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Minimum st Cut 2

� Undirected graph (V,E) with nodes v ∈ V and edges vv′ ∈ E ⊆
(
V
2

)
� Every edge vv′ ∈ E has a non-negative weight wvv′ ≥ 0

� Cut (S, T ) is a partition of V into S and T such that V = S ∪ T and S ∩ T = ∅

� Weight of cut (S, T ) is W (S, T ) =
∑

v∈S, v′∈T

wvv′

� Given two special nodes s and t, any cut (S, T ) such that s ∈ S, t ∈ T is an st cut

� Minimum st cut problem: Find st cut (S, T ) that minimizes W (S, T )

• There are fast algorithms for computing minimum st cut in large sparse graphs!

• (They solve the related task, maximum flow.)



Image Segmentation 3

Image segmentation: Label each pixel either as background or as foreground

Formalize this task as follows:

� Model the image as grid graph (V,E)

• Pixels are nodes v ∈ V

• Pairs of neighboring pixels are edges vv′ ∈ E

� xv = label of pixel v ; xv ∈ {F,B} (F is foreground, B is background)

� fv = intensity/color of pixel v ; all intensities form vector f = (fv | v ∈ V )

� Segmentation: Compute the ‘best’ labeling x = (xv | v ∈ V ) from intensities f



What is the ‘Best’ Labeling? 4

To be a good segmentation, a labeling x must sastisfy two requirements:

� Agreement with the input image intensities:

• Defined for each pixel independently

• p(B | fv) = probability that pixel with intensity fv belongs to background

• p(F | fv) = probability that pixel with intensity fv belongs to foreground

� Contiguity of background and foreground:

• It is more likely that two neighboring pixels belong both to background or both to
foreground that one to background and one to foreground

• Probability defined for each pixel pair independently

• p(xv, xv′) =
{

a if xv = xv′

b if xv 6= xv′
where a > b

� Best labeling x must maximize
∏
v∈V

p(xv | fv)
∏

vv′∈E

p(xv, xv′)

� Taking negative logarithm: Minimize F (x | f) =
∑
v∈V

g(xv | fv) +
∑

vv′∈E

g(xv, xv′)

� F (x | f) = ‘image energy’



Minimizing Image Energy F (x | f) Using Minimum st Cut 5
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Max-sum Labeling Problem [Schlesinger-76] 7

� Pixel v has label xv ∈ X

� node qualities gv(x) ∈ [−∞,∞), edge qualities gvv′(x, x′) ∈ [−∞,∞)

Quality function: F (x |g) =
∑
v∈V

gv(xv) +
∑

{v,v′}∈E

gvv′(xv, xv′)

Find a labelling with maximal quality: max
x∈XV

F (x |g)



Equivalent max-sum problems 8

� Max-sum problems g and g′ are equivalent iff they have the same quality for all
labellings.

� Equivalent problems are denoted by g ∼ g′

� Elementary equivalent transformation:

x

+ϕvv
′(x)

v v
′

−ϕvv
′(x)



Upper bound 9

weight of configuration x upper bound

F (x |g) =
∑
v∈V

gc(xv) +
∑

{v,v′}∈E

gvv′(xv, xv′) ≤ U(g) =
∑
v∈V

max
x∈X

gv(x) +
∑

{v,v′}∈E

max
x,x′∈X

gvv′(x, x′)

Upper bound on quality:

� F (x |g) ≤ U(g) for any g and x

� F (x |g) = U(g) if and only if x is composed of maximal nodes and edges



Dividing max-sum problem into two steps 10

min
g′∼g

U(g′)

Minimize energy maximal nodes and edges?
Is there a labelling on

no

yes

problem unsolved

problem solved
maximal
nodes and edges (solve a CSP)



Dividing max-sum problem into two steps 11

1. Minimize U(g) by equivalent transformations (LP)

2. Try to find a configuration x
composed of maximal nodes and edges (CSP, CLP):

� if such a configuration exists, we have an exact solution

� if not, we have only a strict upper bound



Solving the dual by a general LP solver 12

Original values of gv(x), gvv′(x, x′):



Solving the dual by a general LP solver 13

Optimal values of gv(x), gvv′(x, x′):



Solving the dual by a general LP solver 14

Only maximal nodes and edges shown. Any optimal labelling has to pass through them.



Max-sum diffusion 15

Max-sum diffusion [Koval-Kovalevsky-70’s] finds an arc consistent equivalent problem with a
lower height.

� Pencil equalization on pencil (v, v′, x) is the equivalent transformation that sets

gv(x) = max
x′

gvv′(x, x′)

x

v v
′

� Pencil equalization (on all labels of one pixel) decreases U(g)

� Algorithm: Repeat pencil equalization on all pencils until convergence.

� Conjecture:

• Diffusion always converges (in both value U(g) and argument g!).

• On convergence, all pencils (v, v′, x) satisfy gv(x) = max
x′

gvv′(x, x′).



Max-sum diffusion 16

gv(x) = gvv′(x, x′) < gv′(x′) ⇐⇒ line from node (v, x) aiming but not reaching (v′, x′)
gv(x) = gvv′(x, x′) = gv′(x′) ⇐⇒ line joining nodes (v, x) and (v′, x′)



Syntactic image analysis: ‘Letters Π’ 17

F (x |g) =
∑
v∈V

gv(xv)︸ ︷︷ ︸
data term

+
∑

{v,v′}∈E

gvv′(xv, x
′
v)︸ ︷︷ ︸

prior term

� Data term: accordance with the input signal

� Prior term: assigns quality (log-likelihood) to each labelling, assuming no signal
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Supermodularity 18

Given a total order ≤ on X.
Function gvv′(•, •) is supermodular iff

x ≤ x′, y ≤ y′ =⇒
gvv′(x, x′) + gvv′(y, y′) ≥ gvv′(x, y′) + gvv′(y, x′)

x

x
′

y
′y

v v
′

Theorem: Maximal nodes and edges are arc consistent ⇐⇒ they form a labelling.

Proof:

� Supermodularity is preserved
under equivalent transformations

� If edges (x, y′) and (y, x′) are maximal,
so are edges (x, x′) and (y, y′)

� On arc consistency,
the lowest nodes form a labelling.

� Supermodular max-sum problems are reducible to max-flow/min-cut .


