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Point distribution models

(Cootes et al., 1992)

» Shape description techniques
» A family of shapes = mean + eigenvectors (eigenshapes)

» Shapes described by points



Point distribution model procedure

Input:
» M training samples

» N points each
P i i i i iNT
X' = (X1, Y15 %0, Y25 -+ s XNs YN)

Procedure:
» Rigidly align all shapes
» Calculate the mean and the covariance matrix

» PCA (eigen analysis) — find principal modes



Rigid alignment

before alignment after alignment



Aligning two shapes

x(1)_(() (1 (1) (1) (1) (1))

a}/1 7X2 7y2 9. XN >yN
2 2 2
x?) = (2, 12 4D 2D )T

Find a transformation (rotation, translation, scaling) of x(2)

ty x,-(2)s cosf — yl-(z)s sin 6 ty
Tl T @ 2 T
y x;"’ssinf) + y;”’scos 6 y

such that a sum of squared distances is minimized

+ H BER
ty yl_(l)

, @
T(x®)=sR|™ i)
Y

i

2

cosf —sinf xi(z)
°lsind cosh yl_(z)



Aligning two shapes
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> Inner minimization wrt s, t,, t,
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Aligning two shapes
> Inner minimization wrt s, t,, t,
OE o OE o OE_
Oty ' ot ’ Js
leads to linear equations:
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where g(a, b,0) = asinf + bcos 6.



Aligning two shapes

> Inner minimization wrt s, t,, t,

» Outer minimization wrt 0
One dimensional functional minimization, e.g. Brent's routine
or golden section search.



Aligning all training shapes

Before alignment After alignment



Aligning all training shapes

» Align each x' with x!, for i =2,3,..., M, obtaining
x5, %2,%3, ..., %M.
» Calculate the mean X = [)'(1,)71,22,)72, e ,)'(N,)_/N} of the

aligned shapes {x!,%2,%3,...,%M}.

19 1 Y
S N RN
1= =



Aligning all training shapes

» Align each x' with x!, for i = 2,3,..., M, obtaining

1 g2 &3 oM
{x*, %5, %>,...,x"}.
» Calculate the mean X = [)?1,)71,5(2,)72, e ,S(N,}_/N] of the
aligned shapes {x!, %2, %3, ..., %M}

» Align the mean shape X with x!. (Necessary for convergence.)



Aligning all training shapes

» Align each x' with x!, for i = 2,3,..., M, obtaining

1 g2 &3 oM
{x*, %5, %>,...,x"}.
» Calculate the mean X = [)?1,)71,5(2,)72, e ,S(N,}_/N] of the
aligned shapes {x!, %2, %3, ..., %M}

» Align the mean shape X with x!. (Necessary for convergence.)

3

> Align %2,%3,...,%M to the adjusted mean.



Aligning all training shapes

> Align each x’ with x!, for i = 2,3,..., M, obtaining

(xL 82,53, &MY},
» Calculate the mean )‘( = [)'(1,)71,22,)72, ..., XN, Yn] of the
aligned shapes {x!,%x2,%3,...,%M}.

» Align the mean shape X W|th xt. (Necessary for convergence.)

> Align %2,%3,...,

%M to the adjusted mean.
» Repeat until convergence.

We have obtained M (mutually aligned) boundaries X!, %2, ..., %"

and the mean X.



Deriving the model

1 g2

We have M boundaries %1, %2,...,%™ and the mean x.

» Variation from the mean for each training shape
ox' =% —x%.

» Covariance matrix S (2N x 2N)



Deriving the model

1 g2

We have M boundaries %1, %2,...,%™ and the mean x.
» Variation from the mean for each training shape
ox' =% —x%.

» Covariance matrix S (2N x 2N)

» Principal component analysis



Principal component analysis

» Eigen decomposition

Spi = Aipi

p— [p1p2p3 . p2N]

We know eigenvalues A; are real because S is symmetric,
positive definite. Eigenvectors (principal components) p; are
orthogonal, so P is a basis and any vector x can be
represented as

x=X+Pb



Principal component analysis
» Eigen decomposition
Spi; = A\ipi
p— [p1p2p3 o p2N]
We know eigenvalues A; are real because S is symmetric,
positive definite. Eigenvectors (principal components) p; are

orthogonal, so P is a basis and any vector x can be
represented as

x=X+Pb
» Order eigenvectors p; and eigenvalues \; such that

A1 > X2 > A3 > ... An. Most changes are then described by
the first few eigenvectors.



Principal component analysis
» Eigen decomposition

Spi = \ipi

P = [p'p%p*...p?"]

x=x+Pb

» Order eigenvectors p; and eigenvalues \; such that
A1 > A2 > A3 > ... Axn. Most changes are then described by
the first few eigenvectors.

» Consider only K largest eigenvalues.

Approximation x =~ X+ Pk by

with Py = [p'p®p?...p~]

be = [by, bo, ..., bi] |

Choose the smallest K, such that S5 A > a STV A



Point distribution model

» Input: M non-aligned boundaries x,x2,...,x".

» Output: mean X and reduced eigvector matrix Py



Point distribution model

» Input: M non-aligned boundaries x,x2,...,x".

» Output: mean X and reduced eigvector matrix Py
» New shape generation:
X=X+ Pxbg

For “well-behaved’ shapes
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After alignment, mean shape

Before alignment

PDM example



PDM example

First mode Second mode

The mean shape is in red, the shape corresponding to —3v/X in
blue and the shape corresponding to +3v/\ in green.



Active shape models

PDM Image to fit

Fit a learned point distribution model (PDM) to a given image.



Pose and shape parameters

» Point distribution model (PDM) consists of

> mean p
> eigenvectors P



Pose and shape parameters

» Point distribution model (PDM) consists of
> mean p
> eigenvectors P

» Fitted model given by:

> pose parameters: 0, s, ty, t,
» shape parameters: b

p=Pb+p
p=[p1 B2 P
pP=[% 1 % o ... Xn I

X; _ cos —sinf| | X n ty
yil T |sin@ —cosf| |V t,

PZ[Xl yr X2 y2 ... Xn YN]



Fitting

P=Tso,.(P) =5Qop+ry:, where p=Pb+p

» Calculate an edge map of the image
» For each landmark p; we find a line normal to the shape contour.

» New position p/ is the maximum of the edge map on the line. (If
maximum too weak, no change.)



Fitting

> New position p} is the maximum of the edge map on the line. (If
maximum too weak, no change.)
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Fitting

P= Tso..t (p) =sQop + ry. Where p=Pb+p

» Calculate an edge map of the image
» For each landmark p; we find a line normal to the shape contour.

» New position p/ is the maximum of the edge map on the line. (If
maximum too weak, no change.)

> Adjust pose parameters , s, ty, t, by the alignment algorithm.



Fitting

P= Tso..t (p) =sQop + ry. Where p=Pb+p

Calculate an edge map of the image
For each landmark p; we find a line normal to the shape contour.

New position p} is the maximum of the edge map on the line. (If
maximum too weak, no change.)

Adjust pose parameters 0, s, t,, t, by the alignment algorithm.
Adjust shape parameters b as follows:
pi =T '(p})
1/~ _ T/~ _
b’ =P~'(p; — ) =P’ (p; — P)



Fitting

P= Tso..t (p) =sQop + ry. Where p=Pb+p

Calculate an edge map of the image
For each landmark p; we find a line normal to the shape contour.

New position p} is the maximum of the edge map on the line. (If
maximum too weak, no change.)

Adjust pose parameters 0, s, t,, t, by the alignment algorithm.
Adjust shape parameters b as follows:
pi =T '(p})
1/~ _ T/~ _
b’ =P~'(p; — ) =P’ (p; — P)

Repeat until convergence



Example
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Hand image Edge map + initial shape.

The image is smoothed and a gradient magnitude image calculated in
each color channel. The edge map is a maximum over the three color
channels, thresholded to obtain a clean background.



Example
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First iteration Final postition



