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Abstract In this paper,LO-RANSAC 3-LAF – a new al-
gorithm for the correspondence problem – is described.
Exploiting processes proposed for computation of affine-
invariant local frames, three point-to-point correspondences
are found for each region-to-region correspondence. Con-
sequently, it is sufficient to select only triplets of region cor-
respondences in the hypothesis stage of epipolar geometry
estimation byRANSAC.

We experimentally show that: 1.LO-RANSAC 3-LAF es-
timates epipolar geometry in time that is orders of magni-
tude faster than the standard method, 2. that the precision
of theLO-RANSAC 3-LAF and the standard method are com-
parable, and 3. thatRANSAC without local optimisation ap-
plied to triplets of points from a single region is significantly
less precise than the newLO-RANSAC 3-LAF algorithm.

In the experiments, a speed-up factor in orders of thou-
sands is achieved on the problem of epipolar geometry es-
timation. The proposed method is pushing the limit of solv-
able problems, allowing EG estimation in correspondence
problems with the number of inliers below 10%.

1 Introduction

Establishing correspondence in a pair of images is an im-
portant component of many computer vision systems. In
this paper we focus on the two-view (stereo) problem, how-
ever all the results have direct impact on the multi-view and
object recognition problems.

Usually, especially in the narrow-baseline stereo, epipo-
lar geometry (EG) has been estimated from sets of point-to-
point correspondences. This is a consequence of two factors:
1. The almost universal use of Harris point detector, and
2. the good understanding of the estimation of fundamental
matrix from point correspondences. Interest point detectors,
such as Harris, commonly assume approximations of local
image deformations as translation and rotation. Their out-
put depends on properties of fixed-sized circular regions to
achieve the invariance to the image transformations. In a
general correspondence problem, it is necessary to model
local image transformation as affine. Consequently, detec-
tors of entities that are put into correspondence must be more

∗The authors were supported by the European Union under project
IST-2001-32184, by the Czech Ministry of Education under project MSM
212300013 and by The Grant Agency of the Czech Republic under projects
GACR 102/02/1539

complex. The output of these detectors is a distinguishedre-
gionof data dependent shape, detected in an affine-invari
manner. Such detectors have been proposed by Tuytela
[13], Prittchet [8], Schaffalitzky [9] and Matas [5].

A globally consistent set of correspondences of the d
tinguished regions is found essentially in two steps. Firs
tentative correspondences are selected by comparing loc
computed (invariant) descriptors characterising the disti
guished regions. In the second step, a maximal mutua
consistent subset of tentative correspondences is found, t
ically by RANSAC. RANSAC proceeds in a hypothesise-and
verify manner as follows: 1. the smallest sample sufficie
to instantiate a model is selected randomly from the set
tentative correspondences, 2. a model (e.g. the fundame
matrix) is computed from the correspondences, 3. the mo
is verified, i.e. the number of tentative correspondences co
sistent with the hypothesised model is computed.

When can a correspondence problem be solved? Firs
in the detection phase, a sufficientabsolutenumber of de-
tected regions in both images must correspond to the sa
physical surface patches. Secondly, the locally comput
description associated with a region must be discriminati
enough to ensure that a sufficientproportion ε of tentative
correspondences is correct. TheRANSAC time complexity is
a high degree polynomial ofε; the degree of the polynomial
depends on the minimum sample size needed to instant
a model. Smallε results in enormous growth of the numbe
of hypotheses that will be evaluated.

So far, all published work on wide-baseline stereo ha
used a single point-to-point geometric constraint per te
tative correspondence. This means that seven corresp
dences have been needed to estimate the fundamental
trix and the expected number of tested hypotheses is prop
tional to 1/ε7 [4]. A singlepoint-to-point correspondence
has been used, despite the fact that stronger geometric c
strains can be derived from a region-to-region correspo
dence. In fact, in the work of Tyutelaars [13] and Pritch-
ett [8], parameters of local region-to-region mapping hav
been estimated and used in the process of selection of t
tative correspondences. However, epipolar geometry e
mation ignored this information and the fundamental m
trix has been computed from seven point correspondenc
A possible reason is that the fundamental matrix estimat
from small number of local measurements is not as prec
as the one obtained from seven independent (and thus s
tially randomly distributed) correspondences.
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Epipolar Geometry from Three Correspondences [←]
In a main contribution of this paper, a new algorithm for
the correspondence problem is proposed. Exploiting pro-
cesses proposed for computation of affine-invariant local
frames [6], three point-to-point correspondences are found
for each region-to-region correspondence. It is therefore
sufficient to select only a triplet of region correspondences
in the hypothesis stage of theRANSAC and the expected run-
time falls tot ≈ 1

εm , wherem = 3.
Since theRANSAC running time depends on the minimal

sample sizem (the ’model dimensionality’)exponentially,
the effect of this modification leads to speed-up of several
orders of magnitude. To appreciate the effect, let us con-
siderε = 0.15, i.e. 15% of inliers. The proposed algorithm
hasm = 3 as opposed to the standardm = 7. The respec-
tive times aretm=3 = 297 for the proposed algorithm and
tm=7 = 585277 for the standardRANSAC. The straightfor-
ward consequence is an enormous enlargement of the class
of problems that are solvable.

The idea of using multiple points in the estimation pro-
cess is in principle simple. However, since the three points
associated with a single region are in close proximity, the
precision of the estimated epipolar geometry may be ques-
tioned. Indeed, we have observed experimentally, that the
estimated fundamental matrix is imprecise to a point where
a significant proportion of correct tentative correspondences
is inconsistent with the estimated model. The new approach
seems to have two problems. Firstly, the precision is traded
off for speed. Secondly, since the termination ofRANSAC

depends on the proportion of tentative correspondences con-
sistent with the hypothesised model, the theoretical speed-
up is not achieved.

Both these problems are alleviated by replacing theRAN-
SAC with the locally optimizedRANSAC (LO-RANSAC) re-
cently introduced by Chum and Matas [1]. LO-RANSAC

solves both problems by maximizing the number of inliers
consistent with the hypothesized model by local optimisa-
tion. The optimisation causes only negligible slowdown in
overall performance, as it is carried out infrequently (see
Equation3 and [1]).

The outline of the matching process is as follows:

1. For both images compute distinguished regions,
establish local affine frames, and generate inten-
sity representation of local image patches nor-
malised according to the local frames.

2. Establish tentative correspondences between the
frames, by directly comparing the normalised
local image intensities.

3. Select a maximal mutually consistent set of ten-
tative correspondences by applying the locally
optimisedRANSAC, theLO-RANSAC, to triplets
of frame-to-frame correspondences.

The rest of the paper is structured as follows: the con-
cept ofdistinguished regionsis briefly explained in Section
2. The description of local affine frames follows in Section
3 and the details on theLO-RANSAC algorithm are given in
Section4. Experiments on wide-baseline image pairs are

shown in Section5, and the paper is concluded and the con
tributions are summarized in Section6.

2 Distinguished Regions

Distinguished Regions (DRs) are image elements (subs
of image pixels), that posses some distinguishing, singu
property that allows their repeated and stable detection o
a range of image formation conditions. In this work we ex
ploit a new type of distinguished regions introduced in [5],
the Maximally Stable Extremal Regions(MSERs). An ex-
tremal region is a connected component of pixels which a
all brighter (MSER+) or darker (MSER-) than all the pix-
els on the region’s boundary. This type of distinguished r
gions has a number of attractive properties: 1. invarian
to affine and perspective transforms, 2. invariance to mon
tonic transformation of image intensity, 3. computationa
complexity almost linear in the number of pixels and cons
quently near real-time run time, and 4. since no smoothi
is involved, both very fine and coarse image structures a
detected. We do not describe the MSERs here; the rea
is referred to [5] which includes a formal definition of the
MSERs and a detailed description of the extraction alg
rithm. Examples of detected MSERs are shown in Figure1.
Note that DRs do not form segmentation, since DRs do n
cover entire image area, and DRs can be (and usually a
nested.

Figure 1: An example of detected regions of MSER type

3 Local Frames of Reference

Local affine frames (LAFs) facilitate normalisation of im-
age patches into a canonical frame and enable direct co
parison of photometrically normalised intensity values, el
minating the need for invariants. It might not be possible
construct local affine frames for every distinguished regio
Indeed, no dominant direction is defined for elliptical re
gions, since they may be viewed as affine transformations
circles, which are completely isotropic. On the other han
for some distinguished regions of a complex shape, multip
local frames can be affine-covariantly constructed in a s
ble and thus repeatable way. Robustness of our approac
thus achieved by selecting only stable frames and employ
multiple processes for frame computation.
Definition of terms:

Affine transformation is a mapF : Rn → Rn of the form
F (x) = AT x + t, for all x ∈ Rn, whereA is a linear
transformation ofRn, assumed non-singular here.

Center of gravity (CG) of a regionΩ is µ = 1
|Ω|

∫
Ω

xdΩ.

Covariance matrix of a regionΩ is an×n matrix defined
Onďrej Chum, Jǐrı́ Matas, andŠťeṕan Obdřzálek 2
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Figure 2: Construction of affine frames. From left to right: a distinguished region (the gray area), the DR shape-normalised accor
the covariance matrix, normalised contour curvatures, normalised contour distances to the center of DR, and one of the constructe
represented by its basis vectors.

(a) (b) (c) (d)

Figure 3: Bi-tangent based constructions of affine frames. (a) original views, (b) 2 tangent points + farthest concavity point, (c) 2 t
points + DR’s center of gravity, (d) 2 tangent points + farthest DR point. Left columns - detected frames, right columns - locally norm
images

as
Σ = 1

|Ω|
∫
Ω
(x− µ)(x− µ)T dΩ.

Bi-tangent is a line segment bridging a concavity, i.e. its
endpoints are both on the region’s outer boundary and
the convex hull, all other points are part of the convex
hull.

Affine covariance of the center of gravity and of the
covariance matrix is shown in [6]. The invariance of the
bi-tangents is a consequence of the affine invariance (and
even projective invariance) of the convex hull construc-
tion [10, 7]. Finally, we exploit the affine invariance of the
maximal-distance-from-a-line property, which is easily ap-
preciated taking into account that affine transform maintains
parallelism of lines and their ordering.

A two-dimensional affine transformation possesses six
degrees of freedom. Thus, to determine an affine transfor-
mation, six independent constraints are to be applied. Vari-
ous constructions can be utilised to obtain these constraints.
In particular, we use a direction (providing a single con-
straint), a 2D position (providing two constraints), and a co-
variance matrix of a 2D shape (providing three constraints).

Frame constructions. Two main groups of affine-inva-
riant constructions are proposed, based on 1. region normal-
isation by the covariance matrix and the center of gravity,
and 2. detection of stable bi-tangents

Transformation by the square root of inverse of the co-
variance matrix normalises the DR up to an unknown rota-
tion. To complete an affine frame, a direction is needed to
resolve the rotation ambiguity. The following directions are
used: 1. Center of gravity (CG) to a contour point of ex-
tremal (either minimal or maximal) distance from the CG

2. CG to a contour point of maximal convex or concave cu
vature, 3. CG of the region to CG of a concavity, 4. directio
of a bi-tangent of a region’s concavity.

In frame constructions derived from the bi-tangents, th
two tangent points are combined with a third point to com
plete an affine frame. As the third point, either 1. the ce
ter of gravity of the distinguished region, 2. the center o
gravity of the concavity, 3. the point of the distinguishe
region most distant from the bi-tangent, or 4. the point o
the concavity most distant from the bi-tangent is used. A
other type of frame construction is obtained by combinin
covariance matrix of a concavity, CG of the concavity an
the bi-tangent’s direction.

Frame constructions involving the center of gravity or th
covariance matrix of a DR rely on the correct detection o
the DR in its entirety, while constructions based solely o
properties of the concavities depend only on a correct det
tion of the part of the DR containing the concavity.

Figure2 visualise the process of shape-normalisation a
a dominant point selection. A distinguished region detect
in an image is transformed to the shape-normalised fram
the transformation being given by the square root of inver
of the covariance matrix. Normalised contour curvature
and normalised contour distances are searched for stable
tremal values to resolve the rotation ambiguity. One of th
constructed frames is shown on the right in Figure2, repre-
sented by the two basis vectors of the local coordinate s
tem. Figure3 shows three examples of the local affine fram
constructions based on concavities.

Once local affine frames (LAFs) are computed in a pa
of images, (geometrically) invariant descriptors of local ap
pearance are not needed for the matching. Corresponden
Onďrej Chum, Jǐrı́ Matas, andŠťeṕan Obdřzálek 3
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Epipolar Geometry from Three Correspondences [←]
are established simply by correlating photometrically nor-
malised image intensities in geometrically normalised mea-
surement regions. A measurement region (MR) is defined in
local coordinate systems of the affine frames, but the choice
about MR shape and size can be arbitrary. Larger MRs have
higher discriminative potential, but are more likely to cover
an object area that violates the local planarity assumption.
Our choice is to use a square MR centered around a detected
LAF, specifically an image area spanning[−2, 3] × [−2, 3]
in the frame coordinate system.

4 Locally Optimized RANSAC

The structure of theRANSAC algorithm is simple but pow-
erful. Repeatedly, subsets are randomly selected from the
input data and model parameters fitting the sample are com-
puted. The size of the random samples is the smallest suf-
ficient for determining model parameters. In a second step,
the quality of the model parameters is evaluated on the full
data set. The process is terminated [2, 11] when the likeli-
hood of finding a better model becomes low, i.e. the proba-
bility η of missing a set of inliers of sizeI within k samples
falls under a predefined threshold

η = (1− PI)k. (1)

Symbol PI stands for the probability, that an uncontami-
nated sample of sizem is randomly selected fromN data
points

PI =

(
I
m

)(
N
m

) =
m−1∏
j=0

I − j

N − j
≈ εm, (2)

whereε is the fraction of inliersε = I/N . The number of
samples that has to be drawn to ensure givenη is

k = log(η)/ log(1− PI).

From equations (1) and (2), it can be seen, that termina-
tion criterion based on probabilityη expects that a selection
of a single random sample not contaminated by outliers is
followed by a discovery of whole set ofI inliers. However,
this assumption is often not valid since inliers are perturbed
by noise. SinceRANSAC generates hypotheses from mini-
mal sets, the influence of noise is not negligible, and a sup-
port set of correspondences with size smaller thanI is found.
The consequence is an increase in the number of iterations
before the algorithm is terminated.

We propose aRANSAC modification that increases the
number of inliers found near to the optimumI. This is
achieved by local optimisation of ’promising’ samples. For
the overview of the locally optimizedRANSAC see Algo-
rithm 1.

The local optimization step is carried out only if a new
maximum in the number of inliers from the current sam-
ple has occurred, i.e. when standardRANSAC stores its best
result. The number of consistent data points with a model
from a randomly selected sample can be thought of as a ran-
dom variable with unknown (or very complicated) density
function. This density function is the same for all samples,
so the probability thatk-th sample will be the best so far is

Repeat until the probability of finding better
solution falls under predefined threshold, as in
equation (1):
1. Select a random sample of the minimum number

of data pointsSm.
2. Estimate the model parameters consistent with

this minimal set.
3. Calculate the number of inliersIk, i.e. the

data points their error is smaller than predefined
thresholdθ.

4. If new maximum has occurred (Ik > Ij for all
j < k), run local optimization. Store the best
model.

Algorithm 1: A brief summary of theLO-RANSAC

1/k. Then, the average number of times a new maximum
found withink samples is

k∑
1

1
x
≤

∫ k

1

1
x

dx + 1 = log k + 1. (3)

Model hypothesizing.To hypothesize a model of epipo-
lar geometry, random samples of three region correspo
dences are drawn. Each region correspondence provi
a point and a local affine transformation. Generally, thre
region correspondences give nine point correspondenc
These are used to estimate the fundamental matrixF using
linear eight-point algorithm [3].

Verification and local optimization. Both verification
and local optimization are run on point correspondenc
only. This is due to higher stability of the central point a
the aim of the local optimization is higher precision of th
fundamental matrix.

The set of inliers is calculated from the hypothesized fu
damental matrix. If a new maximum of inliers is reached
the local optimization is carried out as follows. A new sam
pling procedure is run only onIk data points consistent with
the hypothesized model. As the sampling is running on i
lier data, there is no need for the size of the sample to
minimal. On the contrary, the size of the sample is select
to minimize the error of the model parameter estimation.
our experiments the size of samples are set tomin(Ik/2, 14)
The number of repetitions is set up to twenty in the expe
ments presented. Each random sample drawn in this pro
dure is processed with the following iterative scheme: ta
all data points with error smaller thatK · θ and use linear
algorithm to compute new model parameters. Reduce t
threshold and iterate until the threshold isθ. This is equiva-
lent to the most efficient method described in [1].

Rejecting random inliers. The affine transformation can
be used to reject random inliers, i.e. regions that ’randoml
lay on corresponding epipolar lines. For this purpose th
error of epipolar geometry on the other two points (definin
the local affine transformation of the region correspondenc
can be thresholded, typically by a weaker threshold thanθ.
Onďrej Chum, Jǐrı́ Matas, andŠťeṕan Obdřzálek 4
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Epipolar Geometry from Three Correspondences [←]
Figure 5: Epipolar geometry estimated on the ’Valbonne’ image pair. A detail with frame and region correspondences is shown on th

Figure 4: Epipolar geometry estimated on the ’Wash’ image pair.

5 Experiments

In this section we experimentally demonstrate the benefits of
the newly proposedLO-RANSAC 3-LAF method. In particu-
lar we show that: 1.LO-RANSAC 3-LAF estimates epipolar
geometry in time that is orders of magnitude faster than the
standard method, i.e.RANSAC 7-pts, 2. that the precision of
theLO-RANSAC 3-LAF andRANSAC 7-pts are comparable,
and 3. thatRANSAC without local optimisation applied to
triplets of points from a single region,RANSAC 3-LAF, is
significantly less precise than bothLO-RANSAC 3-LAF and
RANSAC 7-pts.

To highlight the advantage of the proposed approach, two
complicated image pairs are included with only about 12%
of tentative correspondences correct. The image pairs are
depicted in Figures5 and6 respectively. A simple experi-
ment on an indoor scene (Figure4) represents a fairly stan-
dard wide-baseline problem. Information about the con-
ducted experiments is summarised in Table1. For the ’Val-

Method EG consistent iterations

Wash,191tentative corr.,42% inliers
RANSAC 7-pts 80 2178
RANSAC 3-LAF 47 475
LO-RANSAC 3-LAF 80 35

Valbonne,193tentative corr.,12% inliers
RANSAC 7-pts 22 ≈ 20 000 000
RANSAC 3-LAF 15 8608
LO-RANSAC 3-LAF 22 869

Ascona,783tentative corr.,13% inliers
RANSAC 7-pts 100 ≈ 6 500 000
RANSAC 3-LAF 33 67325
LO-RANSAC 3-LAF 102 1105

Table 1: Summary of experimental results. Number of corre
spondences found consistent with the epipolar geometry and
number ofRANSAC iterations required to reach the solution. Note
that all the numbers are random variables.

bonne’ and ’Ascona’ pairs, the speed-up measured by t
number iterations is formidable, see the left column of Ta
ble 1. Due to the low probability of picking seven correc
correspondences in the conventional seven-point algorith
(RANSAC 7-pts), the number of iterations is in the order o
tens of millions. In comparison, only about a thousand
iterations is required by the proposedLO-RANSAC 3-LAF
method. For the ’Wash’ experiment, the number of itera
tions fall down to 35.

The quality of the EG estimate measured by the num
ber of inliers (see the middle column of Table1) is com-
parable for the standardRANSAC 7-pts and the proposed
LO-RANSAC 3-LAF methods. Figures4, 5 and 6 show
the epipolar geometry superimposed over the images. T
quality of the geometry can be appreciated by looking
the close-ups in Figures4 and5. The close-ups also show
the distinguished regions and the basis vectors of the cor
sponding local affine frames.
Onďrej Chum, Jǐrı́ Matas, andŠťeṕan Obdřzálek 5
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Epipolar Geometry from Three Correspondences [←]
Figure 6: Epipolar geometry estimated on the ’Ascona’ image
pair.

It is important to note that applying the 3-frameRANSAC

without local optimisations (RANSAC 3-LAF), the largest
set of EG-consistent inliers is smaller. We believe that this
is due to the fact that local affine frames are typically very
small and the three points from a single region lie in close
proximity. The local inter-image affine transformation are
thus inaccurate and consequently the EG estimate and its
support set (the set of inliers consistent with the EG es-
timate) are unstable. The size of support sets forRAN-
SAC 3-LAF andLO-RANSAC 3-LAF can differ significantly,
as shown in the middle column of Table1.

The difference in the support set size also affects the
speed of the algorithm, since the termination condition of
RANSAC is a function of the current estimate of the num-
ber of inliers. As a consequence of its lower precision
(smaller support set),RANSAC 3-LAF was more than ten
times slower thanLO-RANSAC 3-LAF in all conducted ex-
periments (Table1, right column). Clearly, application of lo-
cal optimisation is a very important ingredient of the newly
proposed algorithm.

In the experiments,Maximally Stable Extremal Regions
(MSERs) [5] were used as distinguished regions. All the
affine-covariant constructions described in Section3 were
exploited.

6 Conclusions

In this paper,LO-RANSAC 3-LAF – a new algorithm for the
correspondence problem – was described. Exploiting pro-
cesses proposed in [6] for computation of affine-invariant lo-
cal frames, three point-to-point correspondences were found

for each region-to-region correspondence. Consequently
was sufficient to select only triplets of region correspon
dences in the hypothesis stage of epipolar geometry estim
tion by RANSAC. In the experiments, a speed-up factor i
order of thousands was achieved on the problem of epipo
geometry estimation.

The importance of local optimisation in theRANSAC ver-
ification stage for both precision and speed of the meth
was demonstrated. Local optimisation helped to overcom
the problem of precision of estimation from points in clos
proximity. The computed epipolar geometry was as pr
cise as if using the conventional algorithm which exploit
7 points in general positions.

The proposed method is pushing the limit of solvab
problems, allowing EG estimation in correspondence pro
lems with the ratio of inliers below 10%.
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