Image Segmentation Using Minimum st Cut

Tomas Werner

Center for Machine Perception
Czech Technical University
Prague
Minimum st Cut

- Undirected graph (V, E) with nodes $v \in V$ and edges $vv' \in E \subseteq (V)_2$
- Every edge $vv' \in E$ has a non-negative weight $w_{vv'} \geq 0$
- Cut (S, T) is a partition of V into S and T such that $V = S \cup T$ and $S \cap T = \emptyset$
- Weight of cut (S, T) is $W(S, T) = \sum_{v \in S, v' \in T} w_{vv'}$

- Given two special nodes s and t, any cut (S, T) such that $s \in S, t \in T$ is an st cut
- **Minimum st cut problem:** Find st cut (S, T) that minimizes $W(S, T)$
 - There are fast algorithms for computing minimum st cut in large sparse graphs!
 - (They solve the related task, maximum flow.)
Image segmentation: Label each pixel either as background or as foreground

Formalize this task as follows:

- Model the image as grid graph (V, E)
 - Pixels are nodes $v \in V$
 - Pairs of neighboring pixels are edges $vv' \in E$
- $x_v = \text{label of pixel } v$; $x_v \in \{F, B\}$ (F is foreground, B is background)
- $f_v = \text{intensity/color of pixel } v$; all intensities form vector $f = (f_v \mid v \in V)$
- Segmentation: Compute the ‘best’ labeling $x = (x_v \mid v \in V)$ from intensities f
To be a good segmentation, a labeling x must satisfy two requirements:

Agreement with the input image intensities:
- Defined for each pixel independently
- $p(B \mid f_v) =$ probability that pixel with intensity f_v belongs to background
- $p(F \mid f_v) =$ probability that pixel with intensity f_v belongs to foreground

Contiguity of background and foreground:
- It is more likely that two neighboring pixels belong both to background or both to foreground that one to background and one to foreground
- Probability defined for each pixel pair independently
- $p(x_v, x_{v'}) = \begin{cases} a & \text{if } x_v = x_{v'} \\ b & \text{if } x_v \neq x_{v'} \end{cases}$ where $a > b$

Best labeling x must maximize
$$\prod_{v \in V} p(x_v \mid f_v) \prod_{vv' \in E} p(x_v, x_{v'})$$

Taking negative logarithm:
Minimize
$$F(x \mid f) = \sum_{v \in V} g(x_v \mid f_v) + \sum_{vv' \in E} g(x_v, x_{v'})$$

$F(x \mid f) =$ ‘image energy’
Minimizing Image Energy $F(x | f)$ Using Minimum st Cut

$g(B | f_v)$

$g(F | f_v)$

s (foreground)

t (background)
Max-sum Labeling Problem

Tomas Werner

Center for Machine Perception
Czech Technical University
Prague
Pixel v has label $x_v \in X$

- node qualities $g_v(x) \in [-\infty, \infty)$, edge qualities $g_{vv'}(x, x') \in [-\infty, \infty)$

Quality function:

$$F(x \mid g) = \sum_{v \in V} g_v(x_v) + \sum_{\{v, v'\} \in E} g_{vv'}(x_v, x_{v'})$$

Find a labelling with maximal quality:

$$\max_{x \in X^V} F(x \mid g)$$
Max-sum problems g and g' are equivalent iff they have the same quality for all labellings.

Equivalent problems are denoted by $g \sim g'$

Elementary equivalent transformation:
Upper bound on quality:

- $F(x \mid g) \leq U(g)$ for any g and x
- $F(x \mid g) = U(g)$ if and only if x is composed of maximal nodes and edges
Dividing max-sum problem into two steps

Minimize energy
\[\min_{g' \sim g} U(g') \]

Is there a labelling on maximal nodes and edges?
(solve a CSP)

- yes: problem solved
- no: problem unsolved
Dividing max-sum problem into two steps

1. Minimize $U(g)$ by equivalent transformations (LP)

2. Try to find a configuration x composed of maximal nodes and edges (CSP, CLP):
 - if such a configuration exists, we have an exact solution
 - if not, we have only a strict upper bound
Original values of $g_v(x), g_{uv'}(x, x')$:
Solving the dual by a general LP solver

Optimal values of $g_v(x), g_{vv'}(x, x')$:
Solving the dual by a general LP solver

Only maximal nodes and edges shown. Any optimal labelling has to pass through them.
Max-sum diffusion [Koval-Kovalevsky-70's] finds an arc consistent equivalent problem with a lower height.

- **Pencil equalization** on pencil \((v, v', x)\) is the equivalent transformation that sets

\[
g_v(x) = \max_{x'} g_{vv'}(x, x')
\]

- Pencil equalization (on all labels of one pixel) decreases \(U(g)\)

- **Algorithm**: Repeat pencil equalization on all pencils until convergence.

- **Conjecture**:
 - Diffusion always converges (in both value \(U(g)\) and argument \(g\)!).
 - On convergence, all pencils \((v, v', x)\) satisfy \(g_v(x) = \max_{x'} g_{vv'}(x, x')\).
\[g_v(x) = g_{vv'}(x, x') < g_{v'}(x') \iff \text{line from node (v, x) aiming but not reaching (v', x')} \]

\[g_v(x) = g_{vv'}(x, x') = g_{v'}(x') \iff \text{line joining nodes (v, x) and (v', x')} \]
Syntactic image analysis: ‘Letters II’

\[
F(x \mid g) = \sum_{v \in V} g_v(x_v) + \sum_{\{v,v'\} \in E} g_{vv'}(x_v, x_{v'})
\]

- **Data term**: accordance with the input signal
- **Prior term**: assigns quality (log-likelihood) to each labelling, assuming no signal
Given a total order \leq on X.
Function $g_{vv'}(\bullet, \bullet)$ is supermodular iff

$$x \leq x', y \leq y' \implies g_{vv'}(x, x') + g_{vv'}(y, y') \geq g_{vv'}(x, y') + g_{vv'}(y, x')$$

Theorem: Maximal nodes and edges are arc consistent \iff they form a labelling.

Proof:
- Supermodularity is preserved under equivalent transformations
- If edges (x, y') and (y, x') are maximal, so are edges (x, x') and (y, y')
- On arc consistency, the lowest nodes form a labelling.

\bullet Supermodular max-sum problems are reducible to max-flow/min-cut.