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1 Filter Banks as Transformations
A filter bank H transforms an input z into an output y = H(z). Figure 1 shows the

familiar example of a analysis filter bank that separates the low and high frequencies of
a discrete input signal. If the filter bank is linear, then the corresponding transformation
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Figure 1: A analysis filter bank.

can be represented as a matrix H, and applying H to z is achieved by computing the
maftrix product y = Hzx.

As an example, we shall now compute the matrix H for the Haar analysis filter bank,
assuming an input z consisting of n samples (z € R"). Recall that the Haar low pass
filter Hy simply averages adjacent entries of its input. This operation can be represented
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by the matrix?
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The Haar high pass filter H; computes half the difference between successive input sam-
ples, and can be represented? as

1 -1
1 -1
1 1 -1
Hl(n):— ERan
2
1 -1
L 1_

The downsampling operation is represented as the matrix®
(10000 --- 0 0]
00100 00

p®—-100001--00|cRrzx"
00000 - 10|

which picks out the first, third, etc. entries of . The combined action of low pass filtering
and then downsampling is represented by the matrix

7, — D(”)Hén) — c REX".

Similarly, the combined action of high pass filtering and then downsampling is represented

Note that Hén) averages the final entry of  with zero since there is no next element. This is a moot

point since the downsampling step that follows throws away the last entry of Hén)m.

2The filter matrix H{n) differences the final entry of  with zero since there is no next element. This
boundary anomaly is, once again, a moot point since the downsampling step that follows throws away
the last entry of HYL)I.

3Here we have tacitly assumed that n is even. Since the downsampling operation picks out the first,
third, etc. components of its input, the last component will be discarded.
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Figure 2: Hierarchical decomposition of a signal.

as

B = pmpg = - cRZ*",
1 -1
1 -1

The top and bottom branches of the filter bank produce (see Figure 1)
yo= LMz € R? and y; = B™z e R%,
respectively. The output of the filter bank is

Yo L0 g L
Y = — = — = H(n)l’ < Rn7 Where H(n) = - € Rn)(n .
n By B

Thus, we have expressed the operation of the Haar filter bank on an input of length n as
the matrix H shown above.

The output of the top branch of the filter bank is a coarse version of the input signal.
We can build a hierarchical representation of a signal by recursively filtering the low pass
output of the filter bank. This process is illustrated in Figure 2. In each step of the
recursion, the signal rate decreases by a factor of two. If the signal is discrete and finite
(and a power of two in length), then we eventually reach a signal with one sample. In the
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case of the Haar analysis filter bank, this sample will be the average of the elements of
the original signal. The sum of the sizes of all the outputs from the high pass steps and
the output of the final low pass step is equal to the size of the original input. The final,
hierarchical representation of an input signal is a collection of signal details at various
resolution levels (scales) and a coarse version of the original signal (which is the output of
the final low pass filter). The entire process can be represented as a single transformation
matrix Hgys which one can think of as rewriting the input z in terms of another basis
to produce the output y = Hyysx. Figure 2 shows the Hgy matrix that results when the
Haar filter bank is applied three times.

When the input to the system is an image (a 2D signal), the first filter bank application
produces a blurred version of the image (the low pass output) and the details of the
original image (sharp edges) which are not contained in the blurred version (the output
of the high pass filter). The second low pass filter application takes the blurred version
from step one and blurs it even further. The differences between the second blurred
image and the first blurred image are captured in the output of the second high pass
filter. This recursive process transforms an image into a collection of images that capture
image details at different scales and one final coarse image.

2 The Haar Wavelet Basis

If a hierarchical decomposition via filter banks writes a discrete signal in terms of new
basis. Can we find a similar decomposition for continuous signals? Answering this
question is where the dilation equation

é(t) =2 ho(k)p(2t — k) (1)

and the wavelet equation

w(t) =23 hy(k)o(2t — k) (2)

come into the picture. The function ¢(1) is called the scaling function, and the function
w(t) is called the wavelet function. The dilation equation and wavelet equation must
hold for all ¢. Replacing ¢ by 2/~'¢ gives

$271) = 2 ho(k)g(2't — k) (3)
w(27) = 23 hi(k)o(2t — k) (4)

This last set of equations is more convenient for describing the construction of the wavelet
basis corresponding to a filter bank.
We now illustrate the wavelet basis construction from the dilation equations using the

Haar filter bank. Recall that the low pass Haar filter Hy is defined by ho(0) = ho(1) = 1/2
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Figure 3: The Haar scaling functions ¢(), ¢(2t), and ¢(2t — 1).
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Figure 4: The Haar wavelet function w(t).

(all other coefficients are zero). Substituting the Haar low pass filter into equation (1),
we get

¢(t) = ¢(2t) + H(2t = 1).

The solution to this recurrence is the Haar scaling function

1 iftef0,1)

0 otherwise

o0 - { 5)
The functions ¢(t), ¢(2t), and ¢(2t — 1) are shown in Figure 3. The high pass Haar filter
H; is defined by h1(0) = 1/2 and hy(1) = —1/2. Substituting into (2) yields

w(t) = $(2t) — H(20 — 1).

It follows easily from (5) that the Haar wavelet function is

1 ifte[0,1/2)
w(t){ —1 iftell/2,1) .

0 otherwise

The wavelet function w(t) is shown in Figure 4. The scaling function ¢(¢) is the contin-
uous analog of the discrete low pass filter Hy. Applying ¢(t) to f(t) yields

o0

S f(0) di = [ f(1)

0

<¢,f>:/

— 00
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the average value of f over the interval [0,1). The wavelet function w(t) is the continuous
analog of the discrete high pass filter Hy. Applying w(t) to f(t) yields

00 L 1

<w,f>:/ w(t) f(1) dt:/OQf(t) dt—/l £(t) dt.

—00 3

The filter ¢ is an averaging operator, and the filter w is a differencing operator.

Now consider functions defined on the interval [0, 1). Let V¥ denote the set of functions
that are constant on the 2/ subintervals [1/27, (I4+1)/27),1 = 0,1,...,2/—1. Any function
in V7 can be represented exactly by a linear combination of the 2/ functions

bir(l) = p(2t — k), k=0,...,2" —1.

This should be clear (at least for the case j = 3) from the upper left hand corner in
Figure 5 which shows the 2/ = 8 functions ¢s; = ¢(2% — k), k = 0,...,7. Similarly, the

wavelet functions are denoted by
wir(l) =w(2t — k), k=0,...,2 —1.
We collect the scaling and wavelet functions at fixed resolution level j in the sets
O, ={p(t) : k=0,...,2 =1} and Q={wp(t): k=0,...,27 —1},

respectively.

As previously mentioned, ®; is a basis for V7. Applying equations (3) and (4) with
J = 3 to the functions ¢s4(t) = ¢(2°t — k), k = 0,...,7 yields the functions ¢op(t) =
A(2% — k), k=0,...,3 and wy(t) = w(2*t — k), k= 0,...,3. In detail,

$20
¢21 ¢31

P22 P32
P23 —9op®) P33

W30 ¢34
Wa1 9535
Wag ¢36
Wa3 ¢37

The results of this step are shown in the middle and last columns of the first row. The
final column in the first row shows the separation of the low pass output functions &,
from the high pass output functions Qy. Note that ®; U, is also a basis for V3. The low
pass output functions are further refined by once again applying equations (3) and (4),
this time with j = 2. In matrix notation,

¢10 ¢20
¢11 _ 21,-_[(4) ¢21
W10 ¢22
w11 ¢23
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Figure 5: The Haar wavelet basis.

This defines the four new functions ¢1x(¢) = (2t — k), k = 0,1, and wx(t) = w(2t — k),
k = 0,1 shown in the second row of Figure 5. The last column of this row shows the
separation of the low pass outputs ®; and high pass outputs ;. The set ®; U Q; U )y
is, again, a basis for V2. Finally, the third row shows the result of applying the dilation
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and wavelet equations with j = 1 to ¢14(¢t) = ¢(2t — k), kK = 0,1 to produce the scaling
function ¢ox(t) = ¢(t — k), K = 0 and the wavelet function wox(t) = w(t — k), k = 0.

More precisely,
[ Poo ] _ 5@ [ 10 ] ‘
Woo P11
The eight functions ¢gg, wog, Wi, W11, Wag, War, Wz, Wez In g U Qo U Qg U Oy form the
the Haar wavelet basis for V. In general, the Haar wavelet basis for V7 contains the 2/
functions in o U Qo U Qy U--- U Q4.

3 Some Examples

Suppose we have a function* z(¢) defined on [0,1) by

9 ifte0,1/4)
=] T iren/ag)
TN 3 i e [1/2,3/4)
5 ift e [3/4,1)
The function z(¢) is in the space V2. In terms of the basis @3, x(¢) has representation
9
. 7
3
)

A graphical representation of z(¢) in terms of the basis @, is

z(t) = 9 ><I ®20

+ 7 X b
+ 3 X P22
+ 5 x | P23
Applying the Haar sythesis filter bank H®) to z gives
8 (947)/2
4 (345)/2
_ g4, _
e= =1 (9-7)/2
—1 (3—-5)/2

4This example is taken directly from the paper “Wavelets for Computer Graphics: A
Primer (Part 1)” by Eric J. Stollnitz, Tony D. DeRose, and David Salesin in IFEE Com-
puter Graphics and Applications, 15(3):76-84, May 1995. It is also available online at
http://www.cs.washington.edu/research/graphics/projects/wavelets/article/.
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The elements of z are the coefficients of the representation of z(¢) in terms of the basis
q)l U Ql.

z(t) = 8 ><| b0

+ 4 x Iﬁbn
-|-1><| w10

+ -1 x

I w11
Applying the Haar analysis filter bank H® to the first two elements in z and leaving the
high pass outputs in place gives

B ol 2] | 8-4)2
y= Z3 - 1 1
Z4 —1 —1

The elements in y are the coefficients of the representation of z(¢) in terms of the Haar
wavelet basis @y U Qg U €.

o) = 6 x| | 400

—|—2><I Iwoo
—|—1><I W10
+ —1 x

I w11

The Haar wavelet transform of the signal t =[ 9 7 2 5 Jisy=[6 2 1 —1].

We can also compute the wavelet transform of by multiplying the system filter bank
matrix Hgys by z. Figure 2 shows Hyys when the Haar analysis filter bank is applied three
times. In the example in this section, we only need two applications and the input vector
has length n = 4. This results in the matrix

1 1 1 1

A0 I I R R

Hys= | BOLW | = i1 6 6
BW (2) (2) 11

2 2
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The system output is

just as we derived previously using the hierarchical construction.

In general, computing the representation of an n-dimensional vector in a different
basis via an n x n matrix-vector multiplication requires O(n?) arithmetic operations.
For computing the Haar wavelet transform, however, we can do better. The hierarchical
construction given at the beginning of this section requires only O(n) arithmetic opera-
tions. In fact, if applying the analysis filter bank to an n-sample signal requires at most
kn operations for some constant k (as it does for the Haar filter bank), then the total
number of operations to compute the wavelet transform is at most

n n
kn 4 ke + ke 4+ ko
ntko kot

210g2 n §

Essentially, the hierarchical construction implements a fast matrix-vector multiply by
taking advantage of the structure of Hgys.

Another informative example to consider is the Haar transform of a constant signal,
sayx =] ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢ ]. Computing the Haar transform of z is equivalent to
decomposing the function z(t) = ¢, t € [0,1) in terms of the basis ®¢ U Qg U Oy U Q5 for
V3. Applying the Haar analysis filter bank three times gives
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The output y contains only one nonzero coefficient, namely the coefficient for ¢go(t) =
¢(t). This transform result is obvious from the functional point of view since z(t) = c¢(t).
Discarding the zero coefficients in the output leaves a very compact representation of the
signal z (one which is eight times smaller than the original representation). In general,
the Haar basis provides a compact representation for parts of a signal with little variation.
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For the final example of this section, consider the Haar transform of the delta signal

|
el

—_

OO ONFO OO O OR- O ORI
Il
<

— Hyyr =

[ RN en B e B an B e B as B an Bl e B = R e B e R e Y e B e B )

Note that 11 of the 16 output coefficients are zero. This is not the case for the Fourier
transform of = which contains energy at all frequencies. The coefficients of the Haar
basis functions whose support interval (i.e. the interval over which the basis function is
nonzero) does not overlap with the support of the represented function are all zero. The
Haar basis allows one to make spacially localized (at some scale) changes to a function
by simply adjusting the coefficient(s) for the basis function(s) of the appropriate scale (j)
and location (k). This is very different from the Fourier representation in which a change
to a single basis function coefficient causes spacially global changes to the represented
function.

4 Orthogonal Filter Banks and Wavelet Bases

In Section 1, we showed how to view a filter bank as a transformation represented by a
square matrix H (assuming the input and output are the same size). We say that a filter
bank is orthogonal if its corresponding matrix is orthogonal. A matrix H is orthogonal
if its inverse is equal to its transpose: HTH = HH" = I. The set of column vectors
and the set of row vectors of an orthogonal matrix are both orthonormal sets of vectors
(it would make more sense to call such matrices orthonormal, but the historical term for
such matrices is orthogonal). With a suitable scaling of the input before low pass and
high pass filtering, the Haar filter bank is indeed orthogonal. For example, for n = 4 we
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have
i 11
g _pgo_ | _ |21 b
pw | 2|1~
1 -1
and
(HO)T ) = g (T = L
2

Therefore, the matrix v2H is orthogonal. A modified Haar filter bank which includes
a scaling by /2 before the low pass and high pass operations is orthogonal.

A basis of functions fo, fi,... (for some class of functions on the real line) is an
orthonormal basis iff

<f2'7fj>:/tzo_oofi(t)f]'(t) dt:{(l) iz;j '

It is very easy to write a function f in terms of an orthonormal basis. Taking the inner
product with f; with both sides of

f=>af;
gives
<[, fi> = <Za¢fnfj>
= ;Zai<fnfj>
<f,fi> = a;

Therefore, the coefficient a; in the decomposition of f is simply the inner product < f, f; >
of f with the jth basis function f;. In Section 2 we saw how a filter bank gives rise to
a wavelet basis via the dilation and wavelet equations (at least in the case of the Haar
filter bank). What conditions on the filters will guarantee an orthonormal wavelet basis?

It turns out that orthogonality of a filter bank implies orthonormality of the basis
generated by the filter bank though the dilation and wavelet equations. The proof of this
fact will be given in the next lecture. Since the normalized Haar filter bank is orthogonal,
this fact implies that the corresponding normalized Haar wavelet basis is orthonormal.
The wavelet basis given in Section 2 is not normalized, but its orthogonality can be
verified directly from the equations for its scaling function ¢(¢) and wavelet function

w(t).



