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Motivation

» Where standard object detection fails

» Context helps — regular structures

» Some challenges:



Types of Symmetry

In 2D images we deal with
» Translation, reflection, rotation
» Groups — wallpaper, dihedral




Grouping Principles

Human perception priors are based on
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Also known as Gestalt laws or symmetry in
general.

We seek a language to describe such
structures for computer vision.

Complexity — unknown number of components




Thesis Progress

» Weak Structure Model
— Simple model implementing grouping principles
— Window detection, sampling

» Spatial Pattern Templates
— Learn where grouping principles apply
— Facade parsing: semantic labels

» Reflection Symmetry Detection
— More general approach resembling clustering
— Improved inference engine, dihedral group




Weak Structure Model

» Can we infer global
structure from local
Interactions?

» Markov Chain Monte
Carlo sampling to find
MAP solution

» Random Walk
» Reversible Jump

» Proposal Efficiency
» Convergence



Facade Image Parsing

» Can we learn where grouping principles should be
applied?

» Dense Graphical Model
» More semantic labels and context

> New database for learning




Spatial Pattern Templates

aligned pairs

» Binary and ternary terms
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» Approximate inference
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Multiple Reflection Symmetry

» Correspondence matching problem
— Keypoints: detected from corners and edges
— Primitives: two corresponding keypoints
— Components: axes of reflection symmetry
— Groups: clusters of components (dihedral)




Bayesian Modeling

» Data clustering problem
— Gaussian mixture + outliers

» Target distribution |
= data model + allocation + prlors

p(X,Z,8,k) =pX|Z,8,k)p(Z]8,k)p(6lk) p(k)

— X ... data primitives with attributes

— Z ... allocation of data points to components
— 6 ... component and shape parameters

— k... complexity

» Bayesian choice
— prior design requires some skills
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Bayesian Inference

1. Model Selection

— Consider multiple models with different complexity and
choose one to maximize the posterior marginal

k* = argmax p(k | X)
— Integrate over parameters by MCMC sampling

p(k | X) Zf p(X,Z,6,k) d0dZ
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2. Parameter Estimation
— Determine the most probable parameters
0" = argmax p(X,Z,0 | k")
— Use Stochastic EM to find locally optimal values

» Inference Engine: LISAEM

— Efficient: improved mixing rate, ~10k samples needed
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Multiple Reflection Symmetry

» General difficulties: Addressed with:
— Multiplicity » Model selection
— Hierarchy » Grouping priors
> Domain specific ambiguities: > Dinedral
— Figure-Ground > Objectness

— Local-Global > Compactness




Experimental Results
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» Improved state-of-the-art results on
reflection symmetry benchmarks (~10%)
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Main Contributions

» Application of statistical methods for object
counting new to computer vision

— Parsimony by means of model selection
— Learning without overfitting

» Minimal modeling principle
— Simple language for consistent models

» Grouping priors
— Components are not independent
— Hierarchy of symmetries
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» Questions?
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Questions

» What are the alternative models and their
properties?
— Complexity estimation
» Bayesian Information Criterion BIC=n -In(02) + k - In(n)
— Fixed penalty for increase of complexity
» Multi-RANSAC
— complexity estimation greedy or empirical
— Symmetry modeling
> Near Regular Textures — element unknown
» Grammars — strong but restricted layout
» Seguential inference — generally suboptimal
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Questions

» Would larger datasets improve the
results?

- WSM, BMRS:

» Yes, hyper-parameter learning would be possible on
the next level

— SPT:

» Yes, now only limited number of samples used for
training (MPL)

» Results from CNNs suggest large data are useful
— Computationally demanding

17




Questions

» Hierarchical Bayesian model

[ hyperparameters |
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