@Article{DeSimoneNavara:MathSlov04, IS = { zkontrolovano 13 Jan 2005 }, UPDATE = { 2004-11-27 }, author = {De~Simone, Anna and Navara, Mirko}, title = {On the permanence properties of interval homogeneous orthomodular lattices}, journal = {Mathematica Slovaca}, publisher = {Slovak Academy of Sciences}, address = {Bratislava, Slovakia}, issn = {0139-9918}, authorship = { 50-50 }, project = { MSM 212300013, GACR 201/03/0455 }, year = { 2004 }, pages = { 13-21 }, volume = { 54 }, number = { 1 }, annote = {We investigate the class of orthomodular lattices which are interval homogeneous, i.e., they satisfy the Cantor-Bernstein theorem. We show that every sigma-complete orthomodular lattice can be embedded into an interval homogeneous orthomodular lattice. We find that each sigma-orthomodular lattice is a sigma-epimorphic image of an interval homogeneous orthomodular lattice.}, keywords = {orthomodular lattice, sigma-completeness, interval, center, Boolean sigma-algebra, Cantor-Bernstein theorem}, }