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Minimum st Cut

Undirected graph (V, E') with nodes v € V' and edges vv’ € E C (‘2/)

Every edge vv’ € E has a non-negative weight w,,, > 0

Cut (S,T) is a partition of V into S and T such that V. = SUT and SNT =)

Weight of cut (S,T) is W(S,T)= >  wyy

O

Given two special nodes s and ¢, any cut (S,T) such that s € S,t € T is an st cut
Minimum st cut problem: Find st cut (5,7 that minimizes W (S, T))
There are fast algorithms for computing minimum st cut in large sparse graphs!

(They solve the related task, maximum flow.)



Image Segmentation

Image segmentation: Label each pixel either as background or as foreground

Formalize this task as follows:
Model the image as grid graph (V, F)
Pixels are nodes v € V
Pairs of neighboring pixels are edges vv' € E

x, = label of pixel v ; =z, € {F,B} (F is foreground, B is background)
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f» = intensity /color of pixel v ; all intensities form vector f = (f, | v € V)

Segmentation: Compute the ‘best’ labeling x = (z, | v € V') from intensities f



What is the ‘Best’ Labeling?

To be a good segmentation, a labeling x must sastisfy two requirements:
Agreement with the input image intensities:
Defined for each pixel independently
p(B| f,) = probability that pixel with intensity f, belongs to background
p(F | f,) = probability that pixel with intensity f, belongs to foreground
Contiguity of background and foreground:

It is more likely that two neighboring pixels belong both to background or both to
foreground that one to background and one to foreground

Probability defined for each pixel pair independently

a ifx,=x,
P(Ty, Tyr) = { b i wy £ 1 where a > b

Best labeling x must maximize H p(xy | fo) H P(Ty, Toyr)

veV vw'eE
Taking negative logarithm: Minimize F(x|f) = Z g(xy | fo) + Z G(Ty, T,)
veV vw/ek

F(x|f) = ‘image energy’
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Max-sum Labeling Problem [Schiesinger-76]
¢ Pixel v has label z, € X

¢ node qualities g,(z) € [—00,>0), edge qualities g,/ (z,z") € [—00, >0)
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Quality function: F(x|g) = ng Ty) + Z G (Tyy Tyr)
veV {v,w'}eE

Find a labelling with maximal quality: max F(x|g)
xeX



Equivalent max-sum problems

Max-sum problems g and g’ are equivalent iff they have the same quality for all
labellings.

Equivalent problems are denoted by g ~ g’

Elementary equivalent transformation:
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Upper bound 9

weight of configuration x upper bound

F(x|g) =) ge(®) + Y goo(tv,zy) < Ulg) = Z{Bnee}%cgv(x)Jr mMax gu, (T, )

veV {v,v'}eE veV {fu,’u’}ExEx €

Upper bound on quality:
¢ F(x|g) <U(g) for any g and x
¢ F(x|g) =U(g) if and only if x is composed of maximal nodes and edges



Minimize energy

min U(g)
g'~g

Dividing max-sum problem into two steps

maximal
nodes and edges

Is there a labelling on
maximal nodes and edges?

(solve a CSP)

yes

problem solved

= problem unsolved
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Dividing max-sum problem into two steps 11

1. Minimize U(g) by equivalent transformations (LP)

2. Try to find a configuration x
composed of maximal nodes and edges (CSP, CLP):

¢ if such a configuration exists, we have an exact solution

¢ if not, we have only a strict upper bound

HH
-
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| LP solver

Solving the dual by a genera
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Solving the dual by a general LP solver

(x,2"):
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Solving the dual by a general LP solver

Only maximal nodes and edges shown. Any optimal labelling has to pass through them.
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Max-sum diffusion 15

Max-sum diffusion [Koval-Kovalevsky-70's] finds an arc consistent equivalent problem with a
lower height.

¢ Pencil equalization on pencil (v,v’, x) is the equivalent transformation that sets

gv(w) — Hax gvv’(aja x,)

¢ Pencil equalization (on all labels of one pixel) decreases U(g)
¢ Algorithm: Repeat pencil equalization on all pencils until convergence.
¢ Conjecture:

e Diffusion always converges (in both value U(g) and argument g!).

e On convergence, all pencils (v, v, ) satisfy g,(z) = ma}xgvv/(a@,x’).
x



Max-sum diffusion

< gy(2") <= line from node (v, x) aiming but not reaching (v’ x')

= g,/(z') <= line joining nodes (v, z) and (v', ')
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Syntactic image analysis: ‘Letters I’

X|g ng CI;.’U _|_ Z g’U’U x’U)

veV , {v'}eE

~~

data term prior term
¢ Data term: accordance with the input signal

@ Prior term: assigns quality (log-likelihood) to each labelling, assuming no signal
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Supermodularity 18

Given a total order < on X.
Function g,,/(e,®) is supermodular iff

r<zy<y =
gvv’(ma :C/) =+ gvv’(y7 y/) > gvv’(ajv y/) + gvv’(ya x/)

Theorem: Maximal nodes and edges are arc consistent <= they form a labelling.

Proof:

¢ Supermodularity is preserved ¢
under equivalent transformations

¢ If edges (z,y') and (y,x’) are maximal,
so are edges (z,z') and (y,y’)

¢ On arc consistency,
the lowest nodes form a labelling.

¢ Supermodular max-sum problems are reducible to max-flow/min-cut .



