Point Distribution Models

Jan Kybic

winter semester 2007

Point distribution models

(Cootes et al., 1992)

- ► Shape description techniques
- ► A family of shapes = mean + eigenvectors (eigenshapes)
- Shapes described by points

Point distribution model procedure

Input:

- M training samples
- ▶ N points each

$$\mathbf{x}^{i} = (x_{1}^{i}, y_{1}^{i}, x_{2}^{i}, y_{2}^{i}, \dots, x_{N}^{i}, y_{N}^{i})^{T}$$

Procedure:

- Rigidly align all shapes
- Calculate the mean and the covariance matrix
- ▶ PCA (eigen analysis) find principal modes

Rigid alignment

$$\mathbf{x}^{(1)} = (x_1^{(1)}, y_1^{(1)}, x_2^{(1)}, y_2^{(1)}, \dots, x_N^{(1)}, y_N^{(1)})^T$$

$$\mathbf{x}^{(2)} = (x_1^{(2)}, y_1^{(2)}, x_2^{(2)}, y_2^{(2)}, \dots, x_N^{(2)}, y_N^{(2)})^T$$

Find a transformation (rotation, translation, scaling) of $\mathbf{x}^{(2)}$

$$\mathcal{T}(\mathbf{x}^{(2)}) = s R \begin{bmatrix} x_i^{(2)} \\ y_i^{(2)} \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} = \begin{bmatrix} x_i^{(2)} s \cos \theta - y_i^{(2)} s \sin \theta \\ x_i^{(2)} s \sin \theta + y_i^{(2)} s \cos \theta \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

such that a sum of squared distances is minimized

$$E = \sum_{i=1}^{M} w_i \left\| s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i^{(2)} \\ y_i^{(2)} \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} - \begin{bmatrix} x_i^{(1)} \\ y_i^{(1)} \end{bmatrix} \right\|^2$$

$$E = \sum_{i=1}^{M} w_i \left\| s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x_i^{(2)} \\ y_i^{(2)} \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix} - \begin{bmatrix} x_i^{(1)} \\ y_i^{(1)} \end{bmatrix} \right\|^2$$

Minimize $E(\theta, s, t_x, t_y)$ as $\min_{\theta} \min_{s, t_x, t_y} E_{\theta}(s, t_x, t_y)$

▶ Inner minimization wrt s, t_x, t_y

$$\frac{\partial E}{\partial t_x} = 0 \; , \qquad \frac{\partial E}{\partial t_v} = 0 \; , \qquad \frac{\partial E}{\partial s} = 0 \; ,$$

▶ Inner minimization wrt s, t_x, t_y

where $q(a, b, \theta) = a \sin \theta + b \cos \theta$.

$$\frac{\partial E}{\partial t_v} = 0 \; , \qquad \frac{\partial E}{\partial t_v} = 0 \; , \qquad \frac{\partial E}{\partial s} = 0 \; ,$$

 $s \sum_{i=1}^{M} w_i q(y_i, -x_i, \theta) - N t_x = -\sum_{i=1}^{M} w_i x_i'$

leads to linear equations:

$$s \sum_{i=1}^{M} w_i q(-x_i, -y_i, \theta) - N t_y = -\sum_{i=1}^{M} w_i y_i'$$

$$s \sum_{i=1}^{M} w_i^2 \left(q^2(y_i, -x_i, \theta) + q^2(x_i, y_i, \theta) \right) - t_x \sum_{i=1}^{M} w_i q(y_i, -x_i, \theta)$$

$$- t_y \sum_{i=1}^{M} w_i q(-x_i, -y_i, \theta)$$

$$= -\sum_{i=1}^{M} w_i x_i' q(y_i, -x_i, \theta) + \sum_{i=1}^{M} w_i y_i' q(x_i, -y_i, \theta)$$

- ▶ Inner minimization wrt s, t_x, t_y
- ▶ Outer minimization wrt θ One dimensional functional minimization, e.g. Brent's routine or golden section search.

- Align each \mathbf{x}^i with \mathbf{x}^1 , for i = 2, 3, ..., M, obtaining $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, ..., \hat{\mathbf{x}}^M\}$.
- ► Calculate the mean $\bar{\mathbf{x}} = [\bar{x}_1, \bar{y}_1, \bar{x}_2, \bar{y}_2, \dots, \bar{x}_N, \bar{y}_N]$ of the aligned shapes $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M\}$.

$$ar{x}_j = rac{1}{M} \sum_{i=1}^M \hat{x}^i_j$$
 and $ar{y}_j = rac{1}{M} \sum_{i=1}^M \hat{y}^i_j$.

- Align each \mathbf{x}^i with \mathbf{x}^1 , for i = 2, 3, ..., M, obtaining $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, ..., \hat{\mathbf{x}}^M\}$.
- ► Calculate the mean $\bar{\mathbf{x}} = [\bar{x}_1, \bar{y}_1, \bar{x}_2, \bar{y}_2, \dots, \bar{x}_N, \bar{y}_N]$ of the aligned shapes $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M\}$.
- ▶ Align the mean shape $\bar{\mathbf{x}}$ with \mathbf{x}^1 . (Necessary for convergence.)

- Align each \mathbf{x}^i with \mathbf{x}^1 , for i = 2, 3, ..., M, obtaining $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, ..., \hat{\mathbf{x}}^M\}$.
- ▶ Calculate the mean $\bar{\mathbf{x}} = [\bar{x}_1, \bar{y}_1, \bar{x}_2, \bar{y}_2, \dots, \bar{x}_N, \bar{y}_N]$ of the aligned shapes $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M\}$.
- ▶ Align the mean shape $\bar{\mathbf{x}}$ with \mathbf{x}^1 . (Necessary for convergence.)
- ▶ Align $\hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M$ to the adjusted mean.

- Align each \mathbf{x}^i with \mathbf{x}^1 , for i = 2, 3, ..., M, obtaining $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, ..., \hat{\mathbf{x}}^M\}$.
- ▶ Calculate the mean $\bar{\mathbf{x}} = [\bar{x}_1, \bar{y}_1, \bar{x}_2, \bar{y}_2, \dots, \bar{x}_N, \bar{y}_N]$ of the aligned shapes $\{\mathbf{x}^1, \hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M\}$.
- ▶ Align the mean shape $\bar{\mathbf{x}}$ with \mathbf{x}^1 . (Necessary for convergence.)
- ▶ Align $\hat{\mathbf{x}}^2, \hat{\mathbf{x}}^3, \dots, \hat{\mathbf{x}}^M$ to the adjusted mean.
- Repeat until convergence.

We have obtained M (mutually aligned) boundaries $\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2, \dots, \hat{\mathbf{x}}^M$ and the mean $\bar{\mathbf{x}}$.

Deriving the model

We have M boundaries $\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2, \dots, \hat{\mathbf{x}}^M$ and the mean $\bar{\mathbf{x}}$.

▶ Variation from the mean for each training shape

$$\delta \mathbf{x}^i = \hat{\mathbf{x}}^i - \bar{\mathbf{x}}$$
.

▶ Covariance matrix **S** $(2N \times 2N)$

$$\mathbf{S} = \frac{1}{M} \sum_{i=1}^{M} \delta \mathbf{x}^{i} (\delta \mathbf{x}^{i})^{T}$$

Deriving the model

We have M boundaries $\hat{\mathbf{x}}^1, \hat{\mathbf{x}}^2, \dots, \hat{\mathbf{x}}^M$ and the mean $\bar{\mathbf{x}}$.

▶ Variation from the mean for each training shape

$$\delta \mathbf{x}^i = \hat{\mathbf{x}}^i - \bar{\mathbf{x}}$$
.

▶ Covariance matrix **S** $(2N \times 2N)$

$$\mathbf{S} = \frac{1}{M} \sum_{i=1}^{M} \delta \mathbf{x}^{i} (\delta \mathbf{x}^{i})^{T}$$

Principal component analysis

Principal component analysis

Eigen decomposition

$$\mathbf{S}\mathbf{p}_{i} = \lambda_{i}\mathbf{p}_{i}$$

$$P = \left[\mathbf{p}^{1}\mathbf{p}^{2}\mathbf{p}^{3}\dots\mathbf{p}^{2N}\right]$$

We know eigenvalues λ_i are real because **S** is symmetric, positive definite. Eigenvectors (principal components) \mathbf{p}_i are orthogonal, so **P** is a basis and any vector \mathbf{x} can be represented as

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P} \mathbf{b}$$

Principal component analysis

Eigen decomposition

$$\mathbf{S}\mathbf{p}_{i} = \lambda_{i}\mathbf{p}_{i}$$

$$P = \left[\mathbf{p}^{1}\mathbf{p}^{2}\mathbf{p}^{3}\dots\mathbf{p}^{2N}\right]$$

We know eigenvalues λ_i are real because **S** is symmetric, positive definite. Eigenvectors (principal components) \mathbf{p}_i are orthogonal, so **P** is a basis and any vector \mathbf{x} can be represented as

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P} \mathbf{b}$$

▶ Order eigenvectors \mathbf{p}_i and eigenvalues λ_i such that $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \dots \lambda_{2N}$. Most changes are then described by the first few eigenvectors.

Principal component analysis

Eigen decomposition

$$\mathbf{S}\mathbf{p}_{i} = \lambda_{i}\mathbf{p}_{i}$$

$$P = \left[\mathbf{p}^{1}\mathbf{p}^{2}\mathbf{p}^{3}\dots\mathbf{p}^{2N}\right]$$

$$\mathbf{x} = \bar{\mathbf{x}} + \mathbf{P}\mathbf{b}$$

- ▶ Order eigenvectors \mathbf{p}_i and eigenvalues λ_i such that $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \dots \lambda_{2N}$. Most changes are then described by the first few eigenvectors.
- Consider only K largest eigenvalues.

Approximation
$$\mathbf{x} \approx \bar{\mathbf{x}} + \mathbf{P}_K \mathbf{b}_K$$

with $\mathbf{P}_K = \left[\mathbf{p}^1 \mathbf{p}^2 \mathbf{p}^3 \dots \mathbf{p}^K \right]$
 $\mathbf{b}_t = \left[b_1, b_2, \dots, b_K \right]^T$

Choose the smallest K, such that $\sum_{i=1}^{K} \lambda_i \geq \alpha \sum_{i=1}^{N} \lambda_i$.

Point distribution model

- ▶ **Input:** M non-aligned boundaries $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^M$.
- **Output:** mean $\bar{\mathbf{x}}$ and reduced eigerector matrix \mathbf{P}_K

Point distribution model

- ▶ **Input:** M non-aligned boundaries $\mathbf{x}^1, \mathbf{x}^2, \dots, \mathbf{x}^M$.
- **Output:** mean $\bar{\mathbf{x}}$ and reduced eigerector matrix $\mathbf{P}_{\mathcal{K}}$
- ► New shape generation:

$$\widetilde{\mathbf{x}} = \overline{\mathbf{x}} + P_K \, \mathbf{b}_K$$

For "well-behaved' shapes

$$-3\sqrt{\lambda_i} \leq b_i \leq 3\sqrt{\lambda_i}$$

PDM example

Before alignment

After alignment, mean shape

PDM example

The mean shape is in red, the shape corresponding to $-3\sqrt{\lambda}$ in blue and the shape corresponding to $+3\sqrt{\lambda}$ in green.

Active shape models

Fit a learned point distribution model (PDM) to a given image.

Pose and shape parameters

- ▶ Point distribution model (PDM) consists of
 - ► mean **p**
 - ▶ eigenvectors P

Pose and shape parameters

- ▶ Point distribution model (PDM) consists of
 - ► mean **p**
 - eigenvectors P
- ► Fitted model given by:
 - pose parameters: θ , s, t_x , t_y
 - ▶ shape parameters: **b**

$$\widetilde{\mathbf{p}} = \mathbf{P}\mathbf{b} + \overline{\mathbf{p}}$$

$$\widetilde{\mathbf{p}} = \begin{bmatrix} \widetilde{\mathbf{p}}_1 & \widetilde{\mathbf{p}}_2 & \dots & \widetilde{\mathbf{p}}_N \end{bmatrix}$$

$$\widetilde{\mathbf{p}} = \begin{bmatrix} \widetilde{x}_1 & \widetilde{y}_1 & \widetilde{x}_2 & \widetilde{y}_2 & \dots & \widetilde{x}_N & \widetilde{y}_N \end{bmatrix}$$

$$\begin{bmatrix} x_i \\ y_i \end{bmatrix} = s \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & -\cos \theta \end{bmatrix} \begin{bmatrix} \widetilde{x}_i \\ \widetilde{y}_i \end{bmatrix} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$$

$$\mathbf{p} = \begin{bmatrix} x_1 & y_1 & x_2 & y_2 & \dots & x_N & y_N \end{bmatrix}$$

$$\mathbf{p} = T_{s,\theta,t_x,t_y}(\widetilde{\mathbf{p}}) = s \, \mathbf{Q}_{\theta} \widetilde{\mathbf{p}} + \mathbf{r}_{t_x,t_y}$$
 where $\widetilde{\mathbf{p}} = \mathbf{P} \mathbf{b} + \overline{\mathbf{p}}$

- Calculate an edge map of the image
- \triangleright For each landmark \mathbf{p}_i we find a line normal to the shape contour.
- New position p'_i is the maximum of the edge map on the line. (If maximum too weak, no change.)

New position \mathbf{p}_i' is the maximum of the edge map on the line. (If maximum too weak, no change.)

$$\mathbf{p} = T_{s,\theta,t_{\mathrm{x}},t_{\mathrm{y}}}(\widetilde{\mathbf{p}}) = s \, \mathbf{Q}_{\theta} \widetilde{\mathbf{p}} + \mathbf{r}_{t_{\mathrm{x}},t_{\mathrm{y}}} \quad \text{where} \quad \widetilde{\mathbf{p}} = \mathbf{P}\mathbf{b} + \overline{\mathbf{p}}$$

- Calculate an edge map of the image
- \triangleright For each landmark \mathbf{p}_i we find a line normal to the shape contour.
- New position p[']_i is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ , s, t_x , t_y by the alignment algorithm.

$$\mathbf{p} = T_{s,\theta,t_{\mathsf{x}},t_{\mathsf{y}}}(\widetilde{\mathbf{p}}) = s \, \mathbf{Q}_{\theta} \widetilde{\mathbf{p}} + \mathbf{r}_{t_{\mathsf{x}},t_{\mathsf{y}}} \quad \text{where} \quad \widetilde{\mathbf{p}} = \mathbf{P}\mathbf{b} + \bar{\mathbf{p}}$$

- Calculate an edge map of the image
- \triangleright For each landmark \mathbf{p}_i we find a line normal to the shape contour.
- New position p'_i is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ , s, t_x , t_y by the alignment algorithm.
- Adjust shape parameters b as follows:

$$\begin{split} \widetilde{\mathbf{p}}_i' &= \mathcal{T}^{-1}(\mathbf{p}_i') \\ \mathbf{b}' &= \mathbf{P}^{-1}(\widetilde{\mathbf{p}}_i' - \bar{\mathbf{p}}) = \mathbf{P}^{\mathcal{T}}(\widetilde{\mathbf{p}}_i' - \bar{\mathbf{p}}) \end{split}$$

$$\mathbf{p} = T_{s,\theta,t_x,t_y}(\widetilde{\mathbf{p}}) = s \, \mathbf{Q}_{\theta} \widetilde{\mathbf{p}} + \mathbf{r}_{t_x,t_y} \quad \text{where} \quad \widetilde{\mathbf{p}} = \mathbf{P} \mathbf{b} + \overline{\mathbf{p}}$$

- Calculate an edge map of the image
- \triangleright For each landmark \mathbf{p}_i we find a line normal to the shape contour.
- New position p'_i is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ , s, t_x , t_y by the alignment algorithm.
- ► Adjust shape parameters **b** as follows:

$$\begin{aligned} \widetilde{\mathbf{p}}_i' &= \mathcal{T}^{-1}(\mathbf{p}_i') \\ \mathbf{b}' &= \mathbf{P}^{-1}(\widetilde{\mathbf{p}}_i' - \overline{\mathbf{p}}) = \mathbf{P}^{\mathcal{T}}(\widetilde{\mathbf{p}}_i' - \overline{\mathbf{p}}) \end{aligned}$$

Repeat until convergence

Example

The image is smoothed and a gradient magnitude image calculated in each color channel. The edge map is a maximum over the three color channels, thresholded to obtain a clean background.

Example

