Point Distribution Models

Jan Kybic

winter semester 2007

Point distribution models

(Cootes et al., 1992)

- Shape description techniques
- A family of shapes $=$ mean + eigenvectors (eigenshapes)
- Shapes described by points

Point distribution model procedure

Input:

- M training samples
- N points each

$$
\mathbf{x}^{i}=\left(x_{1}^{i}, y_{1}^{i}, x_{2}^{i}, y_{2}^{i}, \ldots, x_{N}^{i}, y_{N}^{i}\right)^{T}
$$

Procedure:

- Rigidly align all shapes
- Calculate the mean and the covariance matrix
- PCA (eigen analysis) - find principal modes

Rigid alignment

Aligning two shapes

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\left(x_{1}^{(1)}, y_{1}^{(1)}, x_{2}^{(1)}, y_{2}^{(1)}, \ldots, x_{N}^{(1)}, y_{N}^{(1)}\right)^{T} \\
& \mathbf{x}^{(2)}=\left(x_{1}^{(2)}, y_{1}^{(2)}, x_{2}^{(2)}, y_{2}^{(2)}, \ldots, x_{N}^{(2)}, y_{N}^{(2)}\right)^{T}
\end{aligned}
$$

Find a transformation (rotation, translation, scaling) of $\mathbf{x}^{(2)}$

$$
\mathcal{T}\left(\mathbf{x}^{(2)}\right)=s R\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]=\left[\begin{array}{l}
x_{i}^{(2)} s \cos \theta-y_{i}^{(2)} s \sin \theta \\
x_{i}^{(2)} s \sin \theta+y_{i}^{(2)} s \cos \theta
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]
$$

such that a sum of squared distances is minimized

$$
E=\sum_{i=1}^{M} w_{i}\left\|s\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]-\left[\begin{array}{l}
x_{i}^{(1)} \\
y_{i}^{(1)}
\end{array}\right]\right\|^{2}
$$

Aligning two shapes

$$
E=\sum_{i=1}^{M} w_{i}\left\|s\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{i}^{(2)} \\
y_{i}^{(2)}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]-\left[\begin{array}{l}
x_{i}^{(1)} \\
y_{i}^{(1)}
\end{array}\right]\right\|^{2}
$$

Minimize $E\left(\theta, s, t_{x}, t_{y}\right)$ as $\min _{\theta} \min _{s, t_{x}, t_{y}} E_{\theta}\left(s, t_{x}, t_{y}\right)$

- Inner minimization wrt s, t_{x}, t_{y}

$$
\frac{\partial E}{\partial t_{x}}=0, \quad \frac{\partial E}{\partial t_{y}}=0, \quad \frac{\partial E}{\partial s}=0
$$

Aligning two shapes

- Inner minimization wrt s, t_{x}, t_{y}

$$
\frac{\partial E}{\partial t_{x}}=0, \quad \frac{\partial E}{\partial t_{y}}=0, \quad \frac{\partial E}{\partial s}=0
$$

leads to linear equations:

$$
\begin{gathered}
s \sum_{i=1}^{M} w_{i} q\left(y_{i},-x_{i}, \theta\right)-N t_{x}=-\sum_{i=1}^{M} w_{i} x_{i}^{\prime} \\
s \sum_{i=1}^{M} w_{i} q\left(-x_{i},-y_{i}, \theta\right)-N t_{y}=-\sum_{i=1}^{M} w_{i} y_{i}^{\prime} \\
s \sum_{i=1}^{M} w_{i}^{2}\left(q^{2}\left(y_{i},-x_{i}, \theta\right)+q^{2}\left(x_{i}, y_{i}, \theta\right)\right)-t_{x} \sum_{i=1}^{M} w_{i} q\left(y_{i},-x_{i}, \theta\right) \\
-t_{y} \sum_{i=1}^{M} w_{i} q\left(-x_{i},-y_{i}, \theta\right) \\
=-\sum_{i=1}^{M} w_{i} x_{i}^{\prime} q\left(y_{i},-x_{i}, \theta\right)+\sum_{i=1}^{M} w_{i} y_{i}^{\prime} q\left(x_{i},-y_{i}, \theta\right)
\end{gathered}
$$

where $q(a, b, \theta)=a \sin \theta+b \cos \theta$.

Aligning two shapes

- Inner minimization wrt s, t_{x}, t_{y}
- Outer minimization wrt θ

One dimensional functional minimization, e.g. Brent's routine or golden section search.

Aligning all training shapes

Before alignment

After alignment

Aligning all training shapes

- Align each \mathbf{x}^{i} with \mathbf{x}^{1}, for $i=2,3, \ldots, M$, obtaining $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Calculate the mean $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{2}, \bar{y}_{2}, \ldots, \bar{x}_{N}, \bar{y}_{N}\right]$ of the aligned shapes $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.

$$
\bar{x}_{j}=\frac{1}{M} \sum_{i=1}^{M} \hat{x}_{j}^{i} \quad \text { and } \quad \bar{y}_{j}=\frac{1}{M} \sum_{i=1}^{M} \hat{y}_{j}^{i} .
$$

Aligning all training shapes

- Align each \mathbf{x}^{i} with \mathbf{x}^{1}, for $i=2,3, \ldots, M$, obtaining $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Calculate the mean $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{2}, \bar{y}_{2}, \ldots, \bar{x}_{N}, \bar{y}_{N}\right]$ of the aligned shapes $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Align the mean shape $\overline{\mathbf{x}}$ with \mathbf{x}^{1}. (Necessary for convergence.)

Aligning all training shapes

- Align each \mathbf{x}^{i} with \mathbf{x}^{1}, for $i=2,3, \ldots, M$, obtaining $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Calculate the mean $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{2}, \bar{y}_{2}, \ldots, \bar{x}_{N}, \bar{y}_{N}\right]$ of the aligned shapes $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Align the mean shape $\overline{\mathbf{x}}$ with \mathbf{x}^{1}. (Necessary for convergence.)
- Align $\hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}$ to the adjusted mean.

Aligning all training shapes

- Align each \mathbf{x}^{i} with \mathbf{x}^{1}, for $i=2,3, \ldots, M$, obtaining $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Calculate the mean $\overline{\mathbf{x}}=\left[\bar{x}_{1}, \bar{y}_{1}, \bar{x}_{2}, \bar{y}_{2}, \ldots, \bar{x}_{N}, \bar{y}_{N}\right]$ of the aligned shapes $\left\{\mathbf{x}^{1}, \hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}\right\}$.
- Align the mean shape $\overline{\mathbf{x}}$ with \mathbf{x}^{1}. (Necessary for convergence.)
- Align $\hat{\mathbf{x}}^{2}, \hat{\mathbf{x}}^{3}, \ldots, \hat{\mathbf{x}}^{M}$ to the adjusted mean.
- Repeat until convergence.

We have obtained M (mutually aligned) boundaries $\hat{\mathbf{x}}^{1}, \hat{\mathbf{x}}^{2}, \ldots, \hat{\mathbf{x}}^{M}$ and the mean $\overline{\mathbf{x}}$.

Deriving the model

We have M boundaries $\hat{\mathbf{x}}^{1}, \hat{\mathbf{x}}^{2}, \ldots, \hat{\mathbf{x}}^{M}$ and the mean $\overline{\mathbf{x}}$.

- Variation from the mean for each training shape

$$
\delta \mathbf{x}^{i}=\hat{\mathbf{x}}^{i}-\overline{\mathbf{x}}
$$

- Covariance matrix $\mathbf{S}(2 N \times 2 N)$

$$
\mathbf{S}=\frac{1}{M} \sum_{i=1}^{M} \delta \mathbf{x}^{i}\left(\delta \mathbf{x}^{i}\right)^{T}
$$

Deriving the model

We have M boundaries $\hat{\mathbf{x}}^{1}, \hat{\mathbf{x}}^{2}, \ldots, \hat{\mathbf{x}}^{M}$ and the mean $\overline{\mathbf{x}}$.

- Variation from the mean for each training shape

$$
\delta \mathbf{x}^{i}=\hat{\mathbf{x}}^{i}-\overline{\mathbf{x}} .
$$

- Covariance matrix $\mathbf{S}(2 N \times 2 N)$

$$
\mathbf{S}=\frac{1}{M} \sum_{i=1}^{M} \delta \mathbf{x}^{i}\left(\delta \mathbf{x}^{i}\right)^{T}
$$

- Principal component analysis

Principal component analysis

- Eigen decomposition

$$
\begin{aligned}
\mathbf{S p}_{i} & =\lambda_{i} \mathbf{p}_{i} \\
P & =\left[\mathbf{p}^{1} \mathbf{p}^{2} \mathbf{p}^{3} \ldots \mathbf{p}^{2 N}\right]
\end{aligned}
$$

We know eigenvalues λ_{i} are real because \mathbf{S} is symmetric, positive definite. Eigenvectors (principal components) \mathbf{p}_{i} are orthogonal, so \mathbf{P} is a basis and any vector \mathbf{x} can be represented as

$$
\mathbf{x}=\overline{\mathbf{x}}+\mathbf{P} \mathbf{b}
$$

Principal component analysis

- Eigen decomposition

$$
\begin{aligned}
\mathbf{S} \mathbf{p}_{i} & =\lambda_{i} \mathbf{p}_{i} \\
P & =\left[\mathbf{p}^{1} \mathbf{p}^{2} \mathbf{p}^{3} \ldots \mathbf{p}^{2 N}\right]
\end{aligned}
$$

We know eigenvalues λ_{i} are real because \mathbf{S} is symmetric, positive definite. Eigenvectors (principal components) \mathbf{p}_{i} are orthogonal, so \mathbf{P} is a basis and any vector \mathbf{x} can be represented as

$$
\mathbf{x}=\overline{\mathbf{x}}+\mathbf{P} \mathbf{b}
$$

- Order eigenvectors \mathbf{p}_{i} and eigenvalues λ_{i} such that $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \lambda_{2 N}$. Most changes are then described by the first few eigenvectors.

Principal component analysis

- Eigen decomposition

$$
\begin{aligned}
\mathbf{S p}_{i} & =\lambda_{i} \mathbf{p}_{i} \\
P= & {\left[\mathbf{p}^{1} \mathbf{p}^{2} \mathbf{p}^{3} \ldots \mathbf{p}^{2 N}\right] } \\
& \mathbf{x}=\overline{\mathbf{x}}+\mathbf{P} \mathbf{b}
\end{aligned}
$$

- Order eigenvectors \mathbf{p}_{i} and eigenvalues λ_{i} such that $\lambda_{1} \geq \lambda_{2} \geq \lambda_{3} \geq \ldots \lambda_{2 N}$. Most changes are then described by the first few eigenvectors.
- Consider only K largest eigenvalues.

Approximation $\mathbf{x} \approx \overline{\mathbf{x}}+\mathbf{P}_{K} \mathbf{b}_{K}$

$$
\text { with } \quad \begin{aligned}
\mathbf{P}_{K} & =\left[\mathbf{p}^{1} \mathbf{p}^{2} \mathbf{p}^{3} \ldots \mathbf{p}^{K}\right] \\
\mathbf{b}_{t} & =\left[b_{1}, b_{2}, \ldots, b_{K}\right]^{T}
\end{aligned}
$$

Choose the smallest K, such that $\sum_{i=1}^{K} \lambda_{i} \geq \alpha \sum_{i=1}^{N} \lambda_{i}$.

Point distribution model

- Input: M non-aligned boundaries $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{M}$.
- Output: mean $\overline{\mathbf{x}}$ and reduced eigvector matrix \mathbf{P}_{K}

Point distribution model

- Input: M non-aligned boundaries $\mathbf{x}^{1}, \mathbf{x}^{2}, \ldots, \mathbf{x}^{M}$.
- Output: mean $\overline{\mathbf{x}}$ and reduced eigvector matrix \mathbf{P}_{K}
- New shape generation:

$$
\widetilde{\mathbf{x}}=\overline{\mathbf{x}}+P_{K} \mathbf{b}_{K}
$$

For "well-behaved' shapes

$$
-3 \sqrt{\lambda_{i}} \leq b_{i} \leq 3 \sqrt{\lambda_{i}}
$$

PDM example

Before alignment

After alignment, mean shape

PDM example

The mean shape is in red, the shape corresponding to $-3 \sqrt{\lambda}$ in blue and the shape corresponding to $+3 \sqrt{\lambda}$ in green.

Active shape models

Fit a learned point distribution model (PDM) to a given image.

Pose and shape parameters

- Point distribution model (PDM) consists of
- mean $\overline{\mathbf{p}}$
- eigenvectors \mathbf{P}

Pose and shape parameters

- Point distribution model (PDM) consists of
- mean $\overline{\mathbf{p}}$
- eigenvectors \mathbf{P}
- Fitted model given by:
- pose parameters: θ, s, t_{x}, t_{y}
- shape parameters: b

$$
\left.\begin{array}{rl}
\widetilde{\mathbf{p}} & =\mathbf{P b}+\overline{\mathbf{p}} \\
\widetilde{\mathbf{p}} & =\left[\begin{array}{llll}
\widetilde{\mathbf{p}}_{1} & \widetilde{\mathbf{p}}_{2} & \ldots & \widetilde{\mathbf{p}}_{N}
\end{array}\right] \\
\widetilde{\mathbf{p}} & =\left[\begin{array}{lllll}
\tilde{x}_{1} & \tilde{y}_{1} & \tilde{x}_{2} & \tilde{y}_{2} & \ldots \\
\tilde{x}_{N} & \tilde{y}_{N}
\end{array}\right] \\
{\left[\begin{array}{c}
x_{i} \\
y_{i}
\end{array}\right]} & =s\left[\begin{array}{llll}
\cos \theta & -\sin \theta \\
\sin \theta & -\cos \theta
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{i} \\
\tilde{y}_{i}
\end{array}\right]+\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right] \\
\mathbf{p} & =\left[\begin{array}{llllll}
x_{1} & y_{1} & x_{2} & y_{2} & \ldots & x_{N}
\end{array} y_{N}\right.
\end{array}\right] \quad .
$$

Fitting

$$
\mathbf{p}=T_{s, \theta, t_{x}, t_{y}}(\widetilde{\mathbf{p}})=s \mathbf{Q}_{\theta} \widetilde{\mathbf{p}}+\mathbf{r}_{t_{x}, t_{y}} \quad \text { where } \quad \widetilde{\mathbf{p}}=\mathbf{P b}+\overline{\mathbf{p}}
$$

- Calculate an edge map of the image
- For each landmark \mathbf{p}_{i} we find a line normal to the shape contour.
- New position \mathbf{p}_{i}^{\prime} is the maximum of the edge map on the line. (If maximum too weak, no change.)

Fitting

- New position \mathbf{p}_{i}^{\prime} is the maximum of the edge map on the line. (If maximum too weak, no change.)

Fitting

$$
\mathbf{p}=T_{s, \theta, t_{x}, t_{y}}(\widetilde{\mathbf{p}})=s \mathbf{Q}_{\theta} \widetilde{\mathbf{p}}+\mathbf{r}_{t_{x}, t_{y}} \quad \text { where } \quad \widetilde{\mathbf{p}}=\mathbf{P b}+\overline{\mathbf{p}}
$$

- Calculate an edge map of the image
- For each landmark \mathbf{p}_{i} we find a line normal to the shape contour.
- New position \mathbf{p}_{i}^{\prime} is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ, s, t_{x}, t_{y} by the alignment algorithm.

Fitting

$$
\mathbf{p}=T_{s, \theta, t_{x}, t_{y}}(\widetilde{\mathbf{p}})=s \mathbf{Q}_{\theta} \widetilde{\mathbf{p}}+\mathbf{r}_{t_{x}, t_{y}} \quad \text { where } \widetilde{\mathbf{p}}=\mathbf{P b}+\overline{\mathbf{p}}
$$

- Calculate an edge map of the image
- For each landmark \mathbf{p}_{i} we find a line normal to the shape contour.
- New position \mathbf{p}_{i}^{\prime} is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ, s, t_{x}, t_{y} by the alignment algorithm.
- Adjust shape parameters \mathbf{b} as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{p}}_{i}^{\prime}=T^{-1}\left(\mathbf{p}_{i}^{\prime}\right) \\
& \mathbf{b}^{\prime}=\mathbf{P}^{-1}\left(\widetilde{\mathbf{p}}_{i}^{\prime}-\overline{\mathbf{p}}\right)=\mathbf{P}^{T}\left(\widetilde{\mathbf{p}}_{i}^{\prime}-\overline{\mathbf{p}}\right)
\end{aligned}
$$

Fitting

$$
\mathbf{p}=T_{s, \theta, t_{x}, t_{y}}(\widetilde{\mathbf{p}})=s \mathbf{Q}_{\theta} \widetilde{\mathbf{p}}+\mathbf{r}_{t_{x}, t_{y}} \quad \text { where } \quad \widetilde{\mathbf{p}}=\mathbf{P b}+\overline{\mathbf{p}}
$$

- Calculate an edge map of the image
- For each landmark \mathbf{p}_{i} we find a line normal to the shape contour.
- New position \mathbf{p}_{i}^{\prime} is the maximum of the edge map on the line. (If maximum too weak, no change.)
- Adjust pose parameters θ, s, t_{x}, t_{y} by the alignment algorithm.
- Adjust shape parameters \mathbf{b} as follows:

$$
\begin{aligned}
& \widetilde{\mathbf{p}}_{i}^{\prime}=T^{-1}\left(\mathbf{p}_{i}^{\prime}\right) \\
& \mathbf{b}^{\prime}=\mathbf{P}^{-1}\left(\widetilde{\mathbf{p}}_{i}^{\prime}-\overline{\mathbf{p}}\right)=\mathbf{P}^{T}\left(\widetilde{\mathbf{p}}_{i}^{\prime}-\overline{\mathbf{p}}\right)
\end{aligned}
$$

- Repeat until convergence

Example

Hand image

Edge map + initial shape.

The image is smoothed and a gradient magnitude image calculated in each color channel. The edge map is a maximum over the three color channels, thresholded to obtain a clean background.

Example

First iteration

Final postition

