010) into
two, treating all original classes other than window as our background (non-window).

The results in Tab. 2.3 for window and wall suggest that the proposed method is performing
better in the terms of high specificity when compared to the procedural segmentation (PS)
framework (Teboul et al., 2010) see Fig. 2.15. We attribute this to the extended color
model model with Gaussian mixtures in the HSV color space (which is less sensitive to
the illumination changes), on the other hand, it resulted in a small drop in sensitivity to
the window class. The new bipartite structural model with parameters learned from the
annotations also contributed to the results, it is able to support windows completing the
structure even where the data response is low. This allows us to achieve good results even
when the illumination varies and partial occlusion of windows is present, as shown in Fig. 2.7.
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H = 1.3705 H = 0.6632 H = 0.6920
a) Monge No. 13 b) Monge No. 43 c) Monge No. 50

Top row: Visualization of selected results from Parisian dataset (Teboul et al., 2010), facade a) is
occluded by plants, in facade b) a cast shadow is present. False positive windows are also window-like
regions: They have good response from both classifiers and match with the neighbors. Bottom row: Posterior
histograms for complexity k.

The difference between RNG and SBG is in favor of the latter particularly due to less false
positive detections as a result of using less restrictive graph prior which allowed to find better
balance between the parts of the probability model (Sec. 2.4.4).

Posterior histograms shown in Fig. 2.7 for complexity k demonstrate different difficulty of
the images, which is quantified by estimated entropy H. In the case of a) there is another less
probable interpretation for k = 15 (missing some rows of windows), resulting in higher H.

To prove our framework is not limited to a particular style, we demonstrate results
on modern buildings and even hand drawn images in Fig. 2.16 and Fig. 2.14. Note the
appearance of edges in Fig. 2.16a) connecting the ‘shifted’ middle column, which was not
possible in Tyleček and Šára (2011a) due to the RNG constraint. The shape parameter t
in Fig. 2.16b) which was fixed in Tyleček and Šára (2011a) is now inferred along with the
other parameters of the model.

Finally, we have made experiments with loosely regular facade of Dancing House shown
in Fig. 2.14a), where window alignment shows significant deviation from the grid structure
and we were successful in correctly locating all windows lying on the major plane as well as
their neighborhood.
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Ground Truth PS RNG SBG
class area hit miss hit miss hit miss

window 11 81 19 83 17 76 24
wall 48 83 17 84 16 98 2

balcony 12 72 28 60 40 89 11
door 1 71 29 65 35 100 0
roof 4 80 20 51 49 95 5

chimney 1 0 100 83 17 96 4
sky 7 94 6 99 1 100 0
shop 14 95 5 60 40 99 1
other 2 0 100 61 39 96 4
area-weighted 81 19 77 23 93 7

Table 2.3: Quantitative results on the Parisian dataset (Teboul et al., 2010) shown as
percentage of pixels from each class specified in a row. The area is the percentage of pixels of
a given class in the whole test set. PS stands for Procedural Segmentation (Teboul et al.,
2010), RNG for Relative Neighborhood Graph (Tyleček and Šára, 2011a), SBG for Softly
Bipartite Graph Tyleček and Šára (2012). Percentage in italics indicate remapping to
window/wall classes described in Tyleček and Šára (2011a).

2.8 Conclusion

We have presented a recognition framework that uses a weak structure model to locate
components in images, and demonstrated its potential in the task of window detection in
facades. Our experiments have demonstrated that structural regularity given by pair-wise
parameter constraints can efficiently guide a stochastic process that estimates component
locations and neighborhood at the same time. We have shown that the conjunction of a weak
non-specific classifier and a weak structural model can lead to performance that would be
hardly achievable by a well-trained specific classifier alone.

In practice we have faced difficulties to tune model hyperparameters (Tab.2.1) with
proposal parameters (Tab. 2.2) for overall balanced performance. Although the approach
described in 2.4.4 is useful for this task, a limited set of tentative hyperparameter values
must be established manually and this choice may be suboptimal. In the following chapters
we will address this issue.
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a) Irregular facade b) Sparse structure c) Hand-drawn

Figure 2.14: Results on non-standard facade images.
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RNG SBG RNG SBG

Figure 2.15: Results of the proposed method on the ten test images in the Parisian dataset
with RNG and SBG structure priors.
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Figure 2.16: Interpreted facades of modern buildings.



Chapter 3

Spatial Pattern Templates

“The design of a temple depends on symmetry, the principles of which must be most carefully
observed by the architect.”

Marcus Vitruvius (80-25 BC)

3.1 Introduction

While previously some of hyperparameter values were assigned empirically, in this chapter a
method which is able to learn the structure of relations between components will be proposed
to get around the difficulties encountered in the previous approach (Sec. 2.8).

The recent development in the areas of object detection and image segmentation is centered
around the incorporation of contextual cues. Published results confirm the hypothesis that
modeling relations between neighboring pixels or segments (superpixels) can significantly
improve recognition accuracy for structured data. The first choice one has to make here is
to choose the neighbor relation, or in other words, which primitive elements participate in
constraints on labels. The constraints are usually specified with a formal language of spatial
arrangements. A common choice for the relation is the adjacency of element pairs in the
image plane, such as 4 or 8-neighborhood of pixels in a grid, which supports the language
model (Čech and Šára, 2009). This can be extended in various directions: In ‘depth’ when
more concurrent segmentations1 are overlaid to handle multiple scales, or in cardinality when
we connect more elements together. Generally speaking, in this chapter we will take a closer
look on this design process and introduce a concept called Spatial Pattern Templates (SPT).

A convenient framework to embed such patterns into are probabilistic graphical models,
where image elements correspond to nodes and edges (or higher-order cliques) to the relations
among them. In such a graph, our pattern templates correspond to cliques or factors, as they
describe how a given joint probability factorizes. We choose CRF (Sec. 1.3.2.3, Lafferty
et al. (2001)) as a suitable model, which allows us to concentrate on the element relations

1Segmentation is a partitioning of an image into segments (compact subsets of pixels in the image).

63
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and not to care much about how the data are generated. Specifically, we propose pattern
templates to deal with regular segmentations of translation-symmetric objects and call them
Aligned Pairs (AP) and Regular Triplets (RT).

We identify regular segmentations as those where object geometry, shape or appearance
exhibit translation symmetry, which manifests in alignment and similarity. Such principles
often apply to images with man-made objects, even though such phenomena are also common
in the nature. Urban scenes have some of the most regular yet variable segmentations and
their semantic analysis is receiving more attention nowadays, as it can aid other computer
vision tasks such as image-based urban reconstruction. We design our method with this
application in mind, specifically targeting parsing of facade images (a multi-class labeling
problem).

In this task, we exploit the properties of largely orthogonal facade images. We start by
training a classifier to recognize the patches given by unsupervised segmentation. Based
on the initial segments we build a CRF with binary relative location potentials on AP and
ternary label consistency potentials on RT. For intuition, this can be seen as a process
where all segments jointly vote for terminal labels of the other segments, with voting scheme
following the chosen spatial patterns. The concept of template design, its embedding in the
CRF and implementation for regular objects with Regular Triplets and Aligned Pairs are the
contributions of this chapter.

3.2 Related Work

3.2.1 Contextual Models

Relative location prior on label pairs is used in Gould et al. (2008) for multi-class segmenta-
tion. Every segment votes for the label of all other segments based on their relative location
and classifier output. Ideally, such interactions should be modeled with a complete graph
CRF, where an edge expresses the joint probability of the two labels given their relative
location, but this would soon make the inference intractable with the growing number of
segments. Instead Gould et al. (2008) resort to a voting scheme and use CRF with pairwise
terms for directly adjacent segments only. In our approach, we include the discretized relative
location prior in a CRF but limit the number of interactions by choosing a suitable pattern
template.

CRFs are popular for high-level vision tasks also thanks to the number of algorithms
available for inference and learning (Nowozin et al., 2010). However, useful exact algorithms
are only known for a specific class of potential functions (obeying submodularity). Kohli
et al. (2009) fit in this limitation with a robust version of a generalized Potts model, which
softly enforces label consistency among any number of elements in a high order clique (pixels
in segments). We can use this model for RT, but because the pairwise relative location
potentials may have arbitrary form, we cannot apply the efficient α-expansion optimization
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used in Kohli et al. (2009).

3.2.2 Structure Learning

A number of methods for learning general structures on graphs have been recently devel-
oped (Galleguillos et al., 2008; Schmidt et al., 2008; Schmidt and Murphy, 2010).
They learn edge-specific weights in a fully connected graph, which is directly tractable only
when the number of nodes n is small (10 segments and 4 spatial relations in Galleguillos
et al. (2008)) due to edge number growing with O(n2). Scalability of the approach has
been extended by Schmidt et al. by block-wise regularization for sparsity (Schmidt et al.,
2008) (16 segments) and subsequently also for higher-order potentials with a hierarchical
constraint (Schmidt and Murphy, 2010) (30 segments). Since we deal with ≈ 500 segments,
this approach cannot be directly applied and, as suggested in Schmidt et al. (2008), a
restriction on the edge set has to be considered. The SPT can be here seen as a principled
implementation of this restriction to keep the problem tractable.

3.2.3 Facade Parsing

In contrast to the state of the-art method (Sec. 1.2.5) by Martinovic et al. (2012) our
method accommodates the general assumption of regularity in a principled and general way
as a part of the model, which is based on the CRF and can benefit from the joint learning
and inference.

3.3 Spatial Pattern Template Model

Initially we obtain a set of segments X in the input image with a generic method such
as (Felzenszwalb and Huttenlocher, 2004), tuned to produce over-segmentation of the
ground truth objects such as windows, wall, door etc. in Fig. 3.7b. The image parsing task is
to assign labels Z = (z1, . . . , zn), zi ∈ C, of given semantic classes C = {c1, . . . , ck} to given
image segments X = (x1, . . . , xn), xi ⊂ dom I in an image I. With segments corresponding
to nodes in a graph and labels Z being the node variables, we construct a CRF with potentials
taking the general form of

p(Z | θ,X,Q) ∝
∏
q∈Q

exp
− ∑

j∈φ(q)
θj pj(zq | xq)

 , (3.1)

where Q is the set of cliques, pj are potential functions from a predefined set φ(q) defined
for a clique q. The pj is a function of all parameters zi, xi in the clique q joined together in
vectors zq,xq and the output is weighted by θj. The design of a specific CRF model now
lies in the choice of cliques Q defining a topology on top of the segments, and the choice
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of their potential functions pj, which act on all node variables in the clique and set up the
probabilistic model.

The analogy to the other models is suggested by the notation following Sec. 1.3.1. Primi-
tives are segments X and their assignment to classes C is represented by labels Z. Classes
can be seen as ‘semantic components’ opposed to spatial components. Both primitives X,
classes C with their number k need to be fixed in (3.1) for inference and learning of (hy-
per)parameters θj . This is the downside of bypassing the problem of hyperparameter learning
encountered in the previous Chapter 2.

3.3.1 Spatial Templates for Data-dependent Topology

As a generalization of the adjacency, used i.e. in Yang and Förstner (2011), we can think
of other choices for the graph topology that may suit our domain by including interactions
between distant image elements, which are ‘close’ to each other in a different sense. As
mentioned in Sec. 3.2, the scale of the problem does not allow us to reach complete connectivity.
To allow dense connectivity while keeping the problem tractable, we need to restrict the
number of cliques (edges). We describe this restriction with a template and, with the
geometrical context in mind, we limit ourselves to spatial templates, which assign segments to
cliques based on their geometrical attributes (shape, location). In principle other attributes
(appearance) could be used in the template too. The meaning of this representation is to
provide a systematic procedure for automatic learning of which interactions are the most
efficient ones for the recognition task at hand.

In order to describe the process of designing a complex data dependent topology for a
CRF, we first have to decompose the process behind clique template design into individual
steps:

1. The first step is the specification of core attribute relation functions δi : An → R
based on the domain knowledge. The relations act on easily measurable attributes A of
n-tuples of segments.
Example: Positions of two points in a plane as attributes Ax, Ay ∈ R2 and their signed
distances in directions x and y as the relations δx, δy.

2. The ranges of relations δi are discretized to ordered sets ∆i and di : An → ∆i becomes
the discrete counterpart of function δi.
Example: The signed distance is divided into three intervals, ∆x = {left, equal, right},
∆y = {below, equal, above} .

3. In the next step the Cartesian product of m relation ranges ∆i gives domain D =
∆1 × · · · ×∆m, where subsets define logical composite relations (and, or, =).
Example: Three intervals on two axes give 32 combinations in Dxy = ∆x ×∆y, which
can represent relations such as ((∆x = left) and (∆y = below)), another example is
(∆x = ∆y).
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Figure 3.1: Illustration of AP construction on a simplified case with only three possibilities
in ∆a = (A,W,N) for horizontal alignment and the same for vertical alignment (not shown).
The weights θ associated with the template are subject to learning, except for the θNN (not
aligned in any direction) for which ωAP (N,N) = 0, i.e. it is purposely excluded by the
designer.

4. The spatial template is a subset Ω ⊂ D representing a concrete relation. The
template is specified by an indicator function ω : D → {0, 1} representing the allowed
combinations.
Example: For alignment in one direction we set ωxy = 1 when dx = equal or dy = equal,
otherwise ωxy = 0.

The template design may be viewed as a kind of declarative programming framework for
model design, a representation that can incorporate the specific knowledge in a generic way
with combinations of core relations δi. Each spatial template is related to one potential
function pj in (3.1).

In summary, the result of this process describes which subsets of segments S labeled
L should be jointly modeled in a graphical model; which of these are effective is subject
to learning. Figure 3.3 shows how the segments correspond to nodes and their subsets
define factors in p(Z | X). In this work we introduce two templates suitable for regular
segmentations.

3.3.1.1 Aligned Pairs (AP)

First template Aligned Pairs extend the basic adjacency relation by allowing also more
distant connections between segments which are not directly adjacent. Out of all pairs of
segments u, v we choose only those which are aligned either vertically or horizontally. It is
useful to connect non-adjacent segments when the labels in such pairs follow some pattern,
i.e. windows are aligned with some free wall space in between, sky is above roof, windows are
inside wall etc.

The specification follows the spatial template design steps, a simplified illustration is
provided in Fig. 3.1:

1. Based on the position attribute we choose horizontal and vertical alignment δh, δv
with δh : (xu, xv) → R and δh = 0 when the segments are exactly aligned, otherwise
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0

Figure 3.2: Spatial template Ω is a sub-
space in the domain DAP given by relation
functions δh, δv. The center corresponds
to the exact alignment in both axes. If
segment u (green) is located in the cen-
ter, other squares (red for adjacency, blue
belong to Aligned Pairs) correspond to
discrete relative positions of segment v.

Figure 3.3: Factor graph for regular SPT.
Segments X are shown as blue rectan-
gles xi (i.e. corresponding to window
frames), factors are solid squares. Aligned
Pairs connect only segments in mutual rel-
ative position specified by the template
in Fig. 3.2. Regular Triplets then com-
bine two aligned and equally spaced pairs
together.

according to Fig. 3.2 (analogically δv for vertical).

2. Quantized functions dh, dv : R4 → ∆a evaluate locations of the two segment bounding
boxes in both horizontal (dh) and vertical (dv) direction. The possible discrete values
∆a ⊂ Z for relative position and length of the two intervals are ordered according to
Fig. 3.4, which is a pictorial representation of a set of inequality conditions, i.e. the
identity ∆a = 0 is tested with a = u ∧ b = v, the left adjacency ∆a = −6 is tested with
u < a ∧ a = v and so on; a few more cases are described below. The values beyond ±6
include the relative free space, i.e. on the right ∆a = 6 + d(u− b)/(b− a)e.

3. Combinations of horizontal and vertical alignment are then represented by joining dh, dv
in a discrete domain DAP = ∆a ×∆a limited by maximum distance.

4. Finally we specify the AP template with ωAP = 1 in the blue region in Fig. 3.2.

Note that adjacency (4-neighborhood) is a special case of AP when we specify ωAP = 1
only for four specific values in DAP (directly above/under/left/right, red squares in Fig. 3.2,
|dh| = 6 ∧ dv = 0 or dh = 0 ∧ |dv| = 6). Similarly values of |dh| ≤ 5 together with |dv| ≤ 5
correspond to overlap or nesting of segments.

3.3.1.2 Regular Triplets (RT)

In this template we combine two Aligned Pairs in a triplet u, v, w with regular spacing, in
which the v is the shared segment. Including triplets allows to express a basis for repetitive
structures (rows, columns) of primitive objects of the same label (window, balcony).
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Figure 3.4: Given interval (a, b) the fig-
ure shows the values ∆a of alignment re-
lation function da for a set of intervals
(u, v), ranging from 0 (aligned) to ±7 (no
overlap). More free space between inter-
vals corresponds to higher absolute values
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Figure 3.5: Discrete relative co-occurrence
location histogram p(zu, zv, dh, dv) for la-
bel pairs in the ECP-Monge dataset. It
holds information such as ‘sky is usually
above windows’ or ‘balconies are aligned
vertically with windows’. Dark colors
correspond to high frequency, blue cross
marks dh = dv = 0 (equality).

1. In addition to position alignment δh, δv defined for AP we introduce ternary relation
functions for size similarity δs : (xu, xv, xw) → R (relative difference in size of
segments) and regular spacing δr : (xu, xv, xw)→ R (relative difference in free space
between segments).

2. Based on them we define binary function ds : (xu, xv, xw) → {0, 1} to be 1 when
|δs| < 0.1 and similarly dr : (xu, xv, xw)→ {0, 1} to be 1 when |δr| < 0.1.

3. All functions dh(xu, xv), dv(xu, xv), dh(xv, xw), dv(xv, xw), ds(xu, xv, xw) and dr(xu, xv, xw)
are then joined in a six-dimensional domain DRT = ∆4

a × {0, 1}2.

4. Finally we specify ωRT = 1 in the subspace of DRT where ds = 1, dr = 1 and values
of dh, dv indicate that the three segments are pair-wise aligned in the same direction
(horizontal or vertical).

3.3.2 Probabilistic Model for Label Patterns

Given the fixed set of segments X, we will now make use of the SPT topology to model
regular contextual information with a CRF for the graphical model.
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For clarity we rewrite (3.1) in a convenient form

p(Z | X) ∝
∏
u∈S

exp(p1(νu))×
∏

(u,v)∈AP
exp(p2(νu, νv))×

∏
(u,v,w)∈RT

exp(p3(νu, νv, νw)), (3.2)

where νi = (zi | xi) are variables related to node i and p1, p2, p3 are unary, pair-wise (AP)
and ternary (RT ) potential functions (factors) respectively. We will now discuss features
used in these factors.

3.3.2.1 Unary Potentials

The p1(νi) = log p(zi | xi) are outputs of a multi-class classifier evaluated on the features for
an image patch xi of the segment xi. The feature vector f(xi) is extracted from the image
data by appending histogram of gradients (HoG), color (HSV), relative size, position, aspect
ratio and 2D auto-correlation function.

3.3.2.2 Pairwise Potentials

Pairwise potentials for AP are restrictions on the template learned for concrete label pairs.
They are based on a discretized version of the relative location distribution (Gould et al.,
2008), similar form is used in (Tighe and Lazebnik, 2011) for adjacency. It is the statistical
function

p2(νu, νv) = w2,dh,dv log p(zu, zv | dh, dv), (3.3)

where dh are the values of horizontal alignment dh(xu1, xv1) analogically dv for vertical. As
suggested in the specification of AP, they are computed by comparing the two segment
locations: Their bounding boxes in the specified dimension (horizontal) are two intervals
and a value dh is assigned following Fig. 3.4 . The pattern of labels zu, zv is the empirical
distribution in the given relative locations dh, dv computed as the second order co-occurrence
statistics of the labels for pairs of segments observed in a training set. The co-occurrence
frequencies are obtained from a training set for each pair of class labels and are accumulated
for all values in the spatial template domain ΩAP . Figure 3.5 shows the resulting histograms
of AP in Fig. 3.2.

3.3.2.3 Ternary Potentials

Ternary potentials model regularity by encouraging some labels in RT to have the same value
(i.e. window) in

p3(νu, νv, νw) =

w3,c if zu = zv = zw = c,

w3,0 otherwise,
(3.4)

which is a generalized Potts model (Kohli et al., 2009) and w3,c is a learned class-specific
parameter. We do not use the complex ternary co-occurrence statistic with this potential
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Figure 3.6: Result of AP parameter learning θ2, green box covers the domain ΩAP = dh × dv
depicted in Fig. 3.2. Large values (bright) correspond to important spatial relations while
small values (dark) indicated relations which can be ignored when constructing a CRF for
inference.

because there is not enough data for its training. To facilitate efficient learning, we convert
ternary potentials into pairwise by adding a hidden variable for each ternary factor p3.

3.3.3 Piece-wise Parameter Learning

The goal of parameter learning is to maximize (3.1) w.r.t. potential parameters (weights) θ.
The unary potential classifiers are trained independently to reduce the number of free

parameters in the joint CRF learning process. For binary potentials (including the reduced
ternary potentials) we use pseudo-likelihood learning procedure to obtain values of the
potential weights θ. This process corresponds to structure learning within the domain ΩAP

limited by the SPT topology, resulting in θ2 7→ 0 where the relation does not contribute to
the discriminative power of the CRF (See Fig. 3.6). In practice this amounts to learning
∼ 200 parameters based on likelihood in 50 sampled images, each of them with approximately
500 label variables, 3000 pair and 100 triplet factors. The training process takes several hours
to complete (8 cores, 2 GHz) using Mark Schmidt’s UGM library 2.

3.3.4 Inference

The overall inference process is illustrated in Fig. 3.7. The CRF is constructed only for
important spatial relations, i.e. red edges shown in d) are not included. Because some
of our potentials have a general form, exact CRF inference is not possible and we use an
approximate algorithm (Kolmogorov, 2006) to compute the marginal distributions of the
labels Z in (3.1). Segment labels are assigned to the most probable label to perform MAP
estimation of (3.1). The run time around 30 s per image.

2www.di.ens.fr/~mschmidt/Software/UGM.html

www.di.ens.fr/~mschmidt/Software/UGM.html
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a) input image → b) segmentation → c) bounding boxes

d) graph construction → e) CRF optimization → f) output labeling

Figure 3.7: Inference process. Only subset of pairwise relations is depicted in the graphs d)
and e), ternary factors for rows and columns of windows are omitted for clarity.
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3.4 Experimental Results

We have validated our method on two public datasets annotated into 8 classes (like wall,
window, balcony etc.) and our large facade dataset (Tyleček, 2012).

The public ECP-Monge dataset is available from Simon et al. (2011) (we use corrected
ground truth labellings from Martinovic et al. (2012)). It contains 104 rectified facade
images from Paris, all in uniform Hausmannian style. Next, the public eTrims database (Korč
and Förstner, 2009) contains 60 images of buildings and facades in various architectural
styles (neoclassical, modern and other). We rectified them using vanishing points.

We have compiled a new publicly available larger CMP Facade database (Tyleček, 2012)
with ∼ 400 images of greater diversity of styles and 12 object classes. Its description can be
found in Appendix A.

Figure 3.8 shows parsing results for different contextual models, additional results can
be found on the dataset website Tyleček (2012). Table 3.1 provides their pixel-wise
accuracy and comparison with other methods based on 5-fold cross validation. We have
used method (Felzenszwalb and Huttenlocher, 2004) to extract averagely 500 segments
(independently on the image resolution) and show it under SGT, where ground truth labels
of pixels within each segment have been collected and the most frequent label among them
selected for the entire segment. The result is the maximum achievable accuracy with this
segmentation, inaccurate localization of the segment borders is currently the main limiting
factor (we are 4.3% below the limit on ECP-Monge).

The main observation is that contextual information improves the accuracy averagely
by 20% when statistics on AP is used, and by further 4% when RT are included. The RT
help mostly with window and balcony identification, thanks to the statistics of these labels
following regular pattern in the dataset. The qualitative improvement is noticeable, even
when their effect on the total pixel-wise accuracy is small, which is a sign it is not a very
suitable measure. A more sophisticated local classifier make the structural part of the model
almost unnecessary, as observed in Martinovic et al. (2012), but such model may be overly
reliant on a good training set and perhaps prone to overfitting.

3.5 Conclusion

We have introduced the concept of Spatial Pattern Templates for contextual models. The
proposed Aligned Pairs and Regular Triplets templates have been found useful for segmentation
of regular scenes by increasing accuracy of facade image parsing. Further we see possible
improvement in the quality of the segment extraction to increase accuracy of segment borders.
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image GT NC AP APRT SGT

Figure 3.8: Selected visual results on ECP-Monge facade dataset, our result with full model is
under APRT, (note it cannot be better than SGT ). See legend in Tab. 3.1 for abbreviations.
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image GT NC AP APRT SGT

Figure 3.9: Selected visual results on eTrims DB facade dataset, our result with full model is
under APRT. See legend in Tab. 3.1 for abbreviations.
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image GT NC AP APRT SGT

Figure 3.10: Selected visual results on CMP facade dataset, our result with full model is
under APRT. See legend in Tab. 3.1 for abbreviations.
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Method SPT (proposed) 3L SG HCRF
Classifier SGT SVM RNN RF RDF
Spatial pattern NC AP APRT NC Adjacency BSG HAdj
Prob. model - Cooc Cooc - Potts SG CS-Potts
ECP-Monge (8) 88.5 59.6 79.0 84.2 82.6 85.1 74.7 -
eTrims (8) 93.7 56.7 77.4 82.1 81.1 81.9 - 65.8
CMP Facade (12) 84.8 33.2 54.3 60.3 - - - -

Abbreviations:

SGT Segments with Ground Truth labels,

NC No Context,

AP Aligned Pairs,

RT Regular Triplets,

Cooc Coocurence,

BSG Binary Split Grammar,

HAdj Hieararchical Adjacency,

SVM Support Vector Machine,

RNN Recursive Neural Network,

RF Randomized Forest,

SG Shape Grammar (Simon et al., 2011) ,

3L Three Layers (Martinovic et al., 2012),

HCRF Hierarchical CRF (Yang and Förstner, 2011).

Table 3.1: Pixel-wise accuracy comparison on facade datasets (number of classes
in brackets).
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Chapter 4

A Bayesian Model for Multiple
Reflection Symmetry Detection

“Symmetry is what we see at a glance; based on the fact that there is no reason for any
difference...”

Blaise Pascal (1669)

4.1 Introduction

Reflection symmetry1 is a geometric property of a single object in an image, which typically
cannot be further subdivided into distinguishable parts or components of the same kind, such
as a car in Fig. 4.1a. We will say such an object is integral.

Exceptions from the integrality property are reflections of objects otherwise not necessarily
symmetric (like in a mirror or water, Fig. 4.1b, which are composed of two separate parts
(original, reflection).We will not address this case specifically.

Integrality makes the reflection detection problem substantially different from the transla-
tion symmetry addressed in the previous chapters. The elements repeating in translation
make the identification of objects easier: multiple observations of the same objects (tens of
them) justify the presence of the symmetry.

In the case of reflection symmetry we cannot rely on the regularity among the object
parts and determination of the number of objects becomes more complicated. While there
are typically only a few true reflection-symmetric objects in an image, we have to deal with
the presence of multiple locally symmetric image patches (i.e. corners, stripes in texture)
that are both geometrically and visually perfectly symmetric but not considered objects from
the semantic point of view. This calls for a more elaborate method to determine the number
of symmetric components rather than thresholding some symmetry measure, which is the
common approach of the current state-of-the-art methods (Sec. 1.2.3).

1Some authors refer to this type of symmetry as mirror or bilateral.

79
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a) A reflection-symmetric object. b) Arbitrary object and its reflection.

Figure 4.1: Different types of reflection symmetry (from Liu et al. (2013) dataset).

1
2

Figure 4.2: Object-background ambiguity in symmetry detection. Which symmetry is of
interest? Only one symmetry (1) is annotated in the dataset Liu et al. (2013).

An example in Fig. 4.2 demonstrates ambiguity in symmetry detection. Both major axes
of symmetry (the bug and the blank between the leaves) appear similar according to the
geometrical quality of the reflection as well as appearance, but from the subjective view
of an observer, it is just the bug (1) that is a symmetric object while the blank space (2)
is considered background. Without some semantic information on the objectness of the
symmetric entity it is difficult to distinguish between object and background, and it has been
identified as one of the causes of false positive detections in the state-of-the-art methods.

4.1.1 Overview

We propose to employ Bayesian two-level inference (Sec. 1.3.3.4) to determine the number
of symmetry instances (components) in a given image. The probabilistic model and the
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inference method are as little specific to the application as possible, based on general principles.
Unfortunately this does not imply modeling or algorithmic simplicity as judged by the formal
modeling machinery required.

The underlying probabilistic model will allow to jointly evaluate properties of a component
as a whole during the inference and even relations among the components, not only individual
correspondences. A correspondence is a basic element in this model, it is linking two local
image patches around interest points on either side of a hypothetical symmetry axis.

While considering all possible correspondences in an image is not computationally tractable,
we filter them first using standard computer vision methods, i.e. keypoint extraction and
image patch descriptor similarity. Specifically, we will pair salient keypoints by measuring
their geometry and testing reflection symmetry of the descriptors in Sec. 4.2.

Then we start building our model around the filtered set of tentative correspondences
that are the primitives of the probability model. Assuming an axis is given, we measure
how much each individual correspondence matches it. The quality of the match is given
primarily by geometry of the keypoint locations w.r.t. to axis parameters and we will
derive the geometric term from a generative model. Additionally we add terms for a set of
correspondence features, which are discriminative auxiliary functions taking into account
keypoint appearance, orientation and scale.

The next level of our assumptions stemming from the integrality will be encoded in model
priors for component parameters and shape, i.e. objectness and compactness (Sec. 4.6.1).
The top level of our model will consider the component set as a whole; we see it is possible to
describe the structure of the set by grouping components together. See Fig. 4.3 for breakdown
of model elements and features, which will be detailed in the model description (Sec. 4.3).

With a few more general terms (complexity prior etc.) we can proceed with the stochastic
inference. It is based on a random walk in the model parameter space, where the complexity
and grouping is treated in a special way. We can obtain its marginal distribution (complexity
posterior) by sampling configurations of components from the model. Given the maximum
posterior complexity we can determine (look-up) the output model and its parameters
(Sec. 4.10).
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Elements Features and Attributes

keypoints = data
geometric attributes

 location error

⇓ ↗ orientation alignment

correspondences = primitives
→ appearance features

 scale similarity

⇓ descriptor similarity

axes = components
→ component features

 compactness

⇓ objectness

groups → group attributes → rotation symmetry

Figure 4.3: Hierarchy of model elements and features.



Image Features and Geometry 83

4.2 Image Features and Geometry

Similarly to other structure estimating methods in computer vision, we work with a set of
keypoints which cover regions of interest. For our task of reflection symmetry detection we
expect the keypoints to be invariant to reflection and obtain keypoints at similar locations
on either side of the symmetry axis that correspond to each other, as in Fig. 4.5. This
requires a keypoint detector sufficiently invariant to changes in local appearance of the object
(particularly rotation, translation and reflection). To identify corresponding points we need
also a descriptor which represents local appearance of an image patch around the keypoint
with the same invariance properties as the detector. It will serve for the pre-selection of
tentative correspondences and for computing descriptor similarity in the probabilistic model.

4.2.1 Keypoint Detector

The method for reflection symmetry detection (Loy and Eklundh, 2006), considered a
baseline method by Rauschert et al. (2011) and described in Sec. 1.2.3, uses a traditional
covariant feature detector of keypoints (DoG in Lowe (2004)), where the sparse detections
often rely on a small number of corresponding points which can be missed when appearance
varies from side to side of the axis. Furthermore, their sparsity does not allow accurate
estimation of the center and extent of a symmetric patch.

More stable features are image edges (i.e. from detector by Canny (1986)) or ‘contours’
(gPb detector by Maire et al. (2008)), which have been used for symmetry detection by Wang
et al. (2014). Matching of contour fragments however assumes good edge continuity, which
is difficult to obtain when the object is not well separated from its background.

We propose to combine both approaches by augmenting densely sampled contours with co-
variant detections (Lowe, 2004) for better localization of the samples along the contour curves.
Keypoints are sampled from a saliency map, which is a weighted sum of contours (Maire
et al., 2008) and cornerness measure (Harris and Stephens, 1988b) shown in Fig. 4.4. In
a given image I we select at most nk ≈ 5000 maximal points from such saliency map that
exceed a given threshold and apply non-maximal suppression to enforce minimum distance
between the keypoints. Each obtained keypoint has a set of attributes

(yi, si, φi, di) , (4.1)

where we distinguish geometric attributes yi, φi and appearance attributes si, di specified
as:

yi ∈ (0, 1)2 – location relative to image frame,

φi ∈ [0, 2π) – orientation (angle) in radians (image intensity gradient),
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a) input image b) edge map

c) Harris map d) keypoint saliency

Figure 4.4: Saliency map for keypoint detection is constructed from edge and corner image
features.

si ∈ (0, 1] – scale relative to image frame (descriptor radius),

di ∈ [0, 1]d – invariant image descriptor (vector of length d).

For the geometric location we will have a generative model while appearance attributes will
be treated as discriminative features (see Sec. 1.3.1.6 for difference between attributes and
features).

4.2.2 Reflection Geometry

Reflection symmetry is given by an axis defined with two vectors (µ,u) in

y = µ+ λu, ||u|| = 1, (4.2)
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where µ is a point on the axis, u = (cosϕ, sinϕ) is a directional vector corresponding to axis
direction ϕ ∈ [0, π) and λ ∈ R is a parameter (local coordinate of points on the axis). We
further restrict the reflection to the strip delimited by two endpoints

µ1 = µ+ λhu, (4.3)
µ2 = µ− λhu (4.4)

on an axis segment with half-length λh (see Fig. 4.5). Then

µ = 1
2(µ1 + µ2) (4.5)

in (4.2) corresponds to their midpoint. The unit normal vector v is defined with v ⊥ u and
oriented counter-clockwise as in Fig. 4.5.

A single correspondence in the same sense as in RANSAC is a minimal sample of
primitives for proposing an axis yj(λ) perpendicular to the line connecting points yi1 , yi2
running through their midpoint µj = 1

2(yi1 + yi2)

yj(λ) = µj + λ
(yi1 − yi2)>

‖yi1 − yi2‖
= µj + λ (cosϕj, sinϕj) , (4.6)

where λ ∈ R. This proposal will be later used to initialize the parameters θ̄j = (µj, ϕj) of a
new component in inference.

Figure 4.5: Sketch of a symmetric object (blue outline) with keypoints (black dots), corre-
spondences (dotted lines) and a symmetry axis (dot and dash).
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4.2.3 Descriptors

Each correspondence i comes with a descriptor similarity value comparing appearance of
image patches around two keypoints i1, i2. Assuming translation invariance of descriptors we
specify a descriptor similarity function Ds : [0, 1]d×d → [0, 1] specified for a given i by

di = Ds

(
di1 ,di2 ; ϕi

)
, (4.7)

with respect to a reflection symmetry axis oriented by angle ϕi ∈ [0, π) proposed by the
correspondence itself (4.6). It has the form of

Ds(a,b; ϕ) =
∥∥∥ a − fr(b; ϕ)

∥∥∥, (4.8)

where a,b ∈ [0, 1]d are descriptor vectors and fr(ϕ) : [0, 1]d → [0, 1]d rotates and mirrors
a descriptor. Value Ds = 0 corresponds to exact reflection symmetry. We implement
this function using a steerable circular descriptor Daisy (Tola et al., 2010) similar to
R-HOG (Dalal and Triggs, 2005). Daisy has a slight advantage, its similarity evaluation
follows directly the proposed reflection geometry via parameter ϕ2. It does not rely on
implicit orientations ϕi locally estimated from descriptor such as in SIFT (Lowe, 2004)),
then fr only mirrors as descriptors are rotated implicitly. In both cases we make use of a
descriptor mirroring function, which prevents us from the need to extract the underlying
image patch, mirror it and compute a new descriptor.

The reflection similarity measured in di compares regions around the two keypoints, but
the appearance of the central region between them can still be arbitrary. To verify the
symmetry of the central region with the assumption of integrality we can evaluate a large
scale descriptor for the midpoint, with orientation given by the correspondence and region size
given by the distance between keypoints, see Fig. 4.6. This is in spirit similar to validation
step in (Patraucean et al., 2013), where candidates produced by the baseline method (Loy
and Eklundh, 2006) are filtered to reduce false positives. The candidates are validated by
rotating the image according to the axis and calculating symmetry error of image gradient
orientations densely in all pixels; candidates with high error are discarded. Our approach can
be seen as a sparse approximation of the gradient symmetry error more efficiently calculated
using descriptors.

The reflection self-similarity of this descriptor mi evaluated for a correspondence i = (i1, i2)
is denoted

mi = Ds

(
mi,mi; ϕi

)
. (4.9)

In practice we calculate m only for selected tentative correspondences (Sec. 4.2.4) rather
than all keypoint pairs due to the computational cost of O(n2).

2 Because of discretization of the descriptor w.r.t angle in practice an arbitrary rotation is approximated
by linear interpolation.



Image Features and Geometry 87

50 100 150 200 250 300

50

100

150

200

250

Figure 4.6: Large scale descriptors (green frame with bins) around a correspondence midpoint
(center of the cyan circle) is used to evaluate the symmetry of the image region between the
keypoints (connected by the blue line segment).

4.2.4 Primitive Elements

The primitive element3 in reflection symmetry is a correspondence xi between two keypoints
i1 and i2 with locations yi1 , yi2 in a plane (Fig. 4.5). Let

xi = (yi1 , si1 , φi1 , yi2 , si2 , φi2 ,︸ ︷︷ ︸
attributes

di, mi︸ ︷︷ ︸
features

) (4.10)

be a concatenation of the two keypoint variables. As mentioned in Sec. 1.3.1.5, attributes are
directly part of the data representation X while features are additional functions taking into
account the original image I.

In order to reduce the number of primitive elements entering inference, we pick up only
the prospective pairs from the set of all keypoint pairs X . The measure used for this purpose
is the probability density of correspondence attributes (scale, orientation, descriptors) given
the axis parameters proposed by the correspondence itself; it will be described in Sec. 4.4.2
as a part of the probabilistic model.

The most effective strategy found is a variant of non-maximum suppression, which
can be described as a greedy selection of the best correspondences. In the greedy scheme
correspondences close to the currently best correspondence are removed together from the
set along with the best one. The closeness is characterized as follows: Each two keypoints
generate a line (different correspondences can generate the same line). Let us consider a

3A minimal data structure participating in the inference; see Sec. 1.3.1.1.
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space of lines parameterized with polar coordinates (%, ϕ), where % ∈ [0,
√

2] is the distance
of the line from the origin in the unit image frame and ϕ ∈ [0, 2π) the line orientation. The
distance between the two lines i and j is then measured by

δij =
∥∥∥∥∥ 1√

2
(%i − %j), sin(ϕi − ϕj)

∥∥∥∥∥ . (4.11)

Finally correspondences with the distance δij ≤ δ0 under a given threshold are considered
close to each other.

With this strategy we can allow multiple distinct axes to share a keypoint while there is a
low chance of a miss when we put a fixed limit on the maximum number of selected tentative
correspondences. The tentative correspondence set will be denoted X = {x1, . . . , xn} ⊂ X .
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4.3 Probabilistic Model

The parameters of this model follow the general definition from Introduction (Sec. 1.3.1.5),
where different ‘flavors’ of parameters θ are distinguished and we give here only their brief
review. The complexity k gives the number of components for which there are common
configuration θ̇ and shape parameters θ̂. Grouping parameters θ̆ are associated with k̆

groups. Components with parameters θ̄ are allocated to groups in the grouping field Z̆ and
finally primitive data elements X are allocated to components in configuration field Z. The
hyperparameters denoted by ξ are fixed during inference and we also distinguish their flavors
ξ̄, ξ̂, ξ̆.

The two-level inference method (Šára, 2014) assumes a probability model structured in
a way similar to Richardson and Green (1997) as

p(X,Z, θ̄, Z̆, θ̆, k̆, θ̂, θ̇, k) = p(X,Z | θ̄, θ̂, θ̇, k) p(θ̄, Z̆ | θ̆, k̆, θ̂, k) p(θ̆, k̆ | k) p(θ̂) p(θ̇ | k) p(k) ,
(4.12)

with the following terms (from left to right) and their function w.r.t. to reflection symmetry
detection:

Data clustering model p(X,Z | θ̄, θ̂, θ̇, k), which describes the reflection geometry and
assignment of correspondences to components based on keypoint matching,

Component model p(θ̄, Z̆ | θ̆, k̆, θ̂, k), which describes component properties (integrality)
and their relations (hierarchy, grouping),

Group prior p(θ̆, k̆ | k), which describes group parameters θ̆, i.e. the center of a component
cluster, and the number of groups k̆,

Shape prior p(θ̂), which describes shape parameters θ̂ common to all components, i.e. the
typical size of a component (variance of correspondences w.r.t. symmetry axis),

Data clustering prior p(θ̇ | k), which is a regularizer preferring components of similar
inlier count,

Complexity prior p(k), which represents a weak constraint on the number of components.

The following sections will either describe these terms specific to symmetry detection or
keep their default form as specified in Šára (2014). For the sake of readability we omit
hyperparameters ξ from the high-level model description and present them only in the detailed
specification of individual terms. The terms are summarized in Tab. 4.1 and the model
parameter structure can be found in Fig. 4.7.
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Term Param. Description Pdf Hyperparameters Eq.

p(k) k complexity prior B pk (4.71)
p(k̆ | k) k̆ group complexity B pk̆ (4.73)
p(θ̂) θ̂ shape prior IG αu, βu, αv, βv, αy, βy (4.50)

p(θ̆ | k̆) θ̆ group prior Be βg (4.68)
p(θ̇ | k) θ̇ configuration prior Dir α0, αI (4.70)

p(yi | θ̄j, θ̂) θ̄ data geometry N σu, σv, σy (4.22)
p0(yi) θ̄ universal data N σ0 (4.46)

p(φi | ϕj) θ̄ orientation sym. Nc κo (4.28)
p(si) θ̄ scale prior Be βs (4.37)

p(di,mi) θ̄ descriptor symmetry Be βd, βm (4.39)
p(ψcj | θ̄j, θ̂) θ̄ compactness Be-B αc, βc (4.57)
p(ψoj | θ̄j, θ̂) θ̄ objectness - - (4.58)
p(θ̄j | Z̆, θ̆, θ̂) θ̄ rotation group Be, N σµ, κϕ (4.60)

Table 4.1: List of model parameters and their distributions. Hyperparameters fixed during
inference are in red.
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4.4 Data Clustering Model

Following Sec. 1.3.1.3 we assume each individual primitive i = 1, . . . n has parameters xi and a
component allocation vector (Dirac distribution) zi = (zji), j = 0, 1, . . . , k, where zji ∈ {0, 1}
are binary allocation variables (zji = 1 when primitive i is assigned to component j).
Primitives assigned to the background component j = 0 are outliers while primitives assigned
to some other components j = 1, . . . , k are inliers. The partitioning of the set of primitives
X into k + 1 sets Zj, j = 0, . . . , k will be called a configuration Z : ⋃kj=0 Zj.

Probability density of observing a data instance X allocated to components by a binary
configuration field Z = {zi; i = 1, . . . , n} is then given by the joint distribution

p(X,Z | θ̄, θ̂, θ̇, k) =
n∏
i=1

k∑
j=0

zji pj p(xi | θ̄j, θ̂) (4.13)

where p(xi | θ̄j, θ̂) is the correspondence data term. The parameter pj controls component
membership and it is defined by

θ̇ = (p0, p1, . . . , pk), pj > 0,
k∑
j=0

pj = 1. (4.14)

More details on this construction can be found in Šára (2014).
The data term of matching a correspondence xi (keypoint pair) with a given axis θ̄j =

(µj, ϕj) is then calculated as

p(xi | θ̄j, θ̂) = p(yi, φi | θ̄j, θ̂) p(si, di,mi | θ̄j, θ̂), (4.15)

where geometric symmetry p(yi, φi | ·) evaluates how locations of corresponding keypoints
yi = (yi1 ,yi2) and orientations φi = (φi1 , φi2) match a given axis and p(si, di | ·) is appearance
symmetry, where si = (si1 , si2) are descriptor scales and di,mi are descriptor symmetry
features.

We will parameterize the per-primitive data model 4.15 in a way that is suitable for an
efficient implementation. Let us write it as a scaled exponential-family distribution, which
means it can be written as

p(xi | θ̄j, θ̂) = exp
[

W∑
w=1

ηwj (θ̄j, θ̂)Twi (xi)
]
, (4.16)

where ηwj are natural parameters and Twi are sufficient statistics of the exponential-class
model4. For simplicity of exposition we assumed that the components are homogeneous (ηwj ,
Twi , are the same functional forms for all components). The parameters θ̄j, θ̂ are subject to
inference, whereas statistics Twi (xi) are fixed for a given problem instance, hence they can be

4This homogeneous form is somewhat non-standard by including the partition function in the parameter
set. Nevertheless, we use the terms ‘natural parameters’ and ‘sufficient statistics’, even if this is not precise.
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precomputed.
We proceed with geometric symmetry p(yi, φi | θ̄j, θ̂) and appearance p(si, di | θ̄j, θ̂) will

be detailed later (Sec. 4.4.2).

4.4.1 Geometric Symmetry

We replace the geometric symmetry measure chosen mostly arbitrarily in existing works by a
derivation of a distribution for the symmetry in data from a generative model for reflection
symmetry. We proceed in a generic way and from the first principles, starting with

p(yi, φi | θ̄j, θ̂) = p(yi | θ̄j, θ̂) p(φi | ϕj), (4.17)

where the locations yi and orientations φi are independent.

4.4.1.1 Location Symmetry

Let us assume the corresponding keypoints located at yi1 ,yi2 are noisy observations of an
underlying perfectly symmetric keypoint pair with unknown positions y,y′ constrained by a
given axis θ̄j = (µj, ϕj) in

y′ = fr(y; µj, ϕj) = µj + Rj(y− µj), (4.18)

where Rj = I− 2uju>j is a Householder reflection matrix and we will use the prime symbol
as a shortcut for this reflection function fr in the following text. The distribution of the
perfect pair’s location is

p(y,y′ | µj, ϕj) = N (Fj(y− µj); 0,Σj) , (4.19)

where Σj = diag(σ2
û, σ

2
v̂) and Fj = [uj vj] is a rotation matrix composed of vectors uj,vj.

The y′ is not a free variable as it is fully determined by y given µj, ϕj.
The deviation of observed (yi1 ,yi2) from predicted (y,y′) is described by p(yi1 ,yi2 | y,y′),

where the noise term for a single observed yi1 given a perfect location y is

p(yi1 | y) = N (yi1 ; y, σ2
y), (4.20)

Because we don’t know which of the yi1 ,yi2 ‘belongs’ to the observed y1 or y2, we marginalize
this model over both possibilities in

p(yi | θ̄j, θ̂) =
ˆ

(p(yi1 | y) p(yi1 | y′) + p(yi1 | y′) p(yi1 | y)) p(y,y′ | µj, ϕj) dy. (4.21)

The resulting geometric data term is a multinomial normal distribution in transformed
coordinates and the pdf is specified as
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Figure 4.8: Geometry for the measure of reflection error (red) and distance (green).

p(yi | θ̄j, θ̂) = p(yi1 ,yi2 | µj, ϕj, σu, σv, σy) = N
(
δij(yi, θ̄j); 0, Σ̂

)
, (4.22)

δij(yi, θ̄j) =
[ yi1 − µj −Rj(yi2 − µj)

2︸ ︷︷ ︸
reflection error δyij

,
yi1 + µj + Rj(yi2 − µj)

2︸ ︷︷ ︸
distance δdij

]
,

where Σ̂ = diag(σ2
y , σ

2
y, σ

2
u, σ

2
v) and σ2

u = σ2
y + 2σ2

û, σ2
v = σ2

y + 2σ2
v̂ are the natural coefficients

describing the component size and shape. The transformed coordinates δij have intuitive
meaning, as illustrated in Fig. 4.8. The first vector

δyij =
yi1 − y′i2

2 =
y′i1 − yi2

2 (4.23)

is a reflection error, which measures distance between one keypoint and reflection of the other.
The second vector

δdij =
yi1 + y′i2

2 =
y′i1 + yi2

2 (4.24)

is a distance of the correspondence from midpoint or location relative to the axis frame.
Let us now use the following notation to simplify the exponential parametrization:

a = [a, 1] is a homogeneous representation of a vector a,

A : B = vec(A)>vec(B) is a double inner product of tensors A and B (dot product of
vectorized matrices).

Since for every symmetric matrix Q the quadratic form x>Qx can be written as Q : (xx>),
the natural parametrization (4.16) of multinomial normal pdf (4.22) can be compactly written



Data Clustering Model 95

as

log p(yi | θ̄j, θ̂) = ηpj (θ̄j, θ̂) :
(
ypi ypi

>
)

︸ ︷︷ ︸
T pi

+ηmj (θ̄j, θ̂) :
(
ymi ymi

>
)

︸ ︷︷ ︸
Tmi

, (4.25)

ypi = 1
2(yi1 − yi2),

ymi = 1
2(yi1 + yi2),

where T pi , Tmi are fixed primitive statistics computed from the original locations yi = (yi1 ,yi2).
The natural parameters for a given component j are

ηpj (θ̄j, θ̂) =
−Spj 0

0 − log(2πσuσy)

+ U(σ0),

ηmj (θ̄j, θ̂) =
−Smj Smj µj
µ>j Smj −µ>j Smj µj − log(2πσvσy)

+ U(σ0), (4.26)

U(σ0) = diag
(

1
2σ2

0
,

1
2σ2

0
, log(2πσ2

0)
)
,

where U(σ0) accounts for the universal model and Smj = FjL2
mF>j , Spj = FjL2

pF>j are
projections of diagonal precision matrices

Lp = 1√
2

diag(σ−1
u , σ−1

y ), (4.27)

Lm = 1√
2

diag(σ−1
y , σ−1

v ).

4.4.1.2 Orientation Symmetry

We model orientations φi by combining two circular normal (von Mises) pdfs in

p(φi | ϕj; κo) = Nc(φi1 + φi2 ; 2ϕj, κo)︸ ︷︷ ︸
symmetry

Nc(φi1 ; φi2 + π, κo)︸ ︷︷ ︸
oppositeness

= (4.28)

= 1
4π2I0(κ) exp [−2κo sin(ϕj − φi1) sin(ϕj − φi2)] ,

where κo is the concentration parameter. The symmetry term in (4.28) models condition
on keypoint orientations φi1 , φi2 to be symmetric according to the given axis ϕj and the
distribution has a mode at

ϕj = φi1 + φi2
2 . (4.29)

The prior term in (4.28) prefers correspondences with opposite keypoint orientations to avoid
ambiguous straight edge correspondences. The distribution has a mode at

φi1 = φi2 + π. (4.30)
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An image of a linear object (e.g. pole, bar or profile) has a preferred longitudinal axis, but
also (infinitely) many lateral axes of local reflection symmetry. A similar situation is on any
longer straight edge with homogeneous surroundings.

The exponential parametrization involves trigonometric expansion to separate natural
parameter vector ηoj in

log p(φi | ϕj) = ηoj · T oi − 2 log(2πI0(βo)), (4.31)
ηoj = κ

[
2 sin(2ϕj), 2 sin2(ϕj), 1

]
, (4.32)

T oi = [ sin(φi1 + φi2), cos(φi1 + φi2), sin(φi1) sin(φi2) ] , (4.33)
log p(φi | ϕj) = κ(u>i2Rjui1 − u>i1ui2) = κRj : (ui1u>i2)− κu>i1ui2 , (4.34)

Rj = I− 2uju>j , (4.35)

where ui1 = ( sinφi1 , cosφi1).

4.4.2 Appearance Symmetry

In addition to the geometric attributes of a correspondence xi we also compare the appearance
attributes of the two keypoints i1 and i2, namely scales si and descriptors di,mi. This helps
to differentiate correct correspondences from background. We use primitive feature functions
for the comparison derived from Loy and Eklundh (2006), where the features are combined
using arbitrary weight into a single scalar measure. We instead specify pdfs for each feature
and combine them with

p(si, di,mi | θ̄j, θ̂) = p(si) p(di) p(mi). (4.36)

4.4.2.1 Scale Symmetry

Keypoints are detected at different scales, which also influences the size of an surrounding
image patch encoded in descriptor D. Comparison of descriptors from largely different scales
does not reflect similarity of the image regions. This brings us to prefer correspondences with
similar scale. We compare keypoint scales with Beta-like distribution

p(si; βs) = 1
Zs(βs)

(
4si1si2

(si1 + si2)2

)βs
, (4.37)

where Zs(βs) = 1
βs−1(

√
π Γ(βs+1)

Γ(βs+ 1
2 )−2), the Γ is the gamma function and βs > 1 is a concentration

parameter. The exponential parametrization is straightforward:

log p(si; βs) = (βs − 1)︸ ︷︷ ︸
ηs

(log(4si1si2)− 2 log(si1 + si2))︸ ︷︷ ︸
T si

− logZs(βs). (4.38)
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4.4.2.2 Descriptor Symmetry

We define pdfs for descriptor similarity features in di,mi to prefer small differences between
the descriptors. Descriptor similarity measure di from (4.7) and self similarity measure mi

from (4.9) introduced in Sec. 4.2.3 are independent and combined in Beta distributions

p(di; βd) = Be(di; 1, βd) = βd (1− di) βd−1, (4.39)
p(mi; βm) = Be(mi; 1, βm) = βm (1−mi) βm−1, (4.40)

where βd > 1 and βm > 1 are concentration parameters. The exponential parametrization is

log p(di,mi; βd, βm) = ηs : T si , (4.41)
ηs = [βd − 1, βm − 1, log βdβm], (4.42)
T si = log [1− di, 1−mi, 1] . (4.43)

Data Clustering Model Breakdown

p(X,Z | k, θ) =
n∏
i=1

k∑
j=0

zji pj

likelihood︷ ︸︸ ︷
p(yi1 ,yi1 , φi1 , φi2 , si1 , si2 , di,mi︸ ︷︷ ︸

xi

| µj, ϕj︸ ︷︷ ︸
θ̄j

, σu, σv, σy︸ ︷︷ ︸
θ̂

)

p(xi | θ̄j, θ̂) = p(yi1 ,yi1︸ ︷︷ ︸
yi

| µj, ϕj︸ ︷︷ ︸
θ̄j

, σu, σv, σy︸ ︷︷ ︸
θ̂

)

︸ ︷︷ ︸
location

p(φi1 , φi2︸ ︷︷ ︸
φi

| ϕj)

︸ ︷︷ ︸
orientation

p(si1 , si2︸ ︷︷ ︸
si

)

︸ ︷︷ ︸
scale

p(di) p(mi)

︸ ︷︷ ︸
descriptors

4.4.3 Universal Model

The basis of the two-level inference is the model selection. Since empty configuration (k = 0)
is also an admissible result in case when data cannot be explained as a set of symmetric
objects, we need a data model for this case as well, which we call the universal model. It
must not be specific to the problem at hand since its role is to explain arbitrary data.

Let us assume the outliers come from a universal model that is described by a probability
distribution p0(X), which has few (fixed) parameters. The universal model must be able to
explain all primitives in X. The possible presence of an instance of the model of interest will
always be judged against the per-primitive universal model indexed as a virtual component
with j = 0. This extension of the function (4.15) is denoted as the function

p(xi | θ̄0; σ0) , i = 1, . . . , n . (4.44)

The data term for a non-matching correspondence xi (outlier) belonging to the universal
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background model is calculated as

p(xi | θ̄0; σ0) = p(yi | θ̄0; σ0) p(φi | θ̄0) p(si | θ̄0) p(di | θ̄0) (4.45)
p(yi | θ̄0; σ0) = N (yi1 ; 0, σ0)N (yi2 ; 0, σ0), (4.46)

p(φi | θ̄0) = 1
4π2 , (4.47)

p(si | θ̄0) = p(di | θ̄0) = p(mi | θ̄0) = 1, (4.48)

where the universal model is uniform for all appearance features on the unit interval.

4.5 Shape Prior

The shape parameter set becomes

θ̂ = {σy, σu, σv} . (4.49)

The priors for σ2
u, σ2

v , σ2
y are inverse gamma distributions

p(θ̂) = p(σu) p(σv) p(σy), (4.50)

where
p(σu) = IG(σu; αu, βu) = βαuu

Γ(αu)
σ2(αu−1)
u exp

(
−βuσ2

u

)
,

and the priors p(σv) and p(σy) are defined analogically. We denote the set of the associated
hyperparameters as α̂ = {αu, αv, αy} and β̂ = {βu, βv, βy}.

4.6 Component Model

Multiple reflection symmetric components are in fact usually not independent. From a
top-level point of view we can also model regularity of the entire component set. Unlike
previous terms which address individual components independently, this prior describes how
multiple components should interact with each other.

Let us define a grouping field Z̆ for k components into k̆ ≤ k component groups5

Z̆ = {z̆gj} ∈ {0, 1}k̆×k, (4.51)

where z̆gj = 1 when the component j belongs to the group g, which is an analogy to primitive
allocation field Z (Sec. 4.4). Each component belongs to exactly one group (∑k̆

g=1 z̆gj = 1),
the possible groupings range from all components in one group (k̆ = 1) to each component

5In this section we will use the term group in a more general sense, i.e. it can be any set of components
that do not necessarily form a (mathematical) symmetry group as defined in Introduction.
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in its own group (k̆ = k). Let G(g) = {j; z̆gj = 1} be a set of indices of components in the
group g. We assume the component model can be written as component-wise product

p(θ̄, Z̆ | θ̆, k̆, θ̂) = C(Z̆, k̆, k)
∏

j∈G(g)
p(Ψj | θ̄j, θ̂) p(θ̄j | θ̆g, Z̆, θ̂) = (4.52)

= C(Z̆, k̆, k)
k∏
j=1

p(Ψj | θ̄j, θ̂)
k̆∑
g=1

z̆gj p(θ̄j | θ̆g, θ̂) (4.53)

where θ̆ are the group parameters defined as

θ̆ = (θ̆1, . . . , θ̆g, . . . θ̆k̆), (4.54)

and Ψj are component features specific to component j. The combinatorial term C(Z̆, k̆, k)
accounts for component index identity in

C(Z̆, k̆, k) = k!∏k̆
g=1 kg!

k̆!, (4.55)

where kg = ∑k
j=1 z̆gj is the number of components in a group g and ∑k̆

g=1 kg = k. We must
sum over all permutations of indices within a group that give the same observation, because
such permutations of component indices are not observable; that gives the multinomial
coefficient. In addition to that the term k̆! accounts for identity of groups, now we sum over
all permutations of group indices that give the same observation.

4.6.1 Component Features

We can evaluate data properties of the whole component (integrality) in order to separate a
single symmetric object from two aligned ones or from the background. In terms of matching
correspondence locations we assume additional geometric and appearance properties. We
factorize the term from (4.13) as

p(Ψj | θ̄j, θ̂) = p(ψcj | θ̄j, θ̂) p(ψoj | θ̄j, θ̂), (4.56)

where ψcj and ψoj are component features for compactness and objectness respectively. We
assume independence of the features to facilitate efficient stratified inference (Sec. 4.10).

4.6.1.1 Compactness

Although the shape model, where the correspondence distance δd is modeled with a Gaussian
distribution centered at the axis midpoint µ, assumes an elliptic shape of the symmetric
object with correspondences concentrated around the midpoint, this statistic still allows
uneven coverage of the object. This can result in accepting false detections formed by several
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groups of random or local symmetries joined together or in biasing the true detection by an
outlying local symmetry unrelated to the object resulting in large geometric error w.r.t. true
axis location.

To avoid such components, let us assume the correspondences should uniformly sample
the object contour and interior, then no separating gap along the axis should appear.

We can interpret this assumption so that the corresponding points on one side of the axis
should be neighbors to each other. To test the neighborhood condition, we can construct
adjacency matrix N for keypoints y using Delaunay triangulation of the original keypoints,
which is fixed for a given problem instance.

Then for a given axis we test if there is a gap between them by querying a subset of the
adjacency matrix. For each point i1 we obtain the number of neighbors i2 such that the
geometric error of the pair satisfies δy ≤ σy and location satisfies δum ≤ σu, δ

v
m ≤ σv. If a point

has less than 3 such neighbors, there is a gap around it. The number of gaps ψcj = ψc(θ̄j) can
be modeled with Beta-binomial distribution

p(ψcj | θ̄j, θ̂; αc, βc) =
(
nj
ψcj

)
B(ψcj + αc, nj − ψcj + βcc)

B(αc, βc)
, (4.57)

where αc < 1, βc > 1 are Beta type parameters.

4.6.1.2 Objectness

As discussed in Introduction, scenes (predominantly man-made) often include a number of
local implicitly symmetric objects or parts (stripes, rods, corners), which are usually not
considered as symmetries of interest (according to human annotations in datasets), because
they do not represent an object.

It is difficult to differentiate between the two cases because the measure is subjective, but
we can learn a classifier to help us with this decision. This has been studied in the context
of general object detection as a class-independent measure of objectness or region saliency,
where it is typically used to propose (sample) image regions for further classification.

The method proposed by Alexe et al. (2010) allows to train an objectness classifier
using images with annotated object regions. In our case this requires to transform every axis
of symmetry into a bounding box. The cues used include multi-scale saliency, color contrast,
edge density and superpixel straddling.

The classifier integrates all the cues with Naive Bayes approach so the resulting score is
actually objectness posterior

p(ψoj = 1 | θ̄j, θ̂) =
p(ψoj = 1) ∏c∈C p(c | ψoj = 1)

p(ψoj = 1) ∏c∈C p(c | ψoj = 1) + p(ψoj = 0) ∏c∈C p(c | ψoj = 0) , (4.58)

where ψoj ∈ (0, 1) indicates the classification of the component either to object (ψoj = 1) or
background (ψoj = 0) class and C is the set of above mentioned cues (features) from Alexe
et al. (2010).
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reflection R

cyclic C5

dihedral D5

Figure 4.9: An example of dihedral symmetry group (left) with 5 reflection axes (cyan). The
shape element repeating in different symmetries (right) is highlighted in green. Keypoints
(blue) are connected by elementary symmetries (green lines).

4.6.2 Symmetry Grouping

Symmetry theory presented in Introduction (Sec. 1.2.1) explains which compositions of
symmetries (called symmetry groups) can be encountered in 2D. We will implement some of
the grouping principles to regularize our model. For example a star-shaped object (like in
Fig. 4.9 but considered exact) has multiple symmetries, 5 reflections (R ) and 5 rotations (cyclic
group C5), which form a dihedral symmetry group D5 (Sec. 1.2.1.2). We will discuss options
to handle such symmetric objects with our model while taking into account imperfections of
the real-world objects resulting in deviations from the exact multiple symmetry, which are
observed in the standard symmetry datasets (Liu et al., 2013).

A general symmetry detector should perform model selection w.r.t. the imperfect input
and consider all of R, Cn a Dn models and their discrete orders n. In our method we choose
the model explicitly based on the facts given below.

The star shape could be explained with a single reflection symmetry R component
(Sec. 4.2.2), which should be generally preferred for its simplicity to composed cyclic and
dihedral groups (due to ‘Occam’s razor’ (MacKay, 2003)). In the presence of noise and
shape imperfections there will be a single reflection axis best matching the given data. There
are however five solutions for R annotated in the standard dataset, which forces us to drop
this model due to its ambiguity.

The cyclic group C5 generally allows also reflection-asymetric spikes of the star in Fig. 4.9,
but does not include the reflection constraint. Each of the spikes (period) is expected to
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have the same shape and a single keypoint is replicated 5×. In this case the primitive data
element w.r.t. group Cn is the correspondence of three keypoints from three6 consecutive
spikes (periods). This requires to simultaneously use different primitives for the cyclic groups
and different for the reflection components and in practice equals to extending our model to
general rotation symmetries. An implicit C5 model would compare the five cyclic keypoint
locations (blue in Fig. 4.9), but in practice there is a low probability of encountering a
constellation of five independently detected keypoints lying on a circle due to appearance
changes or occlusions. The constellation complexity is a strong reason to avoid the cyclic
group model.

The dihedral group D5 is more specific as a reflection axis constraints the center of the
rotated element (phase). Now just a half-spike is expected to reflect and rotate to give the
complete shape and its single keypoint is replicated 10×, which makes the constellation
argument against the model even stronger. On the other hand the dihedral primitives w.r.t.
Dn are now two reflection correspondences with one common keypoint, which allows to reuse
reflection primitives but requires to allow two correspondences to share a single keypoint
within a group.

We propose to model the dihedral pattern explicitly by grouping reflection symmetry
components with axes crossing each other and assigning higher probability to groups with
the same angle between axes (rotation constraint). This provides greater flexibility than
implicit models given above while all reflection symmetries are part of the solution. The
possibility of correspondences sharing a keypoint however needs to be implemented at least
in tentative correspondence selection (Sec. 4.2.4).

For frieze symmetry patters (Sec. 1.2.1.2) combining reflection and translation symmetries
we could group axes with a similar orientation (parallel) and prefer their equal spacing and
alignment (like in Chapter 2), but we do not find enough examples in the evaluated datasets
and leave this grouping for future work.

4.6.2.1 Dihedral Group Model

We identify dihedral group components based on two weak constraints: Their axis intersect
in a common point within the image frame and their midpoints should be close to each other.

Let us assume a dihedral grouping Z̆ and associated dihedral group parameters θ̆g =
{µ̆g, ϕ̆g}, g = 1, . . . , k̆, are given and that the reflection axes in a group g are arranged in a
rotation symmetric pattern with rotation center at location µ̆g and starting angle (phase) ϕ̆g.
This geometrically translates into condition on angle differences: The angles between each
two neighboring axes are equally 2π/kg depending solely on the number of components in
the group kg (order of rotation). The angle of j-th axis in the group j = 1, . . . ,mg ordered
by ϕj < ϕj+1 is then given by

ϕ̆jg = ϕ̆g + (j − 1) π
kg
. (4.59)

6Exactly 2.5 points are sufficient to determine the rotation center, only one coordinate of the third point
is needed.
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Λ1
Λ2

Λ3

Λ5 Λ6

Λ4

Figure 4.10: Dihedral grouping based on axis intersection with groups color encoded. Rect-
angle is an image frame, dots indicate axis midpoints µj and the axis segment length is 2σu.
Black component group {Λ1} is an isolated component. Consider axis Λ2,Λ3 indicate some
local reflection symmetries. Red component group {Λ2,Λ3} is not rotation symmetric and
will receive low probability from component group model, unlike green group {Λ3,Λ4,Λ5}
which is close to dihedral symmetry group D3.

In the case there are just two components in the group the axis are preferred to be perpen-
dicular. An isolated component j results in identity ϕ̆jg = ϕ̆g.

The component-wise feature pdf is modeling the deviations of the predicted and actual
center locations in

p(θ̄j | θ̆g, θ̂) = p(ϕj | ϕ̆jg) p(µj | µ̆g), (4.60)

p(ϕj | ϕ̆jg; κϕ) = Nc(ϕj; ϕ̆jg, κϕ) = 1
2πI0(κϕ)e

κϕ cos(ϕj−ϕ̆jg), (4.61)

p(µj | µ̆g; σµ) = N (µj; µ̆g, σµ), (4.62)

where κϕ, σµ are the concentration parameters and Nc is the circular normal (von Mises) pdf
with I0 as modified Bessel function of order 0.

4.6.2.2 Natural Parameters

The exponential form of the component model is

log p(ψcj | θ̄j, θ̂; αc, βc) = log Γ(ψ + α)Γ(n− ψ + β)
Γ(ψ + 1)Γ(n− ψ + 1) + log Γ(n+ 1)

Γ(n+ α + β)
Γ(α + β)
Γ(α)Γ(β) ,(4.63)

log p(ψoj | θ̄j, θ̂) = log p(ψoj = 1 | θ̄j, θ̂), (4.64)

log p(µj | µ̆g; σµ) = − 1
2σ2

µ

 diag(1, 1) µj

µ>j µ>j µj

 : (µ̆g µ̆>g )− log(2πσ2
µ), (4.65)

log p(ϕj | ϕ̆jg; κϕ) = κϕ u>j ŭjg − log(2πI0(κϕ)), (4.66)

where ŭjg = (cos ϕ̆jg, sin ϕ̆jg).
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Component Model Breakdown

p(θ̄, Z̆ | θ̆, k̆, θ̂) =
k∏
j=1

integrality︷ ︸︸ ︷
p(ψoj , ψcj︸ ︷︷ ︸

Ψj

| µj, ϕj︸ ︷︷ ︸
θ̄j

, σu, σv, σy︸ ︷︷ ︸
θ̂

)
k̆∑
g=1

z̆gj

likelihood︷ ︸︸ ︷
p(µj, ϕj︸ ︷︷ ︸

θ̄j

| µ̆g, ϕ̆g︸ ︷︷ ︸
θ̆g

, σu, σv, σy︸ ︷︷ ︸
θ̂

)

p(θ̄j | θ̆g, θ̂) = pI(θ̄j | θ̆g, θ̂)︸ ︷︷ ︸
intersection

p(ϕj | ϕ̆jg)︸ ︷︷ ︸
angle

p(µj | µ̆g)︸ ︷︷ ︸
center

4.7 Component Group Prior

While components should be concentrated around the group center, the opposite should hold
for the group centers µ̆ that should be spread out. Without this assumption the grouping
would tend to degenerate configurations with each component in its own group. We have
used the bounded domain µ̆ ∈ (0, 1)2 (rather then unbounded R) for the group prior (4.68)
to be a proper pdf and to implicitly restrict it to the image frame. We compute the mean
distance of a group g from other groups h 6= g with

dg = 1
2(k̆ − 1)

∑
h

‖µ̆g − µ̆h‖2 , (4.67)

and model this feature with Beta distribution preferring dg → 1 in

p(θ̆) =
k̆∏
g=1

p(dg | µ̆g) p(µ̆g) p(ϕ̆g), (4.68)

p(dg | µ̆g; βg) = Be(dg; βg, 1) = βg(dg)βg−1, (4.69)

where βg controls the concentration. In the case k̆ = 1 we assume dg = 1. The prior p(µ̆g) = 1
is uniform on the unit image frame and p(ϕ̆g) = 1

2π is uniform on the circle.
We argue that the search for the dihedral group Dn order kg does not require model

selection scheme (Sec. 1.3.3.4) because the number of group parameters is fixed and does not
depend on the number of components kg in the group (unlike when the component parameter
dimension changes with k).

4.8 Configuration Prior

The role of a default configuration prior in Šára (2014) is to regularize parameter estimation.
The regularizing assumption is that the number of inliers per component is equal in all
components. A Dirichlet distribution with equal parameters corresponding to non-background
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components softens this constraint

p(θ̇ | k; α0, αI) = Dir(p0, p1, . . . , pk; α0, αI) = Γ(αO + k αI)
Γ(αO) Γ(αI)k

pαO−1
0

k∏
j=1

pαI−1
j , (4.70)

where pj ∈ θ̇ as in (4.14). The mode of this prior is at

p∗j =


αO − 1

αO + k αI − (k + 1) , j = 0,

αI − 1
αO + k αI − (k + 1) , j > 0.

4.9 Complexity Priors

The role of a default prior on complexity k in Šára (2014) is to help select empty configuration
when data is not containing any object instance. Note there are at most n components in a
configuration, therefore k ≤ n. We use binomial distribution

p(k; pc) =
(
n

k

)
pkc (1− pc)n−k, (4.71)

where pc is the component ratio. The mode of this prior is (approximately) at

k∗ ≈ (n+ 1) pc . (4.72)

On the next level the group complexity k̆ ≤ k is similarly modeled with

p(k̆; pg) =
(
k

k̆

)
pk̆g (1− pg)k−k̆, (4.73)

where pg is the group ratio.



106 Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

(Z, Z̆, k, k̆)(t−1)
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(Z, Z̆, k, k̆)(t)

E[Z, Z̆](t−1)

E-step
E[Z, Z̆](t)

θ(t−1)

aggregation

θ(t)

M-step

}

plug-in

(θ̂, θ̄, θ̆)(t−1)

(k, k̆, ϑc, θ̄∗, θ̆∗)′ (Z, Z̆, k, k̆, ϑc, θ̄∗, θ̆∗)′

(θ̂, θ̄, θ̆)(t−1)

τ, κ,K, Tw

(ϑc, ϑs, ϑ̄)′

(k, k̆, Z̆, θ̆)(t−1)

(Z, Z̆)(t)
(Z, Z̆, k, k̆, θ)(t−1)

(Z, ϑc, ϑs, ϑ̄)′

(k, k̆, Z̆, θ̆)(t−1)

(Z, k, θ̇, θ̂, θ̄)(t−1)

(Z̆, k̆, θ̆)′

Figure 4.11: LiSAEM inference diagram adapted from Šára (2014). This block represents
one major iteration of the algorithm, i.e. the time step (t− 1) 7→ (t). The ϑ′ is an update of
a local copy of θ(t−1). The τ, κ,K, Tw are statistics output by the E-step and needed by the
M-step. Variables above each arrow are updated, output variables below each arrow are just
copies of the input sent to the input of a block.

4.10 Inference

As mentioned above, we have chosen to follow two-level inference scheme to perform model
selection (Sec. 1.3.3.4), where the ‘models’ are the different complexities k.

In particular we use the LiSAEM algorithm (Šára, 2014) introduced in Sec.1.3.4.6. In
this section we will overview its design and add parts specific to the reflection symmetry
model described in the previous sections.

4.10.1 Algorithm Overview

LiSAEM is a generic two-level inference engine for the problems in the form of Sec. 1.3.4.6,
where the model selection is performed over k. The principal components are a sampler from
the posterior distribution (1.23) and a stochastic approximation EM algorithm for estimating
the maximum posterior parameters θ whose Q-function is

Q(θ | θ(t−1), Z(t−1), Z̆(t−1), k(t−1), k̆(t−1)) = E
[
L(θ;X,Z, Z̆, k, k̆)

]
, (4.74)



Inference 107

which is the lower bound on the target likelihood L(θ;X,Z, Z̆, k, k̆) from (4.12) and where t
is the time step (iteration), θ is the free variable and E [f(θ;x)] is the expectation of f(θ;x)
over the posterior distribution of x. The expectation (E-step) is implemented by means of a
Metropolis-Hastings (MH) sampler made efficient with a stochastic averaging filter and the
maximization (M-step) is deterministic. Simultaneously, the sampler is used to estimate the
posterior distribution p(k | X, θ̇, θ̂) by histogramming the generated samples. The mode of
the histogram is the most probable posterior complexity.

To implement a new probabilistic model of the type of (4.12) with LiSEAM an user needs
to write a few callbacks that define the target distribution (4.12). For the sake of completeness
of this thesis we briefly describe these parts of LiSAEM that employ the callbacks. The core
blocks of LiSAEM are summarized in Fig. 4.11 and we will now explain them in some detail.
The full specification and derivation can be found in Šára (2014).

4.10.2 Inlier Inference

This is a core deterministic mechanism. The role of this procedure is to map random
parameters θ̄, θ̂, θ̆ to configurations Z. Given all parameters θ = (θ̄, θ̂, θ̆, θ̇) the inlier inference
maps each primitive i to a definite component j.

Primitive inlier inference maximizes the likelihood ratio (4.16) by

Z ′ = arg max
Z

p(X,Z | k, θ̄, θ̂), (4.75)

which breaks down to independent primitive allocations zi ∈ {0, . . . , k} to components

z′i = arg max
zi

p(xi, zi | θ̄, θ̂), i = 1, . . . , n. (4.76)

This in effect allocates each primitive to the most likely component {0, . . . , k} (including
background).

4.10.3 Complexity Proposals

In a Metropolis-Hastings (MH) sampler with reversible jumps across different configuration
complexities k (Sec. 1.3.4) a generalization of Sequential Multipoint Metropolis (SMM)
method (Qin and Liu, 2001) is used. Its complexity proposal scheme consists of a sequence
of elementary proposals: A disassembly proposal decreases complexity k by unity, by deleting
a random component from the configuration, and an assembly proposal initializes a new
component location parameters θ̄j (RANSAC-like empirical distribution sample) and copies
the other components’ parameters.

Propose component parameters (callback). Parameters θ̄j of a component represented
by a symmetry axis are proposed by a single correspondence (seed) xi determining its
parameters µj and ϕj using (4.6).
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Then configuration Z is inferred by means of deterministic inlier inference (Sec. 4.10.2).
One of the sequence of proposed configurations Z is then randomly selected and subjected to
the standard MH acceptance rule in which the forward and reverse proposal probabilities are
computed in a specific way.

The sequential multipoint proposal scheme has several major advantages over the basic
RJ-MCMC: improved mixing and the possibility to perform only approximate incremental
inference to improve computational efficiency.

4.10.4 Group Proposals

The existence of groups is linked to the underlying components. We define the implicit
grouping changes to Z̆ when a complexity change is proposed (see section above).

Following assembly, a new component becomes a single member of its own new group
with µ̆∗ = µ∗.

Following disassembly, the deleted component is removed from its group. If it was the
group’s last member, then the group is deleted too.

The actual group proposals follow the merge and split procedure. Let us first define
a weighted complete graph C where the current configuration components correspond to
graph nodes and graph edge weights wϕij, w

µ
ij evaluate the conditions on axis intersection and

midpoint distance

wϕij =

1, (Λi ∩ Λj) ∈ dom I,

0, otherwise,
(4.77)

wµij = ‖µi − µj‖ /σu, (4.78)

where i, j ∈ J are configuration components and (Λi ∩ Λj) is the intersection point of the two
axes. A necessary condition for two axes i, j to belong to the same group is wϕij = 1 . Then
we construct an edge-induced subgraph C ′ ⊆ C by randomly thresholding edge weights wµij
and including only selected edges with the condition satisfied.

Merge joins two groups together. Only group pairs (g, h) within the same connected
component of graph C ′ are considered and one such pair is uniformly sampled, g 6= h. The
merged group parameter becomes

µ̆∗ = 1
2 (µ̆g + µ̆h) . (4.79)

Split removes a randomly selected component g from a group. Only groups with two or
more components are considered and uniformly sampled in the first step. In the next step
the component to be removed is sampled uniformly within the chosen group and becomes a
single member of its own new group with µ̆∗ = µg.
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4.10.5 Parameter Proposals

The purpose of a parameter proposal is to provide exploration in configuration space with
parameter θ. In practice LiSAEM without this proposal tends to get stuck in a configuration
when the core parameters θ̇ are not estimated correctly. The exploration ability of the
parameter proposal helps jump out of such configuration by following the gradient of target
distribution stochastically.

The parameter proposal is based on a modification of Metropolis-Adjusted Langevin
(MALA) algorithm by (Roberts and Tweedie, 1996). Given the current parameter value
θ(t−1), MALA proposes samples ϑ′ as

ϑ′ = θ(t−1) + σ2
θ

2 ∇ log π(θt−1) + ζ, (4.80)

in which ζ is a normally distributed random variable ζ ∼ N(0; σ2
θ) and π is the target

distribution (4.12). The ϑ′ is then accepted using the standard MH acceptance rule.
LiSAEM uses a modification of MALA called Scaled Stochastic Newton (SSN) algo-

rithm (Bui-Thanh and Ghattas, 2012), in which the gradient is scaled by the inverse of
negative Hessian in a Newton-like step. Instead of the logarithm of the target distribution
log π(θ(t−1)) the Q function (4.74) is used, provided by the SAEM algorithm. The stochastic
approximation filter of SAEM helps provide temporal stability of such gradient and Hessian
estimates and improves mixing.

On-line adaptation of the scaling constant σθ from (4.80) is performed according to Atchadé
(2006). The goal of adaptation is to provide acceptance rate close to the optimal value
(approximately 0.574 derived for standard normal distribution (Roberts and Tweedie,
1996)) and improve stability of SSN. .

Since an E-step and an M-step of SAEM follow the process illustrated in Fig. 4.11 the
proposed parameter ϑ′ is essentially forgotten. In fact, since ϑ′ is used in inlier inference, it
influences the proposed configuration Z, so it does contribute to the next estimate θ(t).

4.10.6 E-step

The E-step performs expectation of Q-function (4.74) which in our representation can be
written as summation over all possible configurations Z, Z̆ in

Q(θ | θ(t−1), Z(t−1), Z̆(t−1), k(t−1), k̆(t−1)) = (4.81)

=
n∑
k=0

k∑
k̆=1

∑
Zk

∑
Z̆k̆

p(Zk, k, Z̆k̆, k̆ | X, θ
(t−1))L(θ;X,Z, Z̆, k, k̆),

where t denotes the current time step (iteration), Zk represents the set of fields for fixed
complexity k and the maximum complexity is the number of primitives, k ≤ n. Analogically



110 Chapter 4: A Bayesian Model for Multiple Reflection Symmetry Detection

Z̆k̆ represents the set of fields for fixed number of groups k̆ limited by k̆ ≤ k.
It assumes it is possible to track the identity of each component j from a set of all

components J in the sequence of configurations produced by the sampler, even if the
component disappears from the configuration and reappears later. The p(Zk, k, Z̆k̆, k̆ |
X, θ(t−1)) is estimated by the sampler using Robbins-Monro (RM) sequential update scheme.
It can be shown it leads to

P (t−1)(θ) = (1− γt)P (t−1)(θ) + γtQ
(t−1)(θ | θ(t−1)), (4.82)

in which t is the simulation step index, Q(t−1) is the Q-function (4.81) in which the expectation
is replaced by a single random sample from the (target) posterior p(zji, k, z̆gj, k̆ | X, θ(t−1)); this
is a limiting case of empirical averaging. The γt is a sequence of diminishing multipliers such
that RM guarantees convergence (Delyon et al., 1999): γt > 0, ∑t pt =∞, ∑t p

2
t <∞. In

our case the P-function of SAEM has the form of

P (t)(θ) = P
(t)
0 (θ) +

∑
j∈J

P
(t)
j (θ), (4.83)

where the default term comes from (4.70) as

P
(t)
0 (θ) ∝ log p(θ̂) + log p(θ̆) +

(
τ

(t)
0 + αO − 1

)
log p0 , (4.84)

and the component-wise term for component j in the group g has the form of

P
(t)
j (θ) ∝ νj(θ̄j, θ̂)K(t)

j +
(
τ

(t)
j + (αI − 1)κ(t)

j

)
log pj +

W∑
w=1

ηjw(θ̄j, θ̂) T (t)
jw , (4.85)

where ∝ means here ‘up to an additive constant’ and terms are the following:

νj(θ̄j, θ̂) is the universal model statistic (4.44),

τ
(t)
ji = (1− γt)τ (t−1)

ji + γtzji is the current estimate of primitive allocation zji,

τ
(t)
j = ∑n

i=1 τ
(t)
ji is the current estimate of number of inliers in the component j, (τ0 for

outliers),

κ
(t)
j = (1− γt)κ(t−1)

j + γt is the posterior expectation of component’s presence in the current
configuration (inclusion),

κ(t) = ∑
j∈J κ

(t)
j is the current estimate of the posterior expectation of complexity k,

K(t)
j is the current number of inliers in the component j,

T (t)
jw = ∑n

i=1 τ
(t)
ji Tw(xi) is the statistic aggregated from all primitives in (4.16),

ηjw(θ̄j, θ̂) are natural parameters (callback) given in (4.25) and (4.63).
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The E-step in LiSAEM thus just estimates the quantities τji and κj .The appeal of SAEM
over the standard versions of Monte-Carlo EM algorithms is that it makes use of all simulated
samples for the hidden variables Z(t−1) and also leads to computationally efficient parameter
update scheme.

4.10.7 M-step

The M-step implements parameter estimation to maximize the target function

θ(t) = arg max
θ

P (t−1)(θ), (4.86)

where θ are the estimated parameters while the statistics T are fixed and the implementation
is specific to the given problem.

In the case of symmetry detection model we have statistics T dj = ∑
i yid yid

>,T mj =∑
i yim yim

> and the active part of P-function is

P (t)(σu, σv, σy, µ,u,v) = −(αu + 1) log σ2
u − (αv + 1) log σ2

v − (αy + 1) log σ2
y

+
k∑
j=1

P
(t)
j (σu, σv, σy, µj,uj,vj), (4.87)

with component-wise terms

P
(t)
j (σu, σv, σy, µj,uj,vj) ∝ ηdj : T dj + ηmj : T mj + ηgj : T gj + νjKj = (4.88)

= −Ed
j : Sdj − log(2πσuσy)− Em

j : Smj − log(2πσyσv)−
−Eg

j : Sgj − log(2πσ2
µ) + κϕ︸︷︷︸

ηgj

u>j ŭjg︸ ︷︷ ︸
T gj

− log(2πI0(κϕ)),

where the newly introduced symbols following (4.25) are

Ed
j = yd y>d , (4.89)

Em
j = ym y>m,−(2ym − µj)µ>j , (4.90)

Eg
j = µ̆g µ̆

>
g − (2µ̆g − µj)µ>j , (4.91)

Sgj = 1
2diag(σ−2

µ , σ−2
µ ), (4.92)

and Kj represents the number of inliers, and the background model for mean and angle is

νj = − log(2π2σ2
0)− ‖µj‖

2

2σ2
0
. (4.93)
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M-step (callback). The M-step is in our case not closed-form. We use an initial estimate

µ̂j ≈
ym

Kj
. (4.94)

The initial estimate of ϕ or (u,v) is obtained by solving

∂Pj(·)/∂ϕ =
((

1
2σ2

y

− 1
2σ2

u

)
Ed +

(
1

2σ2
v

− 1
2σ2

y

)
Em

)
:
(
uv> + vu>

)
= 0, (4.95)

where Em = A− µµ> is a symmetric matrix. The solution of (4.95) are its eigenvectors û, v̂
giving ϕ̂j . The estimates of shape parameters for the given component are the eigenvalues σ̂2

ju

of Ed
j associated with eigenvector û and analogically for σ̂2

jv of Em
j and v̂. These estimates

are then combined together with shape prior resulting in

σ̂2
u =

bu +∑k
j=1 σ̂

2
ju

1 + au + k
, σ̂2

v =
bv +∑k

j=1 σ̂
2
jv

1 + av + k
, (4.96)

which solves ∂Pj(·)/∂σu = 0 or ∂Pj(·)/∂σv = 0 respectively. The initial estimate of σ2
y is

similarly computed from the other eigenvalues σ̂2
jyd , σ̂

2
jym of both Ed and Em resulting in

σ̂2
y =

by +∑k
j=1(σ̂2

jyd + σ̂2
jym)

1 + ay + 2k . (4.97)

In order to obtain an initial estimate of the group parameters θ̆ w.r.t. (4.62) the rotation
center µ̆g becomes the mean of all axis midpoints in the group g

µ̆g = 1
|Jg|

∑
j∈Jg

µj. (4.98)

An isolated component j has identically µ̆g = µj . The starting angle ϕ̆g is chosen to be equal
to the orientation of the component ϕj in the group g such that maximizes the likelihood
in (4.61) by

ϕ̆g = arg max
j

∑
i∈G(g)

log p(ϕi | ϕ̆g = ϕj).

The initial estimates are refined by regularized Newton gradient method to find the (local)
optimum, which requires calculation of gradient and Hessian of the P-function w.r.t. to the
parameters (callback).

4.10.8 Post-processing

After the inference endpoints of axis segment µ1
j , µ

2
j are chosen as intersections of the most

extending correspondences µ1 = xp and µ2 = xq with the given axis θ̄j.
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Figure 4.12: Detection pipeline intermediate results, image from 2013 dataset (Liu et al.,
2013)

4.11 Experimental Evaluation

4.11.1 Implementation Overview

The detection process is illustrated in Fig. 4.12:

a) The input image is acquired.

b) Edge and corner map is constructed for keypoint sampling. Contour magnitude
from (Maire et al., 2008) is added to the Harris operator response (Harris and
Stephens, 1988b) to sample well localized points on the image edges.

c) Up to 5000 total points are found as local maxima in the edge and corner map with
non-maximum suppression search stratefy. Orientations are given by multi-scale image
gradient (Sec. 4.2).

d) All keypoint pairs are sorted according to feature symmetry (Sec. 4.4.2, except self-
similarity M , which is slow to evaluate on the full set) and up to n = 5000 tentative
correspondences are selected (Sec. 4.2.4), the 100 top-ranking are shown in red, next
500 in blue.
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e) Self-similarity M is evaluated for all tentative correspondences. Of those, only 100
top-ranking feature frames (patches) are shown.

f) Symmetry axes are detected with LiSAEM, shown with color-coded inliers. Axes
midpoints (Sec. 4.10.8) are shown in white circle when it matches some ground truth
axis (true positives). Otherwise the circle is black, in this example the axis extent
(endpoints) goes beyond the required tolerance of a ground truth axis extent.

4.11.2 Hyperparameter Estimation

Although the ground truth annotations specify symmetry axes, supervised estimation of the
prior parameters is not possible without assignment of keypoints and correspondences to
the axes (inliers). For this purpose we have selected the inliers of a given axis based on two
properties:

1. The training set annotations were enhanced with object segmentation and only keypoints
within a segment were be assigned to the associated axis.

2. Only correspondences of such points with reflection error δy under a given threshold
w.r.t. the ground truth axis are considered inliers.

The priors for parameters θ̂, θ̆ were then estimated by maximum likelihood fitting of the
respective distributions to the inliers. Note the inference includes the parameter estimation
and does not rely on exact priors.

4.11.3 Experimental Results

Evaluation of the model is based on two publicly available benchmarks.
Benchmark 2011 (Rauschert et al., 2011) contains 15 real and 15 synthetic images.

Precision and recall of the results for 2011 dataset (Rauschert et al., 2011) is shown in
Tab. 4.2 and Fig. 4.13. The precision/recall curve was obtained by varying the universal model
σ0 ∈ (0.1, 1.5), which influences the likelihood ratio and inlier acceptance. The resulting
points were connected by lines for better visibility.

We have compared the performance of our method using both static SIFT descriptors
and steerable Daisy descriptors. The latter have shown to allow more accurate calculation
the appearance similarity, resulting in a performance boost for some images (particularly
real-world). As with other methods, real world images taken by camera are the more difficult
category, and among such images the natural objects like plants are the most challenging
because there is usually no exact appearance symmetry, see Fig. 4.15. In some difficult cases
our method found no symmetry in the image.

The final results of our method with the objectness prior indicate the performance
compared to the state of the art methods is similar for single instances, while there is a
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notable increase in recall for multiple instances. Overall the other methods are outperformed
approximately by 10% in precision and 20% in recall.

Dataset Benchmark 2011 Precision / Recall
Method single multiple synthetic real all

SIFT + voting
0.57 / 0.80 0.75 / 0.47 0.82 / 0.72 0.48 / 0.52 0.65 / 0.63

(Loy and Eklundh, 2006)
Contours + voting

0.75 / 0.80 0.58 / 0.55 0.85 / 0.78 0.46 / 0.53 0.65 / 0.62
(Wang et al., 2014)

Daisy + Lisaem
0.73 / 0.85 0.77 / 0.81 0.80 / 1.00 0.64 / 0.60 0.74 / 0.82

+ objectness (our)

Table 4.2: Results on the reflection symmetry dataset (2011) as reported in the benchmark.
Results of our method correspond to the optimal point on the overall curve in Fig. 4.13.
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Figure 4.13: Results on the reflection symmetry dataset (Rauschert et al., 2011) as
precision/recall curves (connected points) for all images, their single instance subset and
multiple instance subset. Curves are not available for other methods, only single point results.

Benchmark 2013 (Liu et al., 2013) contains 70 real images. It is more challenging
because there are more instances of symmetric objects with a lack of symmetry in their
appearance, mostly due to shadows and occlusions, see Fig. 4.16. Many natural objects such
as humans, animals or plants are symmetric only in the large scale, their texture is locally
random. As a result no method competing in this benchmark was able to outperform the
baseline method (Loy and Eklundh, 2006), except of Patraucean et al. (2013) for a few
points on the precision/recall curve.

The precision/recall curves shown in Fig. 4.14 shows our method without the objectness
prior obtains results similar to the state of the art. Our method can’t benefit much from the
improved inference because there are only few images with more than two axes of symmetry
in this dataset.

By including a weak semantic information in the form of the objectness prior it was
possible for our method to consistently achieve results above the state of the art. However,
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in the case local axes of object’s parts are also annotated, th objectness prior can suppress
them, resulting in lower performance score. In general, by suppressing false positives the
objectness prior does not allow the precision to fall under a certain limit, which results in
shorter curves in Fig. 4.14.
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Figure 4.14: Results on the reflection symmetry dataset (Liu et al., 2013) as precision/recall
curves (connected points) for all images, their single instance subset and multiple instance
subset. Overall curves for other methods are not available.

4.12 Conclusion

We have shown the chosen image features and Bayesian inference method achieve better
performance in detecting multiple instances of symmetry in an image. The integral cues of
compactness and objectness help us to identify true reflection symmetric objects and discard
local symmetries, which results in lower false positive rate when compared to other methods.

A possible extension is to implement the model also for other types of symmetries (radial,
translational) and some more possible extensions in both model and inference are suggested
below.
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Ground truth Our results Baseline method output
(Rauschert et al., 2011) Lisaem+objectness (Daisy) (Loy and Eklundh, 2006)

Figure 4.15: Selected images with symmetry axes and inliers from 2011 benchmark.
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Ground truth Our results Baseline method output
(Liu et al., 2013) Lisaem+objectness (Daisy) (Loy and Eklundh, 2006)

Figure 4.16: Selected images with symmetry axes and inliers from 2013 benchmark.



Chapter 5

Conclusion

“We find, therefore, under this orderly arrangement, a wonderful symmetry in the universe,
and a definite relation of harmony in the motion and magnitude of the orbs, of a kind that is
not possible to obtain in any other way.”

Johannes Kepler (1571-1630)

In this thesis three applications of symmetry principles to computer vision problems of
object detection in images were presented, focusing on the ways how our prior knowledge on
translation, reflection and rotation symmetries can be encoded in probabilistic models. We
followed a weak object-centered approach, which lies between general symmetry detection
and strongly informed procedural modeling.

The following table summarizes proposed models and their properties:

Method
WSM SPT BMRS

Chapter 2 Chapter 3 Chapter 4
Symmetries Translation Translation Reflection, Rotation
Groups Wallpaper Wallpaper Dihedral

Model type Flat CRF Hierarchical
Data model Generative Discriminative Hybrid

Structural model Local Local Global
Inference method MAP Message Passing Bayesian Model Selection
Inference algorithm RJ-MCMC TRW-BP LiSAEM

Learning Empirical MPL Empirical
Data point Pixel Pixel Keypoint

Primitive element Pixel Segment Correspondence
Component Object Class Axis

Structural element Neighborhood N-Tuple Group

119
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The first two methods successfully dealt with translation symmetry in the task of facade
image parsing. The Weak Structure Model (WSM) was our first attempt to tackle problems
with variable complexity and opened the question of learning and the question of model
selection.

The answer to the call for learning were Spatial Pattern Templates (SPT) , which facilitated
learning and inference for models with a dense relation structure. Our experience suggests
a tailored customization of employed general machine learning algorithms is required for
further progress in this direction.

The third method aimed at Bayesian Multiple Reflection Symmetry (BMRS) detection.
It validated the Bayesian model selection as a powerful inference mechanism for complexity
estimation by producing more accurate detections when compared to the current state-of-
the-art in symmetry detection.

Each method approaches the discovery of structure in the image data differently. In WSM
the structure is inferred locally in terms of pairwise neighborhood, and top-level groups can
be obtained as connected components, unlike in BMRS where the grouping is explicit and
global. The SPT deals with structure in the learning phase, at the cost of restricting the
object locations according to unsupervised image pre-segmentation.

We would like to emphasize the following contributions of this thesis:

Minimal modeling principle. We showed that probabilistic methods can be successful
in reliable symmetric object detection without hard-coded domain-specific heuristics or
complex features and classifiers.

Parsimony (BMRS). We found that Bayesian two-level inference does implement the
Occam’s razor in a mechanism that balances model complexity and error and even makes the
balance data-adaptive. The result of this behavior is that the method does not oversegment
in a wide variety of images (Sec. 4.10).

Model selection for complexity (BMRS). We confirmed that a rigorous estimation
of the number of objects in an image (components) can be implemented with Bayesian model
selection (Sec. 4.10).

Grouping priors. (WSM, BMRS). We demonstrated that principles of grouping for
structural relations can be efficiently implemented by Bayesian priors. We surmise an efficient
stochastic inference mechanism is needed for such models (Sec. 2.6).

Learning important relations (SPT). We showed it is possible to learn which structural
relations are important and make inference more efficient and accurate (Sec. 3.3.3).
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Objectness priors (BMRS). We managed to incorporate a discriminative prior for
objectness in our probabilistic model. It is shown that objectness contributes to a performance
increase in the multiple symmetry detection problem (Sec. 4.6).

Facade database for learning (SPT). We created a public annotated dataset sufficiently
large for learning, diverse in architectural styles and of greater complexity than other datasets
(Sec. A).

5.1 Possible Extensions

We see there is a potential in extending our methods in the following research directions:

Active inference strategy. Which primitives (correspondences) should be considered to
detect a symmetry? Clearly, even among the top 100 tentative correspondences ranked by
descriptor similarity there are just too few supporting the symmetry, for example only 10 of
them match the axis of the deer’s head in Fig. 5.1. A larger set could bring more support,
but the number of all keypoint pairs grows quadratically with the number of keypoints
and the size of their representation soon becomes prohibitive. Rather than enumerating
them all not to miss some correspondence supporting the symmetry we can start with a
small working subset (like in Fig. 5.1) and incrementally discover additional or more efficient
correspondences during sampling with an active inference strategy. An efficient strategy must
guarantee consistency of the probabilistic model and its implementation will need to revise
the approach to primitive element set representation in the inference algorithm (Sec. 4.10).

Hierarchy of symmetries. Which symmetries describe the image in Fig. 5.2? The
difficulty is in answering the question of which interpretation is better, symmetries of
individual objects, even if the symmetry acts across the image or symmetry of symmetric
objects that fills the entire image? The question is what symmetric composition of elementary
symmetries describes the image best. The answer can be possibly extended from the grouping
prior (Sec. 4.6) in a hierarchical model and the associated group inference mechanism.

Symmetry for saliency. Symmetry detections and measures can be used as indicators of
saliency in images for a complex object recognition problems.

Integration with 3D data. Depth information associated with a given view could be
included in the symmetry models as a strong additional cue. In return, a detected 2D
symmetry typically indicates a symmetry in 3D as well.
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Figure 5.1: Selected tentative correspondences (left) and pairs of image patches around their
keypoints (right).
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Figure 5.2: Hierarchy of symmetries in an image (left) and the associated structure (right).



Appendix A

New Facade Dataset

The size of annotated training set containing regular structures is the limiting factor for
learning of complex relations between objects of many classes. Because of only limited data
sets are publicly available, we have set up a new data set CMP Facade Database (Tyleček,
2012), which is sufficiently large for learning, diverse in architectural styles and allows to
describe more general relative locations of objects (overlapping, nesting).

A.1 Image Data

Our dataset originates from different sources, details are provided in the following sections.
Images were rectified with a method based on estimation of vanishing points from lines
detected in the image, and suitably cropped afterward (does not apply to already rectified
adopted images).

A.1.1 CMP-Prague

Newly presented images acquired by CMP in Prague.

Location Prague, Czech Republic

Date 2007

Camera Canon G2

Resolution ~6 MPx

Size 213 images

Source J.Šochman, R.Šára (CMP)
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A.1.2 CMP-World

Newly presented images acquired by CMP worldwide.

Location Bratislava, Buenos Aires, Frankfurt, Graz, London,
Ostrava, Rome, Znojmo

Date 2007-2009

Camera Various

Resolution ~6 MPx

Size 99 images

Source J.Šochman, R.Šára (CMP)

A.1.3 ZuBuD

Images were adopted as a subset of unannotated Zurich Building Database.

Location Zurich, Switzerland

Date 2003

Camera ?

Resolution ~0.3 MPx

Size 177 images

Source H. Shao, T. Svoboda and L. Gool (ETH) Hao Shao
and Gool (2003b)

http://www.vision.ee.ethz.ch/showroom/zubud/

A.1.4 ECP-World

Images were adopted as a subset of unannotated part of the Ecole Central Paris datasets.

http://www.vision.ee.ethz.ch/showroom/zubud/
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Location Barcelona, Greece, Budapest, USA

Date 2010

Camera ?

Resolution ~0.6 MPx

Size 177 images

Source O. Teboul (ECP) ?

http://vision.mas.ecp.fr/Personnel/teboul/data.php

A.2 Annotations

In this dataset image annotation is a set of rectangles scope with assigned class labels. Such
rectangles are limited by the image scope in size and position, but otherwise they are allowed
to overlap. The annotation do not necessarily explain the entire images, only objects of classes
of interest are labeled. The unexplained part of the image is considered a Background.

A.2.1 Object classes

Dataset contains definitions for basic classes and sub-classes specified below.

Facade bounding box for a single plane wall, from pavement to roof, only complete facades
are labeled, as if there is no occlusion by cars or others

Window entire glass area including borders, subtypes according to subdivision of window
panes; all visible windows are annotated even if not within Facade.

Blind any functional obstacle to light on the window, both open or closed

Cornice decorative (raised) panel above the window

Sill decorative (raised) panel or stripe under the window

Door entrance

Balcony including railing, overlap with window when glass is visible behind

Deco any bigger piece of original art, paintings, reliefs, statues, when no other class is
applicable

Molding horizontal decorative stripe across the facade, possibly with a repetitive texture
pattern

http://vision.mas.ecp.fr/Personnel/teboul/data.php
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Pillar vertical decorative stripe across the facade, possibly with a repetitive texture pattern,
terminators (cap, base) are labeled separately

Shop shop windows, commercials, signs

A.2.1.1 Z-Order

While overlapping of object is allowed, we also sort the classes according to depth levels
(Z-Order) in which the appear in the image. Rendering pixel-wise label map is then possible
by sequentially painting elements according to their class labels and this order.

A.2.2 Principles

• All object annotations have rectangular shape.

• Overlaps are allowed.

• Nesting principle should be kept where applicable, i.e. windows inside a facade.

• Stretching of stripes should be to the maximal meaningful extend, i.e. side to side.

• Objects are annotated if they are not occluded by more than 33% of their area. Occlusion
means that appearance of object borders or contents is substantially different from the
expected appearance.

• The rectangle does not respect occlusions, it should reflect the occluded reality as much
as possible. At least two opposite corners must be visible, or less if their position can
be assumed from symmetry.

• Objects are annotated only on the major (rectified) plane.

• The major facade should be always labeled, additional facades only if their substantial
part is visible.

A.2.3 Formats and Software

Annotation was performed in a custom tool for Matlab, which uses a single database file to
store all annotations. Annotations are exported to the XML and PNG formats below, see
Fig. A.1.
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Figure A.1: Input image (top) and its annotation rendered in PNG format (bottom).

A.3 Dataset Summary

Currently we provide two datasets based on the degree of regularity present in the facades:

CMP-base planar facades with dense/strong regularity

CMP-extended irregular, non-planar and sparse facades or images with substantial occlu-
sion from vegetation etc.

Total numbers for individual datasets are presented in Tab. A.1, which also provides compar-
ison with previsous datasets.



Dataset Images Objects Classes Avg. obj/im Source

CMP-base 378 32861 12 88 CTU

CMP-extended 228 18870 12 82 CTU

Tyleček (2012)

Totals 606 51731

ECP-Monge 109 ? 8 ? ECP

Teboul et al. (2011)

eTrims-8 60 1702 8 28 UBonn

Korč and Förstner (2009)

Totals 169

Table A.1: Statistics for current annotated datasets
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