## Image Segmentation Using Minimum st Cut

Tomas Werner



Center for Machine Perception
Czech Technical University
Prague

- Undirected graph $(V, E)$ with nodes $v \in V$ and edges $v v^{\prime} \in E \subseteq\binom{V}{2}$
- Every edge $v v^{\prime} \in E$ has a non-negative weight $w_{v v^{\prime}} \geq 0$
- Cut $(S, T)$ is a partition of $V$ into $S$ and $T$ such that $V=S \cup T$ and $S \cap T=\emptyset$
- Weight of cut $(S, T)$ is $W(S, T)=\sum_{v \in S, v^{\prime} \in T} w_{v v^{\prime}}$

- Given two special nodes $s$ and $t$, any cut $(S, T)$ such that $s \in S, t \in T$ is an st cut
- Minimum st cut problem: Find st cut $(S, T)$ that minimizes $W(S, T)$
- There are fast algorithms for computing minimum st cut in large sparse graphs!
- (They solve the related task, maximum flow.)

Image segmentation: Label each pixel either as background or as foreground Formalize this task as follows:

- Model the image as grid graph $(V, E)$
- Pixels are nodes $v \in V$
- Pairs of neighboring pixels are edges $v v^{\prime} \in E$
- $x_{v}=$ label of pixel $v ; x_{v} \in\{\mathrm{~F}, \mathrm{~B}\}$ ( F is foreground, B is background)

- $f_{v}=$ intensity/color of pixel $v$; all intensities form vector $\mathbf{f}=\left(f_{v} \mid v \in V\right)$
- Segmentation: Compute the 'best' labeling $\mathbf{x}=\left(x_{v} \mid v \in V\right)$ from intensities $\mathbf{f}$


## What is the 'Best' Labeling?

To be a good segmentation, a labeling $\mathbf{x}$ must sastisfy two requirements:

- Agreement with the input image intensities:
- Defined for each pixel independently
- $p\left(\mathrm{~B} \mid f_{v}\right)=$ probability that pixel with intensity $f_{v}$ belongs to background
- $p\left(\mathrm{~F} \mid f_{v}\right)=$ probability that pixel with intensity $f_{v}$ belongs to foreground
- Contiguity of background and foreground:
- It is more likely that two neighboring pixels belong both to background or both to foreground that one to background and one to foreground
- Probability defined for each pixel pair independently
- $p\left(x_{v}, x_{v^{\prime}}\right)=\left\{\begin{array}{ll}a & \text { if } x_{v}=x_{v^{\prime}} \\ b & \text { if } x_{v} \neq x_{v^{\prime}}\end{array} \quad\right.$ where $a>b$
- Best labeling $\mathbf{x}$ must maximize $\prod_{v \in V} p\left(x_{v} \mid f_{v}\right) \prod_{v v^{\prime} \in E} p\left(x_{v}, x_{v^{\prime}}\right)$
- Taking negative logarithm: Minimize $\quad F(\mathbf{x} \mid \mathbf{f})=\sum_{v \in V} g\left(x_{v} \mid f_{v}\right)+\sum_{v v^{\prime} \in E} g\left(x_{v}, x_{v^{\prime}}\right)$
$\Rightarrow F(\mathbf{x} \mid \mathbf{f})=$ 'image energy'

Minimizing Image Energy $F(\mathbf{x} \mid \mathbf{f})$ Using Minimum st Cut


# Max-sum Labeling Problem 

Tomas Werner



Center for Machine Perception
Czech Technical University
Prague

- Pixel $v$ has label $x_{v} \in X$
- node qualities $g_{v}(x) \in[-\infty, \infty)$, edge qualities $g_{v v^{\prime}}\left(x, x^{\prime}\right) \in[-\infty, \infty)$


Quality function: $\quad F(\mathbf{x} \mid \mathbf{g})=\sum_{v \in V} g_{v}\left(x_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in E} g_{v v^{\prime}}\left(x_{v}, x_{v^{\prime}}\right)$
Find a labelling with maximal quality: $\max _{\mathbf{x} \in X^{V}} F(\mathbf{x} \mid \mathbf{g})$

- Max-sum problems $\mathbf{g}$ and $\mathbf{g}^{\prime}$ are equivalent iff they have the same quality for all labellings.
- Equivalent problems are denoted by $\mathbf{g} \sim \mathbf{g}^{\prime}$
- Elementary equivalent transformation:



## weight of configuration x

upper bound
$F(\mathbf{x} \mid \mathbf{g})=\sum_{v \in V} g_{c}\left(x_{v}\right)+\sum_{\left\{v, v^{\prime}\right\} \in E} g_{v v^{\prime}}\left(x_{v}, x_{v^{\prime}}\right) \leq U(\mathbf{g})=\sum_{v \in V} \max _{x \in X} g_{v}(x)+\sum_{\left\{v, v^{\prime}\right\} \in E} \max _{x} x^{\prime} \in X \quad g_{v v^{\prime}}\left(x, x^{\prime}\right)$


Upper bound on quality:

- $F(\mathbf{x} \mid \mathbf{g}) \leq U(\mathbf{g})$ for any $\mathbf{g}$ and $\mathbf{x}$
- $F(\mathbf{x} \mid \mathbf{g})=U(\mathbf{g})$ if and only if $\mathbf{x}$ is composed of maximal nodes and edges


1. Minimize $U(\mathbf{g})$ by equivalent transformations (LP)

2. Try to find a configuration $\mathbf{x}$ composed of maximal nodes and edges (CSP, CLP):

- if such a configuration exists, we have an exact solution
- if not, we have only a strict upper bound


Original values of $g_{v}(x), g_{v v^{\prime}}\left(x, x^{\prime}\right)$ :


Optimal values of $g_{v}(x), g_{v v^{\prime}}\left(x, x^{\prime}\right)$ :


Only maximal nodes and edges shown. Any optimal labelling has to pass through them.


Max-sum diffusion [Koval-Kovalevsky-70's] finds an arc consistent equivalent problem with a lower height.

- Pencil equalization on pencil $\left(v, v^{\prime}, x\right)$ is the equivalent transformation that sets

$$
g_{v}(x)=\max _{x^{\prime}} g_{v v^{\prime}}\left(x, x^{\prime}\right)
$$



- Pencil equalization (on all labels of one pixel) decreases $U(\mathbf{g})$
- Algorithm: Repeat pencil equalization on all pencils until convergence.
- Conjecture:
- Diffusion always converges (in both value $U(\mathbf{g})$ and argument $\mathbf{g !}$ ).
- On convergence, all pencils $\left(v, v^{\prime}, x\right)$ satisfy $g_{v}(x)=\max _{x^{\prime}} g_{v v^{\prime}}\left(x, x^{\prime}\right)$.


## Max-sum diffusion

$g_{v}(x)=g_{v v^{\prime}}\left(x, x^{\prime}\right)<g_{v^{\prime}}\left(x^{\prime}\right) \Longleftrightarrow$ line from node $(v, x)$ aiming but not reaching $\left(v^{\prime}, x^{\prime}\right)$ $g_{v}(x)=g_{v v^{\prime}}\left(x, x^{\prime}\right)=g_{v^{\prime}}\left(x^{\prime}\right) \Longleftrightarrow$ line joining nodes $(v, x)$ and $\left(v^{\prime}, x^{\prime}\right)$


$$
F(\mathbf{x} \mid \mathbf{g})=\underbrace{\sum_{v \in V} g_{v}\left(x_{v}\right)}_{\text {data term }}+\underbrace{\sum_{\left\{v, v^{\prime}\right\} \in E} g_{v v^{\prime}}\left(x_{v}, x_{v}^{\prime}\right)}_{\text {prior term }}
$$

- Data term: accordance with the input signal
- Prior term: assigns quality (log-likelihood) to each labelling, assuming no signal


Given a total order $\leq$ on $X$.
Function $g_{v v^{\prime}}(\bullet, \bullet)$ is supermodular iff
$x \leq x^{\prime}, y \leq y^{\prime} \Longrightarrow$
$g_{v v^{\prime}}\left(x, x^{\prime}\right)+g_{v v^{\prime}}\left(y, y^{\prime}\right) \geq g_{v v^{\prime}}\left(x, y^{\prime}\right)+g_{v v^{\prime}}\left(y, x^{\prime}\right)$


Theorem: Maximal nodes and edges are arc consistent $\Longleftrightarrow$ they form a labelling.
Proof:

- Supermodularity is preserved under equivalent transformations
- If edges $\left(x, y^{\prime}\right)$ and ( $\left.y, x^{\prime}\right)$ are maximal, so are edges $\left(x, x^{\prime}\right)$ and $\left(y, y^{\prime}\right)$
- On arc consistency, the lowest nodes form a labelling.

- Supermodular max-sum problems are reducible to max-flow/min-cut

