Image Segmentation Using Minimum $st\ {\rm Cut}$

Tomas Werner

Center for Machine Perception Czech Technical University Prague • Undirected graph (V, E) with nodes $v \in V$ and edges $vv' \in E \subseteq \binom{V}{2}$

• Every edge $vv' \in E$ has a non-negative weight $w_{vv'} \ge 0$

- Cut (S,T) is a partition of V into S and T such that $V = S \cup T$ and $S \cap T = \emptyset$
- Weight of cut (S,T) is $W(S,T) = \sum_{v \in S, v' \in T} w_{vv'}$

• Given two special nodes s and t, any cut (S,T) such that $s \in S, t \in T$ is an st cut

Minimum st cut problem: Find st cut (S,T) that minimizes W(S,T)

- There are fast algorithms for computing minimum *st* cut in large sparse graphs!
- (They solve the related task, maximum flow.)

Image segmentation: Label each pixel either as background or as foreground

Formalize this task as follows:

- Model the image as grid graph (V, E)
 - Pixels are nodes $v \in V$
 - Pairs of neighboring pixels are edges $vv' \in E$

• $x_v = \mathsf{label} \mathsf{ of pixel } v$; $x_v \in \{\mathsf{F},\mathsf{B}\}$ (F is foreground, B is background)

• $f_v = \text{intensity/color of pixel } v$; all intensities form vector $\mathbf{f} = (f_v \mid v \in V)$

• Segmentation: Compute the 'best' labeling $\mathbf{x} = (x_v \mid v \in V)$ from intensities f

To be a good segmentation, a labeling \mathbf{x} must sastisfy two requirements:

Agreement with the input image intensities:

- Defined for each pixel independently
- $p(B | f_v) = probability that pixel with intensity <math>f_v$ belongs to background
- $p(F | f_v) = probability$ that pixel with intensity f_v belongs to foreground

Contiguity of background and foreground:

- It is more likely that two neighboring pixels belong both to background or both to foreground that one to background and one to foreground
- Probability defined for each pixel pair independently

•
$$p(x_v, x_{v'}) = \begin{cases} a & \text{if } x_v = x_{v'} \\ b & \text{if } x_v \neq x_{v'} \end{cases}$$
 where $a > b$

Best labeling x must maximize
$$\prod_{v \in V} p(x_v \mid f_v) \prod_{vv' \in E} p(x_v, x_{v'})$$

Taking negative logarithm: Mini

mize
$$F(\mathbf{x} \mid \mathbf{f}) = \sum_{v \in V} g(x_v \mid f_v) + \sum_{vv' \in E} g(x_v, x_{v'})$$

•
$$F(\mathbf{x} \,|\, \mathbf{f}) =$$
 'image energy'

Minimizing Image Energy $F(\mathbf{x} | \mathbf{f})$ Using Minimum st Cut

Max-sum Labeling Problem

Tomas Werner

Center for Machine Perception Czech Technical University Prague

- Pixel v has label $x_v \in X$
- node qualities $g_v(x) \in [-\infty,\infty)$, edge qualities $g_{vv'}(x,x') \in [-\infty,\infty)$

- Max-sum problems g and g' are equivalent iff they have the same quality for all labellings.
- iglet Equivalent problems are denoted by ${f g}\sim {f g}'$
- Elementary equivalent transformation:

Upper bound

weight of configuration \mathbf{x}

Upper bound on quality:

- $F(\mathbf{x} | \mathbf{g}) \leq U(\mathbf{g})$ for any \mathbf{g} and \mathbf{x}
- $F(\mathbf{x} | \mathbf{g}) = U(\mathbf{g})$ if and only if \mathbf{x} is composed of maximal nodes and edges

upper bound

Dividing max-sum problem into two steps

1. Minimize $U(\mathbf{g})$ by equivalent transformations (LP)

2. Try to find a configuration \mathbf{x} composed of maximal nodes and edges (CSP, CLP):

- if such a configuration exists, we have an exact solution
- if not, we have only a strict upper bound

Original values of $g_v(x), g_{vv'}(x, x')$:

Optimal values of $g_v(x), g_{vv'}(x, x')$:

Only maximal nodes and edges shown. Any optimal labelling has to pass through them.

Max-sum diffusion [Koval-Kovalevsky-70's] finds an arc consistent equivalent problem with a lower height.

 \blacklozenge Pencil equalization on pencil (v,v^\prime,x) is the equivalent transformation that sets

- Algorithm: Repeat pencil equalization on all pencils until convergence.
- Conjecture:
 - Diffusion always converges (in both value $U(\mathbf{g})$ and argument \mathbf{g} !).
 - On convergence, all pencils (v, v', x) satisfy $g_v(x) = \max_{x'} g_{vv'}(x, x')$.

Max-sum diffusion

Syntactic image analysis: 'Letters Π '

Data term: accordance with the input signal

Prior term: assigns quality (log-likelihood) to each labelling, assuming no signal

Supermodularity

Given a total order \leq on X. Function $g_{vv'}(\bullet, \bullet)$ is supermodular iff $x \leq x', y \leq y' \implies$

 $g_{vv'}(x,x') + g_{vv'}(y,y') \ge g_{vv'}(x,y') + g_{vv'}(y,x')$

Theorem: Maximal nodes and edges are arc consistent \iff they form a labelling.

Proof:

- Supermodularity is preserved under equivalent transformations
- If edges (x, y') and (y, x') are maximal, so are edges (x, x') and (y, y')
- On arc consistency, the lowest nodes form a labelling.

v