@Article{DeSimoneNavara:MathSlov04,
  IS = { zkontrolovano 13 Jan 2005 },
  UPDATE  = { 2004-11-27 },
  author =     {De~Simone, Anna and Navara, Mirko},
  title =      {On the permanence properties of interval homogeneous orthomodular lattices},
  journal =    {Mathematica Slovaca},
  publisher =  {Slovak Academy of Sciences},
  address =    {Bratislava, Slovakia},
  issn =       {0139-9918},
  authorship = { 50-50 },
  project =    { MSM 212300013, GACR 201/03/0455 },
  year       = { 2004 },
  pages      = { 13-21 },
  volume     = { 54 },
  number     = { 1 },
  annote = {We investigate the class of orthomodular lattices which
   are interval homogeneous, i.e., they satisfy the Cantor-Bernstein
   theorem. We show that every sigma-complete orthomodular lattice can
   be embedded into an interval homogeneous orthomodular lattice. We
   find that each sigma-orthomodular lattice is a sigma-epimorphic
   image of an interval homogeneous orthomodular lattice.},
  keywords =   {orthomodular lattice, sigma-completeness, interval, 
                center, Boolean sigma-algebra, Cantor-Bernstein theorem},
}