Probabilistic Models for Symmetric Object Detection in Images

Radim Tyleček

PhD Thesis April 2016

Center for Machine Perception Czech Technical University in Prague

Motivation

- > Where standard object detection fails
- > Context helps regular structures
- > Some challenges:

Types of Symmetry

- In 2D images we deal with
- > Translation, reflection, rotation
- > Groups wallpaper, dihedral

Grouping Principles

Human perception priors are based on

- Proximity
- Similarity
- Reflection
- Continuation

Also known as Gestalt laws or **symmetry** in general.

We seek a **language** to describe such structures for computer vision.

Complexity – unknown number of components

Thesis Progress

- > Weak Structure Model
 - Simple model implementing grouping principles
 - Window detection, sampling
- > Spatial Pattern Templates
 - Learn where grouping principles apply
 - Facade parsing: semantic labels
- > Reflection Symmetry Detection
 - More general approach resembling clustering
 - Improved inference engine, dihedral group

Weak Structure Model

- > Can we infer global structure from local interactions?
- Markov Chain Monte Carlo sampling to find MAP solution
- > Random Walk
- > Reversible Jump
- > Proposal Efficiency
- > Convergence

Facade Image Parsing

- > Can we learn where grouping principles should be applied?
- > Dense Graphical Model
- > More semantic labels and context
- > New database for learning

π

Spatial Pattern Templates

- > Binary and ternary terms
- > Relative spatial location
- > Approximate inference

Multiple Reflection Symmetry

- > Correspondence matching problem
 - Keypoints: detected from corners and edges
 - Primitives: two corresponding keypoints
 - Components: axes of reflection symmetry
 - Groups: clusters of components (dihedral)

π

Bayesian Modeling

- Data clustering problem
 - Gaussian mixture + outliers
- Target distribution
 = data model + allocation + priors

 $p(X, Z, \theta, k) = p(X \mid Z, \theta, k) p(Z \mid \theta, k) p(\theta \mid k) p(k)$

- $X \dots$ data primitives with attributes
- -Z... allocation of data points to components
- θ ... component and shape parameters
- k ... complexity
- > Bayesian choice
 - prior design requires some skills

Bayesian Inference

1. Model Selection

 Consider multiple models with different complexity and choose one to maximize the posterior marginal

 $k^* = \arg \max p(k \mid X)$

Integrate over parameters by MCMC sampling

$$p(k \mid X) \propto \sum_{Z} \int_{\theta} p(X, Z, \theta, k) \, d\theta dZ$$

- 2. Parameter Estimation
 - Determine the most probable parameters

 $\theta^* = \arg \max p(X, Z, \theta \mid k^*)$

- Use Stochastic EM to find locally optimal values
- > Inference Engine: LiSAEM
 - Efficient: improved mixing rate, ~10k samples needed

Multiple Reflection Symmetry

- > General difficulties:
 - Multiplicity– Hierarchy
- > Domain specific ambiguities:
 - Figure-Ground
 - Local-Global

Addressed with: Model selection Grouping priors Dihedral Objectness Compactness

Ø

Experimental Results

 Improved state-of-the-art results on reflection symmetry benchmarks (~10%)

Main Contributions

- Application of statistical methods for object counting new to computer vision
 - Parsimony by means of model selection
 - Learning without overfitting
- > Minimal modeling principle
 - Simple language for consistent models
- > Grouping priors
 - Components are not independent
 - Hierarchy of symmetries

Thank You

> Questions?

Questions

- > What are the alternative models and their properties?
 - Complexity estimation
 - > Bayesian Information Criterion $BIC = n \cdot \ln(\widehat{\sigma_e^2}) + k \cdot \ln(n)$
 - Fixed penalty for increase of complexity
 - > Multi-RANSAC
 - complexity estimation greedy or empirical
 - Symmetry modeling
 - > Near Regular Textures element unknown
 - > Grammars strong but restricted layout
 - > Sequential inference generally suboptimal

Questions

- > Would larger datasets improve the results?
 - WSM, BMRS:
 - Yes, hyper-parameter learning would be possible on the next level
 - SPT:
 - Yes, now only limited number of samples used for training (MPL)
 - > Results from CNNs suggest large data are useful
 - Computationally demanding

Questions

> Hierarchical Bayesian model

